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Abstract: Analyzing monitoring data efficiently is a classic problem in structural health monitoring.
A nonparametric test method, the Mann–Kendall (MK) method, was implemented in this study,
which is commonly used to detect monotonic trends in a series of environmental data. Using the MK
method, three types of time series were studied: the stress time series measured in the concrete prism
compression test, the resultant force time series obtained from the pseudostatic test of a reinforced
masonry shear wall, and the translation velocity time series detected in a high-rise building. The
statistics calculated, as well as the intersections of curves, indicate the trend change in the time series.
The results demonstrated that the MK method could efficiently analyze the trend in the engineering
time series.
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1. Introduction

Structural health monitoring could prevent building safety accidents. Efficiently
analyzing the monitoring data obtained by varied sensors is a classic problem in structural
health monitoring.

The literature in this domain has highlighted several methods. In one class, some
of the methods work with threshold analysis theory. For instance, the predefined strain
threshold helps to predict the damaged or near-damaged part of modular buildings [1–3].
The residual drift threshold has been introduced to detect the structural reliability of steel
frames [4,5]. The ratio Cl-/OH- threshold has been used to assess the concrete corrosion
status [6,7]. The fractal dimension has been developed to analyze the aggregates’ packing
status in concrete [8,9]. Several methods have also been proposed to provide a more accurate
dynamically modified threshold value [10]. A prediction framework was introduced to
forecast appropriate thresholds using limited data exhibiting nonstationarity to predict the
long-term behavior of a concrete dam [11–13]. The Spectral Shift Quality threshold was
proposed using distributed optical fiber sensors on the reinforced concrete structures [14].
All the studies reviewed here have a particular problem, in that when a single threshold is
exceeded, the construction element or the whole structure is not assumed to be in danger;
this may cause a misjudgment.

The second class of research focuses on the statistical or random characteristics of
the data measured. A statistical model based on the optimized random forest model
was offered to monitor concrete dam deformation [15,16]. The development of long-term
structural health monitoring systems for preventive conservation of historic monumental
buildings has received a growing trend of scientific interest [17,18]. In addition, random
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fields, non-Gaussian stochastic models, and independent component analysis-based ar-
bitrary polynomial chaos methods could offer us an effective framework for stochastic
modeling and response propagation of an engineering system [19–22]. Furthermore, sev-
eral classic machine learning algorithms have been introduced and improved, such as
a neural network pattern recognition algorithm to improve pavement maintenance and
rehabilitation [23]. These statistical-or-random-characteristics-based analysis methods can
process vast amounts of data, which can indicate the structure’s status and improve safety.
However, these methods usually consume considerable computation time, which limits
their development in engineering.

To a certain extent, the structural health monitoring technological progress might
be obstructed by the lack of an efficient and accurate monitoring data analysis method.
In this study, a trend analysis is introduced based on a nonparametric test method, the
Mann–Kendall(MK) method, which is commonly implemented to detect monotonic trends
in a series of environmental data [24,25]. It is necessary when applying a parametric test to
assume the random distribution of the data series [26]. The nonparametric test method,
on the other hand, does not need to consider what random distribution the data samples
follow [27]. In addition, the main advantage of the nonparametric test method is that it
can be immune to the interference of the abnormal value measured. This advantage makes
the MK method applicable to analyze time series efficiently. Three common types of time
series were studied, the stress time series measured in the concrete prism compression test,
the resultant force time series obtained from the pseudostatic test of a reinforced masonry
shear wall, and the translation velocity time series detected in a high-rise building. This
study provides a powerful tool for structural health monitoring.

2. Mann–Kendall Method

The MK method was implemented through the following steps:
Step 1. We calculated the statistical sequence of the original time series. First, it was neces-

sary to construct an order list, skm based on the original time series, xk, where k = 1, 2, · · · , n
indicated the order. The kth item of this order sequence, sk, was obtained by Equation (1)

sk =
k

∑
j=1

rj (1)

where element rj was obtained in the following manner:

rj =
j

∑
i=1

aj (2)

aj =

{
1 , if xj > xi

0 , if xj ≤ xi
i = 1, 2, · · · , j (3)

Then, the statistical characteristic values of the series sk, i.e., the mean value, E(sk), and
variance, Var(sk), were obtained by the approximation formula Equations (4) and (5), respectively:

E(sk) =
k(k− 1)

4
(4)

S(sk) =
k(k− 1)(2k + 5)

72
(5)

Hence, the statistical sequence UFk was obtained by applying Equation (6) based on
the order list, sk, and its statistical characteristic values, sk and E(sk).

UFk =
sk − E(sk)√

Var(sk)
(6)

Step 2. We calculated the statistical sequence of the reversed time series.
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Before calculating the order list, the time series x1, x2, · · · , xn should be reversed; the
reversed series was noted as X′ = {xn, xn−1, · · · , x1}. The mth element of X′ was noted
as x′m.

Then, the cumulative value r′p was obtained in the following manner:

r′p =
p

∑
i=1

ap (7)

ap =

{
1 , if x′p > x′i
0 , if x′p ≤ x′i

i = 1, 2, · · · , p (8)

The mth item of the reversed order sequence, s′m, was obtained by Equation (9)

sm =
m

∑
p=1

r′p (9)

The statistical sequence UF′m was also obtained by applying Equation (6). By defin-
ing UBm = −UF′m, m = 1, 2, · · · , n, the statistical sequence of reversed time series
was obtained.

Step 3. We analyzed the trend according to the order list of the time series and its
reversed series.

The analysis started with plotting the statistical sequence of UFk and UBm. According
to the sequence of the UF and UB values, the following analyses were made:

1. The UF value larger than 0 or the UB value smaller than 0 indicated an increasing
trend. Conversely, the negative value of UF indicated a decreasing trend.

2. The UF or UB value exceeding the threshold demonstrated a remarkable trend, which
was considered an abrupt and sudden change.

3. The intersection of the curves of UF and UB indicate a possible significance in
the change.

In addition, the sequence of UF followed the standard normal distribution. With the
statistical significance level, α, given, the UFk larger than the (1− α/2)th percentile of the
standard normal distribution indicated a remarkable change trend.

3. Experiments
3.1. Concrete Prism under Axial Compression

The first type of testing sample analyzed in this study was a concrete prism with
dimensions of 150 mm × 150 mm × 300 mm (length × width × height) under axial
compression, as shown in Figure 1. The coarse aggregate content was 50%. The other
components’ content of this sample was as follows: 195 kg/m3 of water, 325 kg/m3 of
cement, and 696 kg/m3 of sand.

Then, the concrete prism sample was tested with a closed-loop servo-controlled
compression testing machine with a capacity of 200 kN. The compressive load was applied
in displacement-control mode. The sample’s load and deformation were measured by a
pressure sensor and linear variable differential transformer (LVDT).
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Figure 1. Concrete prism compression test.

3.2. Reinforced Masonry Shear Wall under Lateral Cyclic Load

The second case studied was a reinforced masonry shear wall under lateral cyclic
load. The sample had a high aspect ratio with dimensions of 1390 mm × 3200 mm ×
190 mm (length × height × thickness). This shear wall was constructed by using hollow
concrete blocks with an average compressive strength of 22.8 MPa, mortar with an average
compressive strength of 21.5 MPa, grouted concrete with an average compressive strength
of 32.2 MPa, a horizontal steel bar with an average yield strength of 393 MPa, and a vertical
steel bar with an average yield strength of 405 MPa. The detailed setup of the cyclic loading
test can be found in Section 2 of Ref. [28].

Then, a cyclic lateral load was imposed on the wall by displacement-control mode.
The loading scheme was illustrated in Figure 7, Section 2 of Ref. [28]. More details about
the sample as well as its components and the experiment can be found in our previous
study [28].
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3.3. Dynamic Building Monitoring

The third analysis object was a translation velocity time series detected in a high-rise
building. This building had a height of 99.8 m, constructed by a reinforced concrete hollow
block masonry structure. The time series were detected by an accelerometer and data
acquisition system set on the 10th floor under the ambient excitation of the building’s
construction. The accelerometer was installed in the middle of the floor, because this
location had a larger stiffness. The detailed schematic diagram of the sensor layout was
reported in Section 6 of Ref. [29]. More details about the building, detecting system, and
scheme can be found in Ref. [29].

4. Results and Discussion
4.1. Concrete Prism under Axial Compression

The mechanical test and setup were introduced in Section 3.1. Since the load was
controlled by displacement, the stress of the prism sample calculated based on the data
measured from the pressure sensor is analyzed and discussed. The trend analysis results,
i.e., the curves of UF and UB, as well as the original stress time series are plotted in Figure 2.

27.17 MPa

39.13 MPa

Figure 2. Trend analysis of stress time series measured by concrete prism under axial compression.

The stress time series obtained essentially represented the concrete sample’s mechani-
cal response under monotonic loading. According to the analysis results represented in
Figure 2, the following aspects can be highlighted:

At the very beginning of the loading stage, the UF value was already much larger than
0, which indicated a remarkably increasing trend. This phenomenon might be caused
directly by the monotonic loading mode. The gradually increased compressive load
increased stress, as well as the development of eventual failure. That is to say, in the
case that the concrete prism sample was subjected to a monotonic compressive loading, the
stress trend would increase. The monotonic compressive loading would cause the sample’s
inevitable failure.

Next, the time of the abrupt and sudden change occurrence is discussed. As mentioned
above, the UF or UB value exceeding the threshold demonstrated a remarkable trend,
which could be considered an abrupt and sudden change. The UF value exceeded the
threshold Φ(α = 0.1) = ±1.96 at the very beginning of the loading stage, which also
demonstrated that a monotonic gradually increasing compressive loading would cause
the sample’s inevitable failure. Meanwhile, the intersection of the curves of UF and UB
was located in the elastic stage, when the stress reached about 21 MPa. This intersection
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location indicated that the possible significance of the change occurred when the stress
reached about 50% of the compressive strength, 39 MPa. In other words, if the concrete
prism sample was subjected to a monotonic compressive loading, the possible significance
of stress change might take place when about 50% of the maximum load was imposed.

4.2. Reinforced Masonry Shear Wall under Lateral Cyclic Load

The pseudostatic test and setup were introduced in Section 3.2. Since the load imposed
on the shear wall was controlled displacement, the resultant force of the shear wall sample
is analyzed and discussed. The trend analysis results, as well as the original resultant force
time series, are plotted in Figure 3.

Figure 3. Trend analysis of resultant force time series measured by reinforced masonry shear wall
under lateral cyclic load.

The resultant force series obtained essentially represented the reinforced concrete
block masonry shear wall’s mechanical response under cyclic loading. According to the
analysis results represented in Figure 3, the following aspects can be highlighted:

At the beginning of the loading stage, i.e., when the amplitude of displacement
gradually increased and plastic deformation was not produced in the steel bar, the UF
value declined with a significant fluctuation. This negative sequence of UF indicated an
obvious decreasing trend. Meanwhile, the fluctuation could be considered to be caused
by the cyclic loading mode. This observation can be explained by the reinforced masonry
structure’s mechanical characteristics. This type of structure had adequate safety storage in
its early loading stage when the steel retained elastic. This phenomenon demonstrated that
the reinforced masonry shear wall would not suffer from unexpected brittle fracturing as
long as the reinforcement did not begin to yield.

As the lateral displacement imposed on the shear wall grew, the UF increased from
the basement with fluctuations. This increase in the UF value was considered as a mark
of the steel bar entering plastic deformation. When the UF increased with fluctuation, the
first intersection of the curves of UF and UB occurred, which could indicate a possible
significance in the change that might appear in the cyclic loading stage. Then, more
intersections were observed during the cyclic loading stage; each intersection location
indicated a possible sudden trend change. At that moment, a new crack or a remarkable
propagation of crack might be observed. However, because of the cyclic loading mode, this
new crack (or expanded crack) closed under the load imposed in the opposite direction.
Meanwhile, the trend change became stable again. This process would continue until the
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failure of the steel bar. This phenomenon also demonstrated the adequate safety storage of
the reinforced masonry shear wall in its plastic phase.

4.3. Building Dynamic Monitoring

The first and second series discussed above were more likely obtained from a sample
subjected to the load following a certain strategy, the third sampling process was more
random. The trend analysis results, as well as the original translation velocity time series,
are plotted in Figure 4.

(1) random vibration

with small amplitude

(2) quasi stable

(3) random vibration

with small amplitude

Figure 4. Trend analysis of translation velocity time series measured in a high-rise building.

According to Figure 4, this time series was divided into three part: (1) the random
vibrations with low amplitude from the 0 to 200th step, (2) the quasi-stable phase from the
200th to 400th step, and (3) the random vibration with higher amplitude from the 400th to
800th step.

The UF curve fluctuated severely in the first part with the translation velocity values
fluctuating. Meanwhile, the segment of the UF curve in the second part, the quasi-stable
part, represented a remarkable increase. This phenomenon might be explained by the
manner of intercepting the curve. The selected time series started with a fluctuation, and
the quasi-stable part would have an obvious different vibration characteristic from the
former part. This shift in the vibration characteristics caused the change in the statistical
parameters. Then, the UF curve fluctuated when the vibration characteristics altered.
Therefore, it should be noticed that the manner of intercepting random vibration time
series influenced the UF curve. Although the MK method was successfully developed
and applied in analyzing the random time series [30], several researchers have mentioned
that a high sampling frequency or large sample number might cause a misjudgment [31].
In addition, the analysis results obtained based on the MK method can only provide
the statistical trend change, the physical significance of the trend change needs to be
determined based on other mathematical models [27]. That is to say, the value of UF might
not be applicable to analyze the trend of the object under a random vibration with a high
sampling frequency.

On the other hand, the intersections of the curves of UF and UB were commonly
observed near the dividing boundary of the parts mentioned above, which indicated
that a possible sign of change appeared when the amplitude changed considerably. In
other words, both the intersections of the curves of UF and UB analysis and monitoring
of the change of amplitude might be efficient to determine a sudden change under a
random vibration.
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5. Conclusions and Future Works
5.1. Conclusions

This study analyzed three types of time series, the stress time series measured in
the concrete prism compression test, the resultant force time series obtained from the
pseudostatic test of a reinforced masonry shear wall, and the translation velocity time series
detected in a high-rise building, based on the Mann–Kendall (MK) method. The following
conclusions can be drawn:

1. A UF value larger than 0 at the beginning of the loading stage of the concrete prism
compression test indicated the monotonic compressive loading would cause the
sample’s inevitable failure. The location of the intersection of the curves of UF and
UB indicated that the possible significance of a stress change might take place when
about 50% of the maximum load was imposed.

2. The fluctuation of the UF curve obtained according to the resultant force time series
analysis demonstrated that the reinforced masonry shear wall would not suffer from
unexpected brittle fracturing as long as the reinforcement did not start yielding.
Furthermore, the adequate safety storage in its plastic phase was shown.

3. The value of UF might not be applicable to analyze the trend of an object under a
random vibration with a high sampling frequency. However, both the intersections of
the curves of UF and UB analysis and monitoring the change in amplitude might be
efficient to determine the sudden change under a random vibration.

This study demonstrated that the MK method could be efficient in analyzing the trend
in engineering time series. The analysis results can indicate and predict the sudden change
in the trend, which provides a powerful tool for structural health monitoring.

5.2. Future Work

As a nonparametric test method, the MK method has an intrinsic limitation. This
method can only provide the statistical trend change; the physical significance of the trend
change needs to be determined based on other mathematical models. We will attempt to
overcome these disadvantages in our future work.
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