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Abstract

:

The domain of data processing is essential to accelerate the delivery of information based on electronic performance monitoring (EPM). The classification of the activities conducted by craft workers can enhance the mechanisation and productivity of activities. However, research in this field is mainly based on simulations of binary activities (i.e., performing or not performing an action). To enhance EPM research in this field, a dynamic laboratory circuit-based simulation of ten common constructions activities was performed. A circuit feasibility case study of EPM using wearable devices was conducted, where two different data processing approaches were tested: machine learning and multivariate statistical analysis (MSA). Using the acceleration data of both wrists and the dominant leg, the machine-learning approach achieved an accuracy between 92 and 96%, while MSA achieved 47–76%. Additionally, the MSA approach achieved 32–76% accuracy by monitoring only the dominant wrist. Results highlighted that the processes conducted with manual tools (e.g., hammering and sawing) have prominent dominant-hand motion characteristics that are accurately detected with one wearable. However, free-hand performing (masonry), walking and not operating value (e.g., sitting) require more motion analysis data points, such as wrists and legs.
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1. Introduction


The construction industry (CI) is a significant player in the world economic scenario, as construction-related spending accounts for 13% of the global gross domestic product (GDP) [1]. However, despite its importance, this sector has shown weak productivity growth at a global scale [2], averaging a 1% annual productivity increase since 1997 [1]. Crafts and trade workers comprise 56% of the sector’s employment at the European Union level [3]. Innovation is required to mitigate the impact of workforce shrinkage on the industry, boosting labour productivity on site. To this end, there is an increased relevance in monitoring the industry’s primary productive workforce, justifying its importance as a research topic, which is aligned with the natural interests of companies [4] and the digitalisation and automation trends of Construction 4.0 [5,6]. Through this monitoring, companies can better evaluate their return on investment [4,7,8], while also providing supervisors with better information to support workforce development, training and deployment [5]. Authors refer to this monitoring and performance measurement as electronic performance monitoring (EPM) [8,9,10].



As such, the current technological advances enable new, more reliable methods of data collection, allowing for the real-time monitoring of construction activities. These methods are supported by recent innovations in micro and nanotechnology that enable the sustained assessment of each worker’s task process. The systematic control of construction operations can bring immediate awareness of specific aspects of undergoing activities, enabling better decision making [11] and the assessment of the project’s productivity in order to increase its performance [12]. Additionally, on-site labour productivity can be correlated with carbon dioxide (CO2) emissions and the generation of sanitary wastewater [13]. In fact, according to Mojahed and Aghazadeh, in the context of construction engineering, productivity is mainly related to the performance achieved within each work activity [14]. Finally, digital twins approaches focusing on managing production in a construction set are vital for the monitoring of construction sites [15,16].



The present research aims to assess this EPM in multiple construction tasks, using wearable devices, machine-learning and multivariate statistical analysis (MSA) data processing tools. The objectives of this work are the following:




	
Simulate a near-real scenario in which ten different construction activities are performed;



	
Deploy EPM, using wearable devices, and investigate options to reduce the number of devices overseeing the activities’ characteristics;



	
Classify the activities, grouping them over a process analysis;



	
Analyse the data with two distinct approaches, namely, machine learning and MSA, comparing the acquired results.









2. Background


Workforce activity classification through wearable devices as inertial measurement units (IMUs) is performed using different sensor combinations, namely: accelerometer [17,18,19,20,21]; accelerometer plus gyroscope [22,23,24,25,26]; and accelerometer, gyroscope, plus magnetometer [27,28,29]. Additionally, IMUs devices are positioned over multiple body parts [17,20,27] or on different body parts, such as: the spine [30,31]; arm [22,23,24,25,28]; arms and waist [21,32]; wrist [18,19]; and wrist and leg [26,33].



Labour process modelling based on workforce motion is more commonly applied in manufacturing working design than in the CI, with few studies targeting a process analysis approach in the CI [21,32]. The approach of modelling and measuring manual work systems sets the way for a comprehensive understanding of construction labour motion productivity. The process flow literature has five classes of activities that comprise all production tasks [34,35,36]:




	
Operation (performing work dealing with products), symbolised by a circle [35,36];



	
Inspection (performing quality control work), illustrated by a square [35,36];



	
Delay (waiting time, do not advance work progress), illustrated by capital “D” letter [35,36];



	
Transportation (moving products), illustrated by an arrow [35,36];



	
Storage (used for long-range storage) illustrated by a triangle [35,36].








The productive state addresses the workforce performance during the development of tasks, which can be either Productive (also referred to as Direct or Effective) work, Contributory (also referred to as Support) work or Nonproduction (also referred to as Ineffective) work [37]. This concept was applied by Refs [21,32,38] to cluster construction activities over Effective–Support–Ineffective work. A motion productivity model establishes nine processes to map craft workforce on-site tasks [5], as presented:




	
Free-hand performing (FHP), Operation, e.g., setting a brick;



	
Auxiliary tools (AUT), Inspection, e.g., using a spirit level;



	
Manual tools (MNT), Operation, e.g., using a trowel;



	
Electric/Electronic tools (EET), Operation, e.g., using a drill;



	
Machines operation (MOP), Operation, e.g., using a backhoe;



	
Robotic automation (RBA), Operation, e.g., robotic bricklaying arm;



	
Do not operate value (IDL), Delay, e.g., chatting and resting;



	
Walking (WLK), Delay, e.g., going to the WC;



	
Carrying, (CAR), Transportation/Storage, e.g., products, equipment.








Table 1 presents studies targeting construction tasks activity or process recognition. The maximum number of activities analysed in a single study totals eight activities. It is also observed that, on average, six to seven individuals (subjects) perform the activities. Most studies performed simulations (eleven out of thirteen), while only two experienced a more realistic simulation scenario in a training centre. For clarity, a binary analysis can be identified when only one action is evaluated against another action or an idleness state (stopped).



Several mathematical and statistical methods can be used to process and analyse the data. In most cases, these methods are used in conjunction with the univariate and multivariate analyses [42] and Monte Carlo simulation [38]. Dynamic analysis methods and neural networks are also widely used. There is a trend for applying artificial intelligence (AI) when faced with the large amounts of data collected by electronic devices to process such information quicker and more autonomously. Academic studies focusing on the classification of human activities/actions develop algorithms based on machine learning, including deep-learning [28,43] and traditional approaches [19,20,44]. Machine learning is a subset of AI and can be seen as an autonomous and self-teaching system for training algorithms to find patterns and subsequently use this knowledge to make predictions about new data [45,46]. The domain of data processing is essential to accelerate the delivery of information based on EPM: the faster and more autonomous the data processing, the more agile the delivery of solutions.




3. Method


3.1. Research Design


As highlighted above, most studies on activity and process recognition showcase a binary approach (performing/not performing an activity) [22,23,24,25,39,41], with few experiments conducted on site [21,32]. To fill this gap, the present research proposes a laboratory circuit with multiple activities, emulating on-site conditions for testing EPM deployment. A laboratory environment provides a more controlled and labour-saving environment to record and label the actions, as well as test the hardware solutions. Figure 1 presents the data collection and analysis flow chart to clarify the validation approach of the different cases. The main goal is to test and validate the laboratory circuit-based simulation deployment and compare and evaluate two data analysis approaches, assessing their feasibility and performance accuracy.




3.2. Data Collection


For an efficient performance monitoring of the construction craft workforce, it is essential to at least assess the hand tasks, the walking–travelling and the idleness. To this end, a circuit concept was established to simulate an interactive work scenario seen in a typical on-site construction project. This circuit purposely aimed to avoid a binary analysis, as it is the authors’ opinion that such an approach does not properly reflect a construction worker’s behaviour. For this reason, basic daily work activities were selected, which are part of the daily life of workers in different functions. It can be inferred that, given the role of a specific worker, his/her actions can be previously mapped, which would facilitate activity classification. Additionally, according to Adrian (2004), at least 50% of the workforce time on site is spent on non-productive activities (e.g., walking, drinking water, talking to co-workers) [37]. A total of six volunteers were equipped with three devices, two on both wrists and one on the dominant leg’s ankle. The inertial measurement units (IMU, similar to watches) devices collected 3-axis data at a sampling frequency of 100 Hz with a 1 s epoch output. Each data point is thus represented as a vector containing the timestamp of the reading and nine acceleration values (one for each axis of the three accelerometers).



Figure 2 shows the circuit deployed in a 150-square-meter indoor laboratory. The circuit was composed of work areas where the volunteers interactively performed the existing 10 activities. The volunteers walked from station to station to perform these activities, walking/travelling around the stations, assumed with letters in the figure. As well, a path sequence was pointed out as evidenced with the numbers; however, the volunteers had the option of carrying two or four bricks at once and shortening the travel between actions B (Masonry collection) and C (Masonry deployment).




3.3. Data Analysis


Figure 3 presents the deployed method. After completing the circuit containing ten construction activities, each simulation had its actions labelled every second. These data were then processed and evaluated by two different methods. A graphical analysis of the accelerations collected during each activity summarised the analysis. Finally, a qualitative analysis of the two methods was provided. The data were labelled manually using a synchronised video recording of the circuit. The data points of each activity were:




	
Painting, MNT—Manual tools (1562);



	
Sawing, MNT—Manual tools (1466);



	
Hammering, MNT—Manual tools (1419);



	
Walking, WLK—Walking (1411);



	
Masonry, FHP—Free-hand performing (863);



	
Screwing, MNT—Manual tools (759);



	
Sitting, IDL—Do not operate value (624);



	
Roughcasting, MNT—Manual tools (621);



	
Standing still, IDL—Do not operate value (296);



	
Wearing personal protective equipment (PPE), IDL—Do not operate value (287).








Next, the activities were clustered into three small mixed groups based on the process characteristics and the number of data points. First, a mixed group was established with the only “free-hand performing” activity (Masonry) plus two “manual tools” processes (Painting and Roughcasting). A second contained just “manual tools” (Hammering, Sawing and Screwing). A third was composed of “do not operate value” (Wearing PPE; Sitting; Standing still) and “walking” (Walking).



Additionally, the formation of the three groups of analysis with different processes and their respective activities was based on diversification to evaluate the variability in the classification accuracy through the different groups of activities with different motion patterns. However, the group “free-hand performing (Masonry) plus two manual tools (Painting and Roughcasting)” had a mix of motion activities; the masonry action had multiple two hands and body motion activities, while painting and roughcasting had almost static body motion with a prevalence of high-frequency motions on the predominant hand and only a few motions on the non-dominant hand, supporting the actions.



In the group “manual tools (Hammering, Sawing and Screwing)”, there was a uniqueness of actions with hand tools and non-movement characteristics of the legs. Additionally, a predominance of high frequency on the predominant hand motions could be noted, which was only supported by a quasi-static motion of the non-dominant hand. However, the three activities demanded very peculiar and distinguished predominant hand motions between them.



Finally, the group “do not operate value (Wearing PPE, Sitting, Standing still) plus walking (Walking)” mixed the walking movement with resting actions and some unusual movement activities, such as putting on protective equipment (e.g., gloves, glasses, helmet).



A total of 155 min of activities was monitored. The process of labelling the actions (second by second) took approximately 26 h. Table 2 shows the number of points (variables) collected by the 3-axis accelerometers positioned in three locations on the volunteers’ bodies.



For data processing, the pre-labelling of activities is necessary. First, the classification algorithms used the labelled data for training. Second, pre-labelling enabled quantifying the accuracy of the analyses. MSA was used to group data according to the characteristics of the variables. Both processes were applied to understand the potential of each method to be used in future applications. In addition, a graphical analysis of the accelerations collected in the 3 axes allowed an assessment of the specific characteristic of each activity, improving the perception of the results obtained by the classification methods.





4. Results and Discussion


4.1. Acceleration Data


This section presents and discusses the activities’ acceleration data characteristics and the results of both processing methods applied for classifying the actions (i.e., machine learning and MSA). A cross-analysis focuses on a deep understanding of the tasks and process motion characteristics. Finally, a qualitative analysis of the processing tools is presented based on the findings.



The clustering of activities was realised by targeting a diverse group of motion characteristics. In the first group, the Masonry activity presented a mix of motions, from loading to laying the bricks. It is possible to observe a variety of accelerations in the three axes (X, Y, Z) in both the dominant and non-dominant hands and the leg. In contrast, the Painting activity has more significant dominant hand motions, with a marked acceleration in the Z direction, with little or no effort in the other hand and legs. Finally, in Roughcasting, dominant hand movements’ predominance can be identified with more significant accelerations in the Z and X directions. Figure 4 presents the characteristics of accelerations from dominant and non-dominant wrists, as well as the dominant leg for the three activities, making it possible to visualise the distinguished motion patterns. It can be inferred that when classifying these three activities, some misleading results can occur because of the non-linearity of the Masonry activity that might overlap with some motion characteristics captured in the other activities. This becomes even clearer when the classification is based only on the wrist-dominant motions, as the leg variable that will differentiate it from the others is lost, resulting in reduced accuracy.



In the second group, a more precise classification/clustering is observed in activities using manual tools. All three activities have similar characteristics: significant dominant hand motions, non-dominant hand support when adjusting the material/element and supporting the body, and virtually no leg motions. The predominance of movements in vectors X and Z stands out in the hammering activity. The predominance of acceleration in the X direction is evident in the Sawing activity. Finally, in the Screwing activity, a linear pattern is seen, with the predominance of vectors Y and Z. This set of activities is presented in Figure 5. It is observed that the accuracy of the classifiers should not be influenced by removing the non-dominant hand and leg data. On the contrary, there is a subtle accuracy increase.



Finally, in the last group, except for the Standing still activity, which practically does not present motions with representative accelerations, the other activities are of peculiar motions. For example, volunteers move their hands and legs slightly, even while sitting. When Wearing PPE, no significant leg motions are detected, but the hands have practically random accelerations. When Walking, the limbs’ motions and accelerations have a similar cadence in each individual. Machine learning interprets the acceleration patterns more accurately than the other methods used in this study. On the contrary, the simple grouping by multivariate analysis only makes it easy to observe the Standing still state, not evaluating cadences with similar acceleration. The most prominent vectors in each activity are represented in Figure 6 for Wearing PPE, Sitting, Standing still and Walking. When the results are only pertinent to the wrist-dominant data, there are practically no differences in the accuracy. This fact indicates that the wrist-dominant motion detected was peculiar enough to differentiate such different actions.




4.2. Machine Learning


After data collection, all information points must be characterised manually for the machine-learning approach, which indicates the need to use video recordings as a reference. These points are the identification and labelling of the type of process or action or motion at each moment of the analysis. Then, the process of classifying the data is carried out, which are commonly divided into groups according to the characteristics of the sample. Afterwards, feature extraction is performed to identify the most useful characteristics to classify each group of actions. Next, the classifiers are selected, and each method’s reliability (%) evaluation is performed for the sample. Finally, a set of algorithms can be calibrated to carry out future autonomous analyses.



As previously presented, the ten activities were divided into three groups: Free-hand performing (Masonry) + Manual tools (Painting and Roughcasting); Manual tools (Hammering, Sawing and Screwing); Do not operate value (Wearing PPE, Sitting, Standing still) + Walking (Walking). Several classification conditions were studied, including the ideal time window size (in seconds) to segment the data; the extraction and selection of relevant artificial features; the adjustment of hyperparameters (time windows and parameter grouping masses); and the training and selection of the classifier. As presented in Figure 7, the hyperparameters and classifier selection was based on the best accuracy obtained through a cross-validation approach, using two training loops.



Finally, the classifiers were tested in a subject-independent (i.e., classifier trained without any test subject data) and -dependent (i.e., classifier trained with a portion of the test subject data) approach for all activities, using the optimal reasonable time window.



Thirteen different classifiers were evaluated, containing both basic models and ensemble methods:




	
Basic models: decision tree (DT); K-nearest neighbours (KNN); logistic regression (LR); multilayer perceptron (MLP); multiclass support vector machines (SVM) with different kernels (linear (LSVM), polynomial (PSVM), radial basis function—rbf (RSVM), sigmoid (SSVM)).



	
Ensemble methods: random forest (RF); extremely randomised trees (ExT); AdaBoost (AdB); gradient boosting (GrB); majority/hard vote (vote). For the subject-independent assessment approach, windows with different times (4, 5 or 6 s) were applied to each group of activities.








For an analysis of the subject-independent approach, Figure 8, Figure 9 and Figure 10 show the classifiers’ performance (average balanced accuracy) for each group and window combination. Figure 11 presents the average performance of all groups per window, and Figure 12 presents the average performance of all windows per group.



Figure 8 shows the results for the “free-hand performing (Masonry) plus two manual tools (Painting and Roughcasting)” group, where the best performing classifier showcased a 92.71% accuracy (6 s window with the LSVM classifier).



Figure 9 shows the results for the “manual tools (Hammering, Sawing, and Screwing)” group, where the best performance was a 96.07% accuracy for the vote classifier with a 5 s window.



Finally, Figure 10 shows the results for the group “do not operate value (Wearing PPE, Sitting, Standing still) plus walking (Walking)”, where the best performance was achieved for a 6 s window with the GrB classifier—94.66% accuracy.



In summary, all three groups presented a similar range of performance, with all best accuracies at above 92%.



For an analysis of a subject-dependent approach, Figure 13 showcases the performance of all classifiers when applied to all ten activities and a 6 s window. This approach essentially indicates whether and how much the classifier performance would benefit from gathering the training data of new subjects (i.e., workers) before starting to predict their activities. To help compare both approaches, Figure 13 also shows the same analysis for a subject-independent approach, enabling a side-by-side comparison.



As such, from Figure 13, it can be concluded that the KNN classifier achieved the best performance of 93.69%, with the AdB classifier ranking in close second with 93.57%. Both these highest accuracies were achieved for the subject-dependent approach, which reached an average performance of 86.08%, throughout all classifiers. This accuracy is roughly 6% higher than the 80.43% average accuracy achieved by the subject-independent approach. In fact, the subject-independent approach with all activities was also far below the accuracies achieved for each group independently, whose highest values were all above 92%, as previously seen in Figure 8, Figure 9 and Figure 10. Thus, it can be stated that the division of all activities into smaller groups is vital to increase accuracy, while subject dependence can help boost the accuracy even further.



Nevertheless, even without all favourable conditions, the achieved accuracies are encouraging, with the GrB classifier achieving a maximum of 85.54% when facing all activities and a subject-independent approach (Figure 13).




4.3. Multivariate Statistical Analysis


The multivariate statistical analysis aims to verify the formation of clusters for the data collected during the experiment. IBM SPSS Statistics (version 25) was the main software tool for statistical calculations. Microsoft Excel was also used for the graphical formatting of data from SPSS. The analysis by non-hierarchical classification allows the evaluation of the cluster’s dimensionality formed by the subjects [47], where a synthesis analysis of the mathematical results is carried out concerning the aspects of the three groups of processes and the ten activities: Free-hand performing (Masonry) + Manual tools (Painting and Roughcasting)—three clusters; Manual tools (Hammering, Sawing and Screwing)—three clusters; Do not operate value (Wearing PPE, Sitting, Standing still) + Walking (Walking)—four clusters.



After applying the non-hierarchical classification according to the number of activities in each group, the results are compared with the labelled data to determine the accuracy of these processes. Initially, to group the clusters’ activities, only the absolute parameters of the accelerations (in their three axes) collected on the wrists and one leg were used as variables (83,772 data points). However, nine features were used in the analysis. Next, the same process was performed only with the values of the accelerations (three axes) of the volunteers’ dominant hands. Thus, the analysis had a third of the number of variables used in the previous case (27,924 data points). However, three features were used in the analysis.



Table 3 presents the set-up requirements for a non-hierarchical classification in Free-hand performing (Masonry) + Manual tools (Painting and Roughcasting) processes and tasks, making three clusters fit with the activities. To group the activities in clusters, the absolute parameters of the accelerations (in their three axes) collected on the wrists and one leg were used as a total of nine variables (27,414 data points).



Table 4 presents the interaction history. Iterations stopped because the maximum number of iterations was performed. The maximum absolute coordinate change for any centre is 0.836, and the current iteration is 10. The minimum distance between the initial centres is 584.024. Table 5 shows the distances between the final cluster of activity centres, and Table 6 presents the number of cases in each cluster.



In effect, each of the 3046 lines (activities identified in each second) was identified by a cluster. A small extraction of this information is shown in Table 7. Moreover, a true or false analysis was carried out line by line to identify whether the indicated cluster was equal or not to the real label. Thus, when the correct results are totalled, the accuracy of the analysis is determined. Finally, the results for the multivariate analysis of “Free-hand performing (Masonry) + Manual tools (Painting and Roughcasting)” indicated 1855 correct values in 3064, reaching an accuracy of 60.90%. The exact process of clustering only three axes of the dominant hand (9138 data points) achieves 32.50% accuracy. Table 8 presents the set-up requirements for a non-hierarchical classification in Manual tools (Hammering, Sawing and Screwing) process and tasks, creating three clusters of activities. To group the activities into clusters, the absolute parameters of the accelerations (in their three axes) collected on the wrists and one leg were used—a total of nine variables (32,796 data points). Table 9 presents the interaction history. Iterations stopped because the maximum number of iterations was performed. The maximum absolute coordinate change for any centre is 0.547, and the current iteration is 10. The minimum distance between the initial centres is 575.296. Table 10 shows the distances between the final cluster of activity centres, and Table 11 presents the number of cases in each cluster.



Each of the 3644 lines (activities identified in each second) is identified by a cluster. A small extraction of this information is shown in Table 12. Again, the true or false analysis was carried out to evaluate the accurate labelling. The multivariate analysis of Manual tools (Hammering, Sawing and Screwing) process and tasks indicated 2772 correct values in 3644, reaching an accuracy of 76.07%. In contrast, using just three axes of the dominant hand (10,932 data points), it achieved 76.23% accuracy.



Table 13 presents the set-up requirements for a non-hierarchical classification for the group containing the activities of Wearing PPE, Sitting, Standing still and Walking. To obtain the four clusters of activities, data of the wrists and one leg were used as nine variables (23,562 data points).



Table 14 presents the interaction history that stopped because the maximum number of iterations was performed. The minimum distance found between the initial centres is 531.495. With ten current iterations, the maximum absolute coordinate change for any centre is 3.637. Table 15 presents the distances between the final cluster of activity centres. Table 16 shows the number of cases in each cluster.



A small extraction of the clustering information regarding the processing of the 2618 lines (activities identified in each second) is shown in Table 17. The multivariate analysis of the activities of Wearing PPE, Sitting, Standing still and Walking indicated 1249 correct values in 2618, reaching an accuracy of 47.71%. Finally, an accuracy of 46.60% was achieved by clustering the data from three axes of the dominant hand (9138 data points).



Table 18 and Table 19 present a summary of all the analyses. The process Manual tools with the three activities (Hammering, Sawing and Screwing) achieved higher accuracy in both situations—Wrists and Leg (76.07%) and Wrist-dominant (76.23%). Additionally, it was the only case of the highest accuracy, only clustering the Wrist-dominant data. As seen, the group of two processes and three activities, “Free-hand performing (Masonry) + Manual tools (Painting, Roughcasting)”, achieved an accuracy of 60.90% (Wrists and Leg) and (32.50%). In this case, the analysis by using only the wrist-dominant data decreased the accuracy by almost a half. Finally, the lowest accuracy was identified in the group of two processes and four activities—“Do not operate value (Wearing PPE, Sitting, Standing still) + Walking (Walking)”—47.41% and 46.60%, respectively, for Wrists and Leg, and Wrist-dominant data. In this case, a slight difference was noted.



In the “Free-hand performing (Masonry) + Manual tools (Painting and Roughcasting)” group, when only the data of the dominant wrist was considered, a high increase in the maximum absolute coordinate change for any centre was observed. Additionally, the distances between the final cluster centres decreased significantly. This was not verified in the other two cases, which maintained approximate values in both scenarios. Forward in the next section, a summary analysis will be performed.




4.4. Classification and Clustering Cross-Analysis


Figure 14 illustrates the accuracy achieved by the machine-learning process and the multivariate statistical analysis. The classifications performed through machine learning reached high precision in all three cases. Multivariate statistical analysis evidenced moderate accuracy. Subsequently, an analysis is developed to highlight the different classification accuracy results when using the three collection points and is carried out only with the wrist-dominant data. The objective is to explain why there is a loss of approximately 50% of accuracy in the first group, while in another case (Manual tools), there is a subtle increase in accuracy, and in the last group, only a difference of less than 1% is observed. Finally, based on the results and the analyses, it is possible to put forward an overall evaluation of the machine-learning methods and multivariate statistical analysis (see Figure 15). The purpose of these classifiers is to avoid manual data processing, as in a real-life construction situation, the large volume of data would result in extensive manual work.



It can be concluded that the multivariate statistical analysis method alone is not able to label actions. However, multivariate analysis can speed up the labelling work, since a preliminary process can seek to cluster the data and facilitate their visual interpretation. The multivariate analysis method is more straightforward than machine learning and can achieve a moderate accuracy with fewer features to vectorise, demanding lower expert knowledge and computational capacity. The enormous potential of machine learning is in creating algorithms that, once able to interpret an activity (based on acceleration), can perform this task without the need for pre-labelling or training sets. The idealised format of an activity circuit can assist in the algorithms’ calibration, since a new individual can be monitored in a known and pre-established sequence of activities/actions.





5. Conclusions


The dynamic circuit proposed in this paper makes EPM laboratory experimentation more similar to the on-site reality. The option of grouping the activities with different motion characteristics proved essential for the analysis, since it was demonstrated that having heterogeneous motions/acceleration activities hampers the classification process. Future research in the field of EPM and activity classification should observe this practice of clustering activities with distinct motion characteristics. Moreover, this is an accurate picture of the work developed for the craft workers on site. The activities’ classifications and their grouping over a process analysis allow a deep understanding of the motion characteristics. However, process modelling analysis can provide better performance evaluation.



The experiment conducted to test the circuit feasibility deploys electronic monitoring, using wearable devices (IMUs) to collect motion acceleration of wrists and the dominant leg. Activities with multiple motions characteristics, such as free-hand performing (e.g., masonry), walking and do not operate value (e.g., Wearing PPE and Sitting), require more motion analysis data points, such as wrists and legs. On the other hand, processes conducted with Manual tools (e.g., painting, roughcasting, hammering, sawing and screwing) have prominent dominant-hand motion characteristics that are easily detected with just one wearable. In summary, processing the data with two approaches (i.e., machine learning and MSA, in a laboratory circuit with six subjects using three activity groups resulted in the following:




	
The “free-hand performing (Masonry) plus two manual tools (Painting and Roughcasting)” group achieved a 92.71% accuracy for the machine-learning approach and 60.09% for MSA when using three IMUs (both wrists and one at the dominant leg). When using only one IMU (only wrist-dominant data), MSA reached 32.50% accuracy;



	
The “manual tools (Hammering, Sawing and Screwing)” group achieved a 96.07% accuracy for the machine-learning approach and 76.07% for MSA when using three IMUs (both wrists and one at the dominant leg). When using only one IMU (only wrist-dominant data), MSA reached 76.23% accuracy;



	
Finally, the “do not operate value (Wearing PPE, Sitting, Standing still) and walking (Walking)” group achieved a 94.66% accuracy for the machine-learning approach and 47.41% for MSA when using three IMUs (both wrists and one at the dominant leg). When using only one IMU (only wrist-dominant data), MSA reached 46.60% accuracy.








In practice, the approach of classifying workforce activities is to better understand and map the on-site processes. Proper activity classification is crucial for modelling the construction process and applying lean concepts and unnecessary motion elimination. Task data analysis can quantify the time spent by the worker using a manual tool, walking–travelling or carrying elements, for instance. These data can be used to implement improvements, for example, providing electric tools or bench stations and reorganising the site stock to avoid long walks to collect elements and accessories.



The main contribution of this research is to establish and test an EPM laboratory circuit-based simulation that introduces a way to develop, test and improve in-house EPM solutions for deployment on site. The laboratory circuit is the appropriate testbed environment to develop data processing approaches, for example, mixing methodologies to improve the accuracy and outcome lead time. Additionally, in the laboratory, multiple wearable devices and other technologies (e.g., filming) can be combined in different ways, changing data collection points and assessing the impact of these changes on the solutions’ autonomy, scalability and user comfort.



It is expected that the development of similar circuits in other locations will enable comparisons with the results presented in this paper. Further research will focus on setting a larger circuit, adding activities such as inspection duties, electric tools use and machine operations. Additionally, other mixed approaches to electronic performance monitoring will be tested using images, sound and geolocation. Finally, developing faster and more accurate data processing algorithms is a critical goal for this type of solution to be deployed on site.
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Figure 1. Research flow chart. 






Figure 1. Research flow chart.



[image: Buildings 12 01174 g001]







[image: Buildings 12 01174 g002 550] 





Figure 2. Laboratory circuit with the path and activity sequence, the first set by the numbers and the following by the letters. 
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Figure 3. Laboratory experiment method. 
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Figure 4. Motion characteristic of Masonry, Painting and Roughcast. 
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Figure 5. Motion characteristic of Hammering, Sawing and Screwing. 
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Figure 6. Motion characteristic of Wearing PPE, Sitting, Standing still and Walking. 
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Figure 7. Cross-validation approach comprising two training loops. 
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Figure 8. Classifiers’ performance for Masonry, Painting and Roughcasting. 
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Figure 9. Classifiers’ performance for Hammering, Sawing and Screwing. 
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Figure 10. Classifiers’ performance for Wearing PPE, Sitting, Standing still and Walking. 
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Figure 11. Classifiers’ average performance for all groups per window. 
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Figure 12. Classifiers’ average performance for all groups per window. 
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Figure 13. All ten activities at once (6 s window). 
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Figure 14. Machine learning vs. Multivariate statistical analysis. 
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Figure 15. Comparative evaluation. 
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Table 1. Studies on activity/process recognition.
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	Ref.
	On-Site Experiment?
	Year
	Subjects
	Activity/Process Recognition





	[22]
	No, simulation on a binary approach
	2016
	4
	(1) Cutting Lumber;

(2) Transportation;

(3) Installation.



	[24]
	No, simulation on a binary approach
	2015
	4
	Category 1

(1) Sawing;

(2) Idling.

Category 2

(2) Idling;

(3) Hammering;

(4) Turning a wrench.

Category 3

(2) Idling;

(5) Loading sections into a wheelbarrow;

(6) Pushing a loaded wheelbarrow;

(7) Dumping sections from a wheelbarrow;

(8) Returning an empty wheelbarrow.



	[23]
	No, simulation on a binary approach
	2016
	4
	(1) Cutting Lumber;

(2) Transportation;

(3) Installation.



	[25]
	No, simulation on a binary approach
	2018
	4
	Category 1

(1) Sawing;

(2) Idling.

Category 2

(2) Idling;

(3) Hammering;

(4) Turning a wrench.

Category 3

(2) Idling;

(5) Loading sections into a wheelbarrow;

(6) Pushing a loaded wheelbarrow;

(7) Dumping sections from a wheelbarrow;

(8) Returning an empty wheelbarrow.



	[39]
	No, simulation on a binary approach
	2016
	4
	Category 1

(1) Sawing;

(2) Idling.

Category 2

(2) Idling;

(3) Hammering;

(4) Turning a wrench.

Category 3

(2) Idling;

(5) Loading sections into a wheelbarrow;

(6) Pushing a loaded wheelbarrow;

(7) Dumping sections from a wheelbarrow;

(8) Returning an empty wheelbarrow.



	[26]
	No, simulation (not possible to infer the method)
	2018
	9
	(1) Standing;

(2) Walking;

(3) Squatting;

(4) Cleaning up the template;

(5) Fetching and placing rebar;

(6) Locating the rebar;

(7) Binding rebar;

(8) Placing concrete pads.



	[28]
	No, simulation (static, performing actions over a table/workstation)
	2018
	8
	(1) Grabbing tool/part;

(2) Hammering nail;

(3) Using power screwdriver;

(4) Resting arm;

(5) Turning screwdriver;

(6) Using wrench.



	[18]
	No, simulation (in a training centre with workers)
	2016
	5
	(1) Spreading mortar;

(2) Bringing and laying blocks;

(3) Adjusting blocks;

(4) Removing remaining mortar.



	[19]
	No, simulation (in a training centre with workers)
	2019
	10
	(1) Spreading mortar;

(2) Bringing and laying blocks;

(3) Adjusting blocks;

(4) Removing remaining mortar.



	[32]
	Yes, on-site
	2012
	-
	(1) Effective work;

(2) Contributory work;

(3) Ineffective work.



	[21]
	Yes, on-site
	2014
	20
	(1) Effective work;

(2) Contributory work;

(3) Ineffective work.



	[40]
	No, simulation (not possible to infer the method)
	2011
	-
	(1) Fetching and spreading mortar;

(2) Fetching and laying brick;

(3) Filling joints.



	[41]
	No, simulation on a binary approach
	2020
	8
	(1) Screwing;

(2) Wrenching;

(3) Lifting;

(4) Carrying.
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Table 2. Data collected.






Table 2. Data collected.





	

	

	
Masonry, Painting and Roughcasting

	
Hammering, Sawing and Screwing

	
Wearing PPE, Sitting, Standing Still, Walking

	
Total






	
Experiment Timing

	
seconds

	
3046

	
3644

	
2618

	
9308




	
minutes

	
51

	
61

	
44

	
155




	
Labelling Timing

	
minutes

	
508

	
607

	
436

	
1551




	
Acceleration data points

	
Wrists and Leg

	
27,414

	
32,796

	
23,562

	
83,772




	
Wrist (dominant)

	
9138

	
10,932

	
7854

	
27,924
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Table 3. Set-up of three clusters.
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Output Created

	

	






	
Input

	
Active Dataset

	
DataSet0




	
Filter

	
<none>




	
Weight

	
<none>




	
Split File

	
<none>




	
N of Rows in Working Data File

	
3046




	
Missing Value Handling

	
Definition of Missing

	
User-defined missing values are treated as missing.




	
Cases Used

	
Statistics are based on cases with no missing values for any clustering variable used.




	
Syntax

	
Wrist (dominant) 3 VAR

Wrist (non-dominant) 3 VAR

Leg (dominant) 3 VAR

	
QUICK CLUSTER VAR00006-07-08-09-10-11-12-13-014

/MISSING = LISTWISE

/CRITERIA = CLUSTER(3) MXITER(10) CONVERGE(0)

/METHOD = KMEANS(NOUPDATE)

/SAVE CLUSTER DISTANCE

/PRINT INITIAL ANOVA CLUSTER DISTAN.




	
Resources

	
Processor Time

	
00:00:00.39




	
Elapsed Time

	
00:00:00.00




	
Workspace Required

	
1944 bytes




	
QCL_2

	
Distance of Case from its Classification Cluster Centre
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Table 4. Interaction history.






Table 4. Interaction history.





	
Iteration

	
Change in Cluster Centres




	
Roughcast

	
Painting

	
Masonry






	
1

	
313.4141

	
199.5498

	
246.4082




	
2

	
63.2804

	
25.8395

	
110.5989




	
3

	
26.4273

	
18.7292

	
38.7331




	
4

	
12.9446

	
9.3842

	
15.5661




	
5

	
7.7845

	
5.5610

	
4.5176




	
6

	
3.9339

	
2.9209

	
1.3539




	
7

	
3.050

	
2.4074

	
0.9133




	
8

	
1.772

	
1.3521

	
0.3767




	
9

	
1.1367

	
0.8386

	
0.2579




	
10

	
0.8516

	
0.6606

	
0
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Table 5. Distances between final cluster centres.
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	Cluster
	Roughcast
	Painting
	Masonry





	Roughcast
	
	159.1544
	283.4235



	Painting
	159.1544
	
	233.6170



	Masonry
	283.4235
	233.6170
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Table 6. Number of cases.
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Number of Cases in Each Cluster






	
Roughcast

	
1022




	
Painting

	
1309




	
Masonry

	
715




	
Valid

	
3046




	
Missing

	
0
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Table 7. Verification process.
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Subject

	
Task

	
Time

	
Wrist (Dominant)

	
Wrist

	
Leg

	
Case N.

	
Cluster

	
Distance

	
Test






	
1

	
Masonry

	
10:40:18

	
284

	
117

	
212

	
131

	
123

	
113

	
92

	
40

	
62

	
942

	
Masonry

	
268.6488

	
TRUE




	
1

	
Masonry

	
10:40:19

	
50

	
66

	
99

	
227

	
110

	
164

	
60

	
119

	
96

	
943

	
Masonry

	
156.0831

	
TRUE




	
1

	
Masonry

	
10:40:20

	
67

	
63

	
99

	
69

	
65

	
180

	
141

	
135

	
90

	
944

	
Masonry

	
124.6410

	
TRUE




	
1

	
Masonry

	
10:40:21

	
112

	
83

	
6

	
69

	
80

	
165

	
143

	
135

	
39

	
945

	
Masonry

	
132.9037

	
TRUE




	
1

	
Masonry

	
10:40:22

	
41

	
59

	
55

	
121

	
93

	
57

	
11

	
55

	
31

	
946

	
Painting

	
137.2267

	
FALSE




	
1

	
Masonry

	
10:40:23

	
201

	
160

	
153

	
43

	
63

	
42

	
12

	
47

	
1

	
947

	
Roughcast

	
134.2535

	
FALSE
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Table 8. Set-up of three clusters.
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Output Created

	






	
Input

	
Active Dataset

	
DataSet0




	
Filter

	
<none>




	
Weight

	
<none>




	
Split File

	
<none>




	
N of Rows in Working Data File

	
3644




	
Missing Value Handling

	
Definition of Missing

	
User-defined missing values are treated as missing.




	
Cases Used

	
Statistics are based on cases with no missing values for any clustering variable used.




	
Syntax

	
Wrist (dominant) 3 VAR

Wrist (non-dominant) 3 VAR

Leg (dominant) 3 VAR

	
QUICK CLUSTER VAR00006-07-08-09-10-11-12-13-014

/MISSING = LISTWISE

/CRITERIA = CLUSTER(3) MXITER(10) CONVERGE(0) /METHOD = KMEANS(NOUPDATE)

/SAVE CLUSTER DISTANCE

/PRINT INITIAL ANOVA CLUSTER DISTAN.




	
Resources

	
Processor Time

	
00:00:00.44




	
Elapsed Time

	
00:00:00.00




	
Workspace Required

	
1944 bytes




	
Variables Created or Modified

	
QCL_1

	
Cluster Number of Case




	
QCL_2

	
Distance of Case from its Classification Cluster Centre
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Table 9. Interaction history.






Table 9. Interaction history.





	

	
Change in Cluster Centres

	




	
Iteration

	
Sawing

	
Screwing

	
Hammering






	
1

	
261.0570

	
345.3322

	
323.5139




	
2

	
58.5810

	
76.7062

	
55.8298




	
3

	
65.0758

	
25.0337

	
21.6352




	
4

	
14.4996

	
11.5637

	
8.7550




	
5

	
3.3059

	
6.6206

	
3.7269




	
6

	
0.5369

	
4.2438

	
2.0083




	
7

	
0.4353

	
2.3990

	
1.0646




	
8

	
0

	
1.2704

	
0.5940




	
9

	
0

	
0.7804

	
0.3616




	
10

	
0

	
0.8472

	
0.3929
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Table 10. Distances between final cluster centres.
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	Cluster
	Sawing
	Screwing
	Hammering





	Sawing
	
	260.6854
	244.6953



	Screwing
	260.6854
	
	108.0933



	Hammering
	244.6953
	
	108.0933
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Table 11. Number of cases.
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Number of Cases in Each Cluster






	
Cluster

	
Sawing

	
1172




	

	
Screwing

	
783




	

	
Hammering

	
1689




	
Valid

	

	
3644




	
Missing

	

	
0
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Table 12. Validation process.






Table 12. Validation process.





	
Subject

	
Task

	
Time

	
Wrist (Dominant)

	
Wrist

	
Leg

	
Case N.

	
Cluster

	
Distance

	
Test






	
2

	
Sawing

	
14:34:47

	
262

	
25

	
46

	
0

	
4

	
0

	
0

	
0

	
0

	
7

	
Sawing

	
290,162

	
TRUE




	
2

	
Sawing

	
14:34:48

	
171

	
36

	
35

	
0

	
1

	
0

	
0

	
0

	
0

	
8

	
Sawing

	
1,086,854

	
TRUE




	
2

	
Sawing

	
14:34:49

	
85

	
222

	
152

	
0

	
0

	
0

	
0

	
0

	
0

	
9

	
Screwing

	
1,380,763

	
FALSE




	
2

	
Sawing

	
14:34:50

	
43

	
91

	
314

	
0

	
0

	
0

	
0

	
0

	
0

	
10

	
Screwing

	
2,154,279

	
FALSE




	
2

	
Sawing

	
14:34:51

	
83

	
25

	
81

	
0

	
0

	
0

	
0

	
0

	
0

	
11

	
Hammering

	
821,257

	
FALSE




	
2

	
Sawing

	
14:34:52

	
337

	
72

	
32

	
0

	
0

	
0

	
0

	
1

	
1

	
12

	
Sawing

	
638,884

	
TRUE
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Table 13. Set-up of four clusters.






Table 13. Set-up of four clusters.





	
Output Created

	






	
Input

	
Active Dataset

	
DataSet0




	
Filter

	
<none>




	
Weight

	
<none>




	
Split File

	
<none>




	
N of Rows in Working Data File

	
2618




	
Missing Value Handling

	
Definition of Missing

	
User-defined missing values are treated as missing.




	
Cases Used

	
Statistics are based on cases with no missing values for any clustering variable used.




	
Syntax

	
Wrist (dominant) 3 VAR

Wrist (non-dominant) 3 VAR

Leg (dominant) 3 VAR

	
QUICK CLUSTER VAR00006-07-08-09-10-11-12-13-014

/MISSING = LISTWISE

/CRITERIA = CLUSTER(4) MXITER(10) CONVERGE(0)

/METHOD = KMEANS(NOUPDATE)

/SAVE CLUSTER DISTANCE

/PRINT INITIAL ANOVA CLUSTER DISTAN.




	
Resources

	
Processor Time

	
00:00:00.37




	
Elapsed Time

	
00:00:00.00




	
Workspace Required

	
2288 bytes




	
Variables Created or Modified

	
QCL_1

	
Cluster Number of Case




	
QCL_2

	
Distance of Case from its Classification Cluster Centre
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Table 14. Interaction history.






Table 14. Interaction history.





	

	
Change in Cluster Centres




	
Iteration

	
Standing Still

	
Walking

	
Wearing PPE

	
Sitting






	
1

	
253.1632

	
271.7627

	
253.8942

	
247.4363




	
2

	
34.6668

	
23.8132

	
28.9162

	
41.9111




	
3

	
15.3285

	
11.9069

	
30.5345

	
16.2089




	
4

	
12.8381

	
4.6949

	
37.3199

	
9.3450




	
5

	
11.1022

	
6.0636

	
29.6576

	
8.6092




	
6

	
9.2294

	
3.8355

	
19.1764

	
5.9783




	
7

	
7.2804

	
3.4810

	
15.1276

	
5.1283




	
8

	
7.4817

	
1.9499

	
12.9699

	
4.6997




	
9

	
6.0755

	
0.8473

	
10.0764

	
5.9705




	
10

	
3.6753

	
1.3617

	
6.6054

	
5.3191
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Table 15. Distances between final cluster centres.






Table 15. Distances between final cluster centres.












	Cluster
	Standing Still
	Walking
	Wearing PPE
	Sitting





	Standing still
	
	272.6942
	185.9325
	362.6586



	Walking
	272.6942
	
	190.9127
	162.3144



	Wearing PPE
	185.9325
	190.9127
	
	228.9966



	Sitting
	362.6586
	162.3144
	228.9966
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Table 16. Number of cases.






Table 16. Number of cases.





	
Number of Cases in Each Cluster






	
Cluster

	
Standing still

	
763




	

	
Walking

	
742




	

	
Wearing PPE

	
725




	

	
Sitting

	
388




	
Valid

	

	
2618




	
Missing

	

	
0
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Table 17. Validation process.






Table 17. Validation process.





	
Subject

	
Task

	
Time

	
Wrist (Dominant)

	
Wrist

	
Leg

	
Case N.

	
Cluster

	
Distance

	
Test






	
4

	
Walking

	
15:29:51

	
53

	
39

	
145

	
175

	
27

	
193

	
19

	
33

	
47

	
930

	
Wearing

	
1,636,731

	
FALSE




	
4

	
Walking

	
15:29:52

	
110

	
68

	
286

	
96

	
32

	
41

	
25

	
77

	
60

	
931

	
Wearing

	
2,104,327

	
FALSE




	
4

	
Walking

	
15:29:53

	
74

	
46

	
100

	
77

	
76

	
140

	
97

	
130

	
50

	
932

	
Walking

	
896,969

	
TRUE




	
4

	
Walking

	
15:29:54

	
124

	
48

	
73

	
22

	
99

	
208

	
115

	
175

	
28

	
933

	
Walking

	
1,569,528

	
TRUE




	
4

	
Walking

	
15:29:55

	
112

	
57

	
72

	
71

	
164

	
245

	
103

	
197

	
29

	
934

	
Walking

	
1,987,402

	
TRUE




	
4

	
Walking

	
15:29:56

	
58

	
126

	
233

	
68

	
188

	
302

	
104

	
168

	
38

	
935

	
Sitting

	
2,836,098

	
FALSE
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Table 18. Classification results summary.






Table 18. Classification results summary.





	
Data

	
Free-Hand Performing Plus Manual Tools

	
Manual Tools

	
Do Not Operate Value Plus Walking

	
Average

	
Median






	
Accuracy

	
Wrists and Leg

	
60.90%

	
76.07%

	
47.41%

	
61.46%

	
60.90%




	
Wrist (dominant)

	
32.50%

	
76.23%

	
46.60%

	
51.78%

	
46.60%




	
Difference

	
>28.4%

	
<0.16%

	
>0.81%

	

	




	
Acceleration data points

	
Wrists and Leg

	
27,414

	
32,796

	
23,562

	

	




	
Wrist (dominant)

	
9138

	
10,932

	
7854

	

	




	
The maximum absolute coordinate change for any centre

	
Wrists and Leg

	
0.836

	
0.547

	
3.637

	

	




	
The minimum distance between initial centres

	
Wrists and Leg

	
584.024

	
575.296

	
531.495
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Table 19. Clustering results summary.






Table 19. Clustering results summary.





	
Data

	
Free-Hand Performing Plus Manual Tools

	
Manual Tools

	
Do Not Operate Value Plus Walking






	
Distances between final cluster centres

	
i

	
159.1544

	
260.6854

	
272.6942




	
ii

	
283.4235

	
244.6953

	
185.9325




	
iii

	
233.6170

	
108.0933

	
362.6586




	
iv

	

	

	
190.9127




	
v

	

	

	
162.3144




	
vi

	

	

	
228.9966




	
Average

	
225.3983

	
204.4913

	
233.9182




	
The maximum absolute coordinate change for any centre

	
Wrist (dominant)

	
9.536

	
1.041

	
9.544




	
The minimum distance between initial centres

	
Wrist (dominant)

	
512.347

	
512.347

	
481.594




	
Distances between final cluster centres

	
i

	
131.3473

	
241.3922

	
163.2217




	
ii

	
205.7065

	
107.7671

	
192.3734




	
iii

	
128.8105

	
257.2948

	
271.5576




	
iv

	

	

	
120.2651




	
v

	

	

	
111.9096




	
vi

	

	

	
195.5329




	
Average

	
155.2882

	
202.1514

	
175.8099
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