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Abstract: The domain of data processing is essential to accelerate the delivery of information based
on electronic performance monitoring (EPM). The classification of the activities conducted by craft
workers can enhance the mechanisation and productivity of activities. However, research in this field
is mainly based on simulations of binary activities (i.e., performing or not performing an action). To
enhance EPM research in this field, a dynamic laboratory circuit-based simulation of ten common
constructions activities was performed. A circuit feasibility case study of EPM using wearable devices
was conducted, where two different data processing approaches were tested: machine learning and
multivariate statistical analysis (MSA). Using the acceleration data of both wrists and the dominant
leg, the machine-learning approach achieved an accuracy between 92 and 96%, while MSA achieved
47–76%. Additionally, the MSA approach achieved 32–76% accuracy by monitoring only the dominant
wrist. Results highlighted that the processes conducted with manual tools (e.g., hammering and
sawing) have prominent dominant-hand motion characteristics that are accurately detected with one
wearable. However, free-hand performing (masonry), walking and not operating value (e.g., sitting)
require more motion analysis data points, such as wrists and legs.

Keywords: electronic performance monitoring; wearable devices; process modelling; machine
learning; multivariate statistical analysis

1. Introduction

The construction industry (CI) is a significant player in the world economic scenario,
as construction-related spending accounts for 13% of the global gross domestic product
(GDP) [1]. However, despite its importance, this sector has shown weak productivity
growth at a global scale [2], averaging a 1% annual productivity increase since 1997 [1].
Crafts and trade workers comprise 56% of the sector’s employment at the European Union
level [3]. Innovation is required to mitigate the impact of workforce shrinkage on the
industry, boosting labour productivity on site. To this end, there is an increased relevance
in monitoring the industry’s primary productive workforce, justifying its importance as a
research topic, which is aligned with the natural interests of companies [4] and the digitali-
sation and automation trends of Construction 4.0 [5,6]. Through this monitoring, companies
can better evaluate their return on investment [4,7,8], while also providing supervisors
with better information to support workforce development, training and deployment [5].
Authors refer to this monitoring and performance measurement as electronic performance
monitoring (EPM) [8–10].

As such, the current technological advances enable new, more reliable methods of data
collection, allowing for the real-time monitoring of construction activities. These methods
are supported by recent innovations in micro and nanotechnology that enable the sustained
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assessment of each worker’s task process. The systematic control of construction operations
can bring immediate awareness of specific aspects of undergoing activities, enabling better
decision making [11] and the assessment of the project’s productivity in order to increase its
performance [12]. Additionally, on-site labour productivity can be correlated with carbon
dioxide (CO2) emissions and the generation of sanitary wastewater [13]. In fact, according
to Mojahed and Aghazadeh, in the context of construction engineering, productivity is
mainly related to the performance achieved within each work activity [14]. Finally, digital
twins approaches focusing on managing production in a construction set are vital for the
monitoring of construction sites [15,16].

The present research aims to assess this EPM in multiple construction tasks, using
wearable devices, machine-learning and multivariate statistical analysis (MSA) data pro-
cessing tools. The objectives of this work are the following:

• Simulate a near-real scenario in which ten different construction activities are per-
formed;

• Deploy EPM, using wearable devices, and investigate options to reduce the number of
devices overseeing the activities’ characteristics;

• Classify the activities, grouping them over a process analysis;
• Analyse the data with two distinct approaches, namely, machine learning and MSA,

comparing the acquired results.

2. Background

Workforce activity classification through wearable devices as inertial measurement units
(IMUs) is performed using different sensor combinations, namely: accelerometer [17–21];
accelerometer plus gyroscope [22–26]; and accelerometer, gyroscope, plus magnetome-
ter [27–29]. Additionally, IMUs devices are positioned over multiple body parts [17,20,27]
or on different body parts, such as: the spine [30,31]; arm [22–25,28]; arms and waist [21,32];
wrist [18,19]; and wrist and leg [26,33].

Labour process modelling based on workforce motion is more commonly applied
in manufacturing working design than in the CI, with few studies targeting a process
analysis approach in the CI [21,32]. The approach of modelling and measuring manual
work systems sets the way for a comprehensive understanding of construction labour
motion productivity. The process flow literature has five classes of activities that comprise
all production tasks [34–36]:

• Operation (performing work dealing with products), symbolised by a circle [35,36];
• Inspection (performing quality control work), illustrated by a square [35,36];
• Delay (waiting time, do not advance work progress), illustrated by capital “D”

letter [35,36];
• Transportation (moving products), illustrated by an arrow [35,36];
• Storage (used for long-range storage) illustrated by a triangle [35,36].

The productive state addresses the workforce performance during the development of
tasks, which can be either Productive (also referred to as Direct or Effective) work, Contrib-
utory (also referred to as Support) work or Nonproduction (also referred to as Ineffective)
work [37]. This concept was applied by Refs [21,32,38] to cluster construction activities
over Effective–Support–Ineffective work. A motion productivity model establishes nine
processes to map craft workforce on-site tasks [5], as presented:

• Free-hand performing (FHP), Operation, e.g., setting a brick;
• Auxiliary tools (AUT), Inspection, e.g., using a spirit level;
• Manual tools (MNT), Operation, e.g., using a trowel;
• Electric/Electronic tools (EET), Operation, e.g., using a drill;
• Machines operation (MOP), Operation, e.g., using a backhoe;
• Robotic automation (RBA), Operation, e.g., robotic bricklaying arm;
• Do not operate value (IDL), Delay, e.g., chatting and resting;
• Walking (WLK), Delay, e.g., going to the WC;
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• Carrying, (CAR), Transportation/Storage, e.g., products, equipment.

Table 1 presents studies targeting construction tasks activity or process recognition.
The maximum number of activities analysed in a single study totals eight activities. It is
also observed that, on average, six to seven individuals (subjects) perform the activities.
Most studies performed simulations (eleven out of thirteen), while only two experienced
a more realistic simulation scenario in a training centre. For clarity, a binary analysis
can be identified when only one action is evaluated against another action or an idleness
state (stopped).

Table 1. Studies on activity/process recognition.

Ref. On-Site Experiment? Year Subjects Activity/Process Recognition

[22] No, simulation on a binary approach 2016 4
(1) Cutting Lumber;
(2) Transportation;
(3) Installation.

[24] No, simulation on a binary approach 2015 4

Category 1
(1) Sawing;
(2) Idling.
Category 2
(2) Idling;
(3) Hammering;
(4) Turning a wrench.
Category 3
(2) Idling;
(5) Loading sections into a wheelbarrow;
(6) Pushing a loaded wheelbarrow;
(7) Dumping sections from a wheelbarrow;
(8) Returning an empty wheelbarrow.

[23] No, simulation on a binary approach 2016 4
(1) Cutting Lumber;
(2) Transportation;
(3) Installation.

[25] No, simulation on a binary approach 2018 4

Category 1
(1) Sawing;
(2) Idling.
Category 2
(2) Idling;
(3) Hammering;
(4) Turning a wrench.
Category 3
(2) Idling;
(5) Loading sections into a wheelbarrow;
(6) Pushing a loaded wheelbarrow;
(7) Dumping sections from a wheelbarrow;
(8) Returning an empty wheelbarrow.

[39] No, simulation on a binary approach 2016 4

Category 1
(1) Sawing;
(2) Idling.
Category 2
(2) Idling;
(3) Hammering;
(4) Turning a wrench.
Category 3
(2) Idling;
(5) Loading sections into a wheelbarrow;
(6) Pushing a loaded wheelbarrow;
(7) Dumping sections from a wheelbarrow;
(8) Returning an empty wheelbarrow.
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Table 1. Cont.

Ref. On-Site Experiment? Year Subjects Activity/Process Recognition

[26] No, simulation (not possible to infer the method) 2018 9

(1) Standing;
(2) Walking;
(3) Squatting;
(4) Cleaning up the template;
(5) Fetching and placing rebar;
(6) Locating the rebar;
(7) Binding rebar;
(8) Placing concrete pads.

[28] No, simulation (static, performing actions over a
table/workstation) 2018 8

(1) Grabbing tool/part;
(2) Hammering nail;
(3) Using power screwdriver;
(4) Resting arm;
(5) Turning screwdriver;
(6) Using wrench.

[18] No, simulation (in a training centre with workers) 2016 5

(1) Spreading mortar;
(2) Bringing and laying blocks;
(3) Adjusting blocks;
(4) Removing remaining mortar.

[19] No, simulation (in a training centre with workers) 2019 10

(1) Spreading mortar;
(2) Bringing and laying blocks;
(3) Adjusting blocks;
(4) Removing remaining mortar.

[32] Yes, on-site 2012 -
(1) Effective work;
(2) Contributory work;
(3) Ineffective work.

[21] Yes, on-site 2014 20
(1) Effective work;
(2) Contributory work;
(3) Ineffective work.

[40] No, simulation (not possible to infer the method) 2011 -
(1) Fetching and spreading mortar;
(2) Fetching and laying brick;
(3) Filling joints.

[41] No, simulation on a binary approach 2020 8

(1) Screwing;
(2) Wrenching;
(3) Lifting;
(4) Carrying.

Several mathematical and statistical methods can be used to process and analyse
the data. In most cases, these methods are used in conjunction with the univariate and
multivariate analyses [42] and Monte Carlo simulation [38]. Dynamic analysis methods and
neural networks are also widely used. There is a trend for applying artificial intelligence
(AI) when faced with the large amounts of data collected by electronic devices to process
such information quicker and more autonomously. Academic studies focusing on the
classification of human activities/actions develop algorithms based on machine learning,
including deep-learning [28,43] and traditional approaches [19,20,44]. Machine learning
is a subset of AI and can be seen as an autonomous and self-teaching system for training
algorithms to find patterns and subsequently use this knowledge to make predictions about
new data [45,46]. The domain of data processing is essential to accelerate the delivery of
information based on EPM: the faster and more autonomous the data processing, the more
agile the delivery of solutions.

3. Method
3.1. Research Design

As highlighted above, most studies on activity and process recognition showcase a
binary approach (performing/not performing an activity) [22–25,39,41], with few experi-
ments conducted on site [21,32]. To fill this gap, the present research proposes a laboratory
circuit with multiple activities, emulating on-site conditions for testing EPM deployment.



Buildings 2022, 12, 1174 5 of 26

A laboratory environment provides a more controlled and labour-saving environment to
record and label the actions, as well as test the hardware solutions. Figure 1 presents the
data collection and analysis flow chart to clarify the validation approach of the different
cases. The main goal is to test and validate the laboratory circuit-based simulation deploy-
ment and compare and evaluate two data analysis approaches, assessing their feasibility
and performance accuracy.

Simulate a near-
real scenario to 

perform 10 
different 

construction 
activities

Deploy EPM, 
using wearable 
devices. Data 

collection from 6 
volunteers

Grouping the 
activities over a 
process analysis, 
avoiding binary 

clustering

Machine 
learning for 

activities 
classification

Multivariate 
statistical 

analysis for 
activities 

classificationData 
labelling 

Motion 
characteristic 

analysis 
based on the 
acceleration 

3-axis vectors 
of the 

dominant 
and non-
dominant 

wrists and a 
dominant leg

Data segmentation 
(to test of three 

sliding windows: 4, 
5 and 6 s with a 

75% overlap)

Features extraction 
(235 new features)
Features selection 

(150 selected)

Classifiers performance analysis 
(training and hyperparameter tuning 
of 13 classifiers; accuracy assessment 

performance; Subject-
independent/dependent evaluations)

Applying the 
non-hierarchical 

classification

Features selection 
(9) 3-axis for wrists 

and leg

Compare e evaluate the 
data analysis process 
and the performance 

achieved

Features selection 
(3) 3-axis for the 
dominant wrist

Applying the 
non-hierarchical 

classification

Measure the 
performance over 
labelled sample

Measure the 
performance over 
labelled sample

Data collection Data analysis

Figure 1. Research flow chart.

3.2. Data Collection

For an efficient performance monitoring of the construction craft workforce, it is
essential to at least assess the hand tasks, the walking–travelling and the idleness. To
this end, a circuit concept was established to simulate an interactive work scenario seen
in a typical on-site construction project. This circuit purposely aimed to avoid a binary
analysis, as it is the authors’ opinion that such an approach does not properly reflect a
construction worker’s behaviour. For this reason, basic daily work activities were selected,
which are part of the daily life of workers in different functions. It can be inferred that,
given the role of a specific worker, his/her actions can be previously mapped, which would
facilitate activity classification. Additionally, according to Adrian (2004), at least 50% of the
workforce time on site is spent on non-productive activities (e.g., walking, drinking water,
talking to co-workers) [37]. A total of six volunteers were equipped with three devices, two
on both wrists and one on the dominant leg’s ankle. The inertial measurement units (IMU,
similar to watches) devices collected 3-axis data at a sampling frequency of 100 Hz with a
1 s epoch output. Each data point is thus represented as a vector containing the timestamp
of the reading and nine acceleration values (one for each axis of the three accelerometers).

Figure 2 shows the circuit deployed in a 150-square-meter indoor laboratory. The
circuit was composed of work areas where the volunteers interactively performed the
existing 10 activities. The volunteers walked from station to station to perform these
activities, walking/travelling around the stations, assumed with letters in the figure. As
well, a path sequence was pointed out as evidenced with the numbers; however, the
volunteers had the option of carrying two or four bricks at once and shortening the travel
between actions B (Masonry collection) and C (Masonry deployment).
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3.3. Data Analysis

Figure 3 presents the deployed method. After completing the circuit containing ten
construction activities, each simulation had its actions labelled every second. These data
were then processed and evaluated by two different methods. A graphical analysis of the
accelerations collected during each activity summarised the analysis. Finally, a qualitative
analysis of the two methods was provided. The data were labelled manually using a
synchronised video recording of the circuit. The data points of each activity were:

• Painting, MNT—Manual tools (1562);
• Sawing, MNT—Manual tools (1466);
• Hammering, MNT—Manual tools (1419);
• Walking, WLK—Walking (1411);
• Masonry, FHP—Free-hand performing (863);
• Screwing, MNT—Manual tools (759);
• Sitting, IDL—Do not operate value (624);
• Roughcasting, MNT—Manual tools (621);
• Standing still, IDL—Do not operate value (296);
• Wearing personal protective equipment (PPE), IDL—Do not operate value (287).
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Summary

(7) IDL
Wear PPE

(1) FHP 
Masonry

(5) MNT
Sawing

(6) MNT
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Painting
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(4) MNT
Hammering
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Machine Learning

Multivariate 
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1 2 3 4 5 6
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• Processing
• Results
• Discussion

• Processing
• Results
• Discussion

x
y
z

acceleration

• 10 activities
Graphical analysis

• Actions 
labelled 
each 
second

Machine learning

Multivariate

• Comparing

Figure 3. Laboratory experiment method.

Next, the activities were clustered into three small mixed groups based on the process
characteristics and the number of data points. First, a mixed group was established with
the only “free-hand performing” activity (Masonry) plus two “manual tools” processes
(Painting and Roughcasting). A second contained just “manual tools” (Hammering, Sawing
and Screwing). A third was composed of “do not operate value” (Wearing PPE; Sitting;
Standing still) and “walking” (Walking).

Additionally, the formation of the three groups of analysis with different processes
and their respective activities was based on diversification to evaluate the variability in
the classification accuracy through the different groups of activities with different motion
patterns. However, the group “free-hand performing (Masonry) plus two manual tools
(Painting and Roughcasting)” had a mix of motion activities; the masonry action had
multiple two hands and body motion activities, while painting and roughcasting had
almost static body motion with a prevalence of high-frequency motions on the predominant
hand and only a few motions on the non-dominant hand, supporting the actions.

In the group “manual tools (Hammering, Sawing and Screwing)”, there was a unique-
ness of actions with hand tools and non-movement characteristics of the legs. Additionally,
a predominance of high frequency on the predominant hand motions could be noted, which
was only supported by a quasi-static motion of the non-dominant hand. However, the
three activities demanded very peculiar and distinguished predominant hand motions
between them.

Finally, the group “do not operate value (Wearing PPE, Sitting, Standing still) plus
walking (Walking)” mixed the walking movement with resting actions and some unusual
movement activities, such as putting on protective equipment (e.g., gloves, glasses, helmet).

A total of 155 min of activities was monitored. The process of labelling the actions
(second by second) took approximately 26 h. Table 2 shows the number of points (variables)
collected by the 3-axis accelerometers positioned in three locations on the volunteers’ bodies.

Table 2. Data collected.

Masonry, Painting
and Roughcasting

Hammering,
Sawing and

Screwing

Wearing PPE,
Sitting, Standing

Still, Walking
Total

Experiment Timing seconds 3046 3644 2618 9308
minutes 51 61 44 155

Labelling Timing minutes 508 607 436 1551
Acceleration data

points
Wrists and Leg 27,414 32,796 23,562 83,772

Wrist (dominant) 9138 10,932 7854 27,924

For data processing, the pre-labelling of activities is necessary. First, the classification
algorithms used the labelled data for training. Second, pre-labelling enabled quantifying
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the accuracy of the analyses. MSA was used to group data according to the characteristics
of the variables. Both processes were applied to understand the potential of each method
to be used in future applications. In addition, a graphical analysis of the accelerations
collected in the 3 axes allowed an assessment of the specific characteristic of each activity,
improving the perception of the results obtained by the classification methods.

4. Results and Discussion
4.1. Acceleration Data

This section presents and discusses the activities’ acceleration data characteristics and
the results of both processing methods applied for classifying the actions (i.e., machine
learning and MSA). A cross-analysis focuses on a deep understanding of the tasks and
process motion characteristics. Finally, a qualitative analysis of the processing tools is
presented based on the findings.

The clustering of activities was realised by targeting a diverse group of motion charac-
teristics. In the first group, the Masonry activity presented a mix of motions, from loading
to laying the bricks. It is possible to observe a variety of accelerations in the three axes (X,
Y, Z) in both the dominant and non-dominant hands and the leg. In contrast, the Painting
activity has more significant dominant hand motions, with a marked acceleration in the
Z direction, with little or no effort in the other hand and legs. Finally, in Roughcasting,
dominant hand movements’ predominance can be identified with more significant acceler-
ations in the Z and X directions. Figure 4 presents the characteristics of accelerations from
dominant and non-dominant wrists, as well as the dominant leg for the three activities,
making it possible to visualise the distinguished motion patterns. It can be inferred that
when classifying these three activities, some misleading results can occur because of the
non-linearity of the Masonry activity that might overlap with some motion characteristics
captured in the other activities. This becomes even clearer when the classification is based
only on the wrist-dominant motions, as the leg variable that will differentiate it from the
others is lost, resulting in reduced accuracy.
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In the second group, a more precise classification/clustering is observed in activities
using manual tools. All three activities have similar characteristics: significant dominant
hand motions, non-dominant hand support when adjusting the material/element and
supporting the body, and virtually no leg motions. The predominance of movements in
vectors X and Z stands out in the hammering activity. The predominance of acceleration
in the X direction is evident in the Sawing activity. Finally, in the Screwing activity, a
linear pattern is seen, with the predominance of vectors Y and Z. This set of activities
is presented in Figure 5. It is observed that the accuracy of the classifiers should not be
influenced by removing the non-dominant hand and leg data. On the contrary, there is a
subtle accuracy increase.
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Figure 5. Motion characteristic of Hammering, Sawing and Screwing.

Finally, in the last group, except for the Standing still activity, which practically
does not present motions with representative accelerations, the other activities are of
peculiar motions. For example, volunteers move their hands and legs slightly, even while
sitting. When Wearing PPE, no significant leg motions are detected, but the hands have
practically random accelerations. When Walking, the limbs’ motions and accelerations have
a similar cadence in each individual. Machine learning interprets the acceleration patterns
more accurately than the other methods used in this study. On the contrary, the simple
grouping by multivariate analysis only makes it easy to observe the Standing still state, not
evaluating cadences with similar acceleration. The most prominent vectors in each activity
are represented in Figure 6 for Wearing PPE, Sitting, Standing still and Walking. When the
results are only pertinent to the wrist-dominant data, there are practically no differences
in the accuracy. This fact indicates that the wrist-dominant motion detected was peculiar
enough to differentiate such different actions.
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Figure 6. Motion characteristic of Wearing PPE, Sitting, Standing still and Walking.

4.2. Machine Learning

After data collection, all information points must be characterised manually for the
machine-learning approach, which indicates the need to use video recordings as a reference.
These points are the identification and labelling of the type of process or action or motion
at each moment of the analysis. Then, the process of classifying the data is carried out,
which are commonly divided into groups according to the characteristics of the sample.
Afterwards, feature extraction is performed to identify the most useful characteristics
to classify each group of actions. Next, the classifiers are selected, and each method’s
reliability (%) evaluation is performed for the sample. Finally, a set of algorithms can be
calibrated to carry out future autonomous analyses.

As previously presented, the ten activities were divided into three groups: Free-
hand performing (Masonry) + Manual tools (Painting and Roughcasting); Manual tools
(Hammering, Sawing and Screwing); Do not operate value (Wearing PPE, Sitting, Standing
still) + Walking (Walking). Several classification conditions were studied, including the
ideal time window size (in seconds) to segment the data; the extraction and selection
of relevant artificial features; the adjustment of hyperparameters (time windows and
parameter grouping masses); and the training and selection of the classifier. As presented
in Figure 7, the hyperparameters and classifier selection was based on the best accuracy
obtained through a cross-validation approach, using two training loops.
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Figure 7. Cross-validation approach comprising two training loops.

Finally, the classifiers were tested in a subject-independent (i.e., classifier trained
without any test subject data) and -dependent (i.e., classifier trained with a portion of the
test subject data) approach for all activities, using the optimal reasonable time window.

Thirteen different classifiers were evaluated, containing both basic models and ensem-
ble methods:

• Basic models: decision tree (DT); K-nearest neighbours (KNN); logistic regression (LR);
multilayer perceptron (MLP); multiclass support vector machines (SVM) with differ-
ent kernels (linear (LSVM), polynomial (PSVM), radial basis function—rbf (RSVM),
sigmoid (SSVM)).

• Ensemble methods: random forest (RF); extremely randomised trees (ExT); AdaBoost
(AdB); gradient boosting (GrB); majority/hard vote (vote). For the subject-independent
assessment approach, windows with different times (4, 5 or 6 s) were applied to each
group of activities.

For an analysis of the subject-independent approach, Figures 8–10 show the classi-
fiers’ performance (average balanced accuracy) for each group and window combination.
Figure 11 presents the average performance of all groups per window, and Figure 12
presents the average performance of all windows per group.
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Figure 8 shows the results for the “free-hand performing (Masonry) plus two manual
tools (Painting and Roughcasting)” group, where the best performing classifier showcased
a 92.71% accuracy (6 s window with the LSVM classifier).

Figure 9 shows the results for the “manual tools (Hammering, Sawing, and Screwing)”
group, where the best performance was a 96.07% accuracy for the vote classifier with a
5 s window.

Finally, Figure 10 shows the results for the group “do not operate value (Wearing PPE,
Sitting, Standing still) plus walking (Walking)”, where the best performance was achieved
for a 6 s window with the GrB classifier—94.66% accuracy.

In summary, all three groups presented a similar range of performance, with all best
accuracies at above 92%.

For an analysis of a subject-dependent approach, Figure 13 showcases the performance
of all classifiers when applied to all ten activities and a 6 s window. This approach essentially
indicates whether and how much the classifier performance would benefit from gathering
the training data of new subjects (i.e., workers) before starting to predict their activities.
To help compare both approaches, Figure 13 also shows the same analysis for a subject-
independent approach, enabling a side-by-side comparison.

As such, from Figure 13, it can be concluded that the KNN classifier achieved the
best performance of 93.69%, with the AdB classifier ranking in close second with 93.57%.
Both these highest accuracies were achieved for the subject-dependent approach, which
reached an average performance of 86.08%, throughout all classifiers. This accuracy is
roughly 6% higher than the 80.43% average accuracy achieved by the subject-independent
approach. In fact, the subject-independent approach with all activities was also far below
the accuracies achieved for each group independently, whose highest values were all above
92%, as previously seen in Figures 8–10. Thus, it can be stated that the division of all
activities into smaller groups is vital to increase accuracy, while subject dependence can
help boost the accuracy even further.
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Nevertheless, even without all favourable conditions, the achieved accuracies are
encouraging, with the GrB classifier achieving a maximum of 85.54% when facing all
activities and a subject-independent approach (Figure 13).
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4.3. Multivariate Statistical Analysis

The multivariate statistical analysis aims to verify the formation of clusters for the
data collected during the experiment. IBM SPSS Statistics (version 25) was the main
software tool for statistical calculations. Microsoft Excel was also used for the graphical
formatting of data from SPSS. The analysis by non-hierarchical classification allows the
evaluation of the cluster’s dimensionality formed by the subjects [47], where a synthesis
analysis of the mathematical results is carried out concerning the aspects of the three
groups of processes and the ten activities: Free-hand performing (Masonry) + Manual
tools (Painting and Roughcasting)—three clusters; Manual tools (Hammering, Sawing and
Screwing)—three clusters; Do not operate value (Wearing PPE, Sitting, Standing still) +
Walking (Walking)—four clusters.

After applying the non-hierarchical classification according to the number of activities
in each group, the results are compared with the labelled data to determine the accuracy
of these processes. Initially, to group the clusters’ activities, only the absolute parameters
of the accelerations (in their three axes) collected on the wrists and one leg were used as
variables (83,772 data points). However, nine features were used in the analysis. Next, the
same process was performed only with the values of the accelerations (three axes) of the
volunteers’ dominant hands. Thus, the analysis had a third of the number of variables used
in the previous case (27,924 data points). However, three features were used in the analysis.

Table 3 presents the set-up requirements for a non-hierarchical classification in Free-
hand performing (Masonry) + Manual tools (Painting and Roughcasting) processes and
tasks, making three clusters fit with the activities. To group the activities in clusters, the
absolute parameters of the accelerations (in their three axes) collected on the wrists and
one leg were used as a total of nine variables (27,414 data points).
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Table 3. Set-up of three clusters.

Output Created

Input

Active Dataset DataSet0
Filter <none>

Weight <none>
Split File <none>

N of Rows in Working Data File 3046

Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.

Cases Used Statistics are based on cases with no missing
values for any clustering variable used.

Syntax
Wrist (dominant) 3 VAR

Wrist (non-dominant) 3 VAR
Leg (dominant) 3 VAR

QUICK CLUSTER
VAR00006-07-08-09-10-11-12-13-014

/MISSING = LISTWISE
/CRITERIA = CLUSTER(3) MXITER(10)

CONVERGE(0)
/METHOD = KMEANS(NOUPDATE)

/SAVE CLUSTER DISTANCE
/PRINT INITIAL ANOVA CLUSTER DISTAN.

Resources

Processor Time 00:00:00.39
Elapsed Time 00:00:00.00

Workspace Required 1944 bytes

QCL_2 Distance of Case from its Classification Cluster
Centre

Table 4 presents the interaction history. Iterations stopped because the maximum
number of iterations was performed. The maximum absolute coordinate change for any
centre is 0.836, and the current iteration is 10. The minimum distance between the initial
centres is 584.024. Table 5 shows the distances between the final cluster of activity centres,
and Table 6 presents the number of cases in each cluster.

Table 4. Interaction history.

Iteration
Change in Cluster Centres

Roughcast Painting Masonry

1 313.4141 199.5498 246.4082
2 63.2804 25.8395 110.5989
3 26.4273 18.7292 38.7331
4 12.9446 9.3842 15.5661
5 7.7845 5.5610 4.5176
6 3.9339 2.9209 1.3539
7 3.050 2.4074 0.9133
8 1.772 1.3521 0.3767
9 1.1367 0.8386 0.2579
10 0.8516 0.6606 0

Table 5. Distances between final cluster centres.

Cluster Roughcast Painting Masonry

Roughcast 159.1544 283.4235
Painting 159.1544 233.6170
Masonry 283.4235 233.6170



Buildings 2022, 12, 1174 17 of 26

Table 6. Number of cases.

Number of Cases in Each Cluster

Roughcast 1022
Painting 1309
Masonry 715

Valid 3046
Missing 0

In effect, each of the 3046 lines (activities identified in each second) was identified by
a cluster. A small extraction of this information is shown in Table 7. Moreover, a true or
false analysis was carried out line by line to identify whether the indicated cluster was
equal or not to the real label. Thus, when the correct results are totalled, the accuracy of
the analysis is determined. Finally, the results for the multivariate analysis of “Free-hand
performing (Masonry) + Manual tools (Painting and Roughcasting)” indicated 1855 correct
values in 3064, reaching an accuracy of 60.90%. The exact process of clustering only three
axes of the dominant hand (9138 data points) achieves 32.50% accuracy. Table 8 presents
the set-up requirements for a non-hierarchical classification in Manual tools (Hammering,
Sawing and Screwing) process and tasks, creating three clusters of activities. To group the
activities into clusters, the absolute parameters of the accelerations (in their three axes)
collected on the wrists and one leg were used—a total of nine variables (32,796 data points).
Table 9 presents the interaction history. Iterations stopped because the maximum number
of iterations was performed. The maximum absolute coordinate change for any centre is
0.547, and the current iteration is 10. The minimum distance between the initial centres
is 575.296. Table 10 shows the distances between the final cluster of activity centres, and
Table 11 presents the number of cases in each cluster.

Table 7. Verification process.

Subject Task Time Wrist (Dominant) Wrist Leg Case N. Cluster Distance Test

1 Masonry 10:40:18 284 117 212 131 123 113 92 40 62 942 Masonry 268.6488 TRUE
1 Masonry 10:40:19 50 66 99 227 110 164 60 119 96 943 Masonry 156.0831 TRUE
1 Masonry 10:40:20 67 63 99 69 65 180 141 135 90 944 Masonry 124.6410 TRUE
1 Masonry 10:40:21 112 83 6 69 80 165 143 135 39 945 Masonry 132.9037 TRUE
1 Masonry 10:40:22 41 59 55 121 93 57 11 55 31 946 Painting 137.2267 FALSE
1 Masonry 10:40:23 201 160 153 43 63 42 12 47 1 947 Roughcast 134.2535 FALSE

Table 8. Set-up of three clusters.

Output Created

Input

Active Dataset DataSet0
Filter <none>

Weight <none>
Split File <none>

N of Rows in Working Data File 3644

Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.

Cases Used Statistics are based on cases with no missing
values for any clustering variable used.

Syntax
Wrist (dominant) 3 VAR

Wrist (non-dominant) 3 VAR
Leg (dominant) 3 VAR

QUICK CLUSTER
VAR00006-07-08-09-10-11-12-13-014

/MISSING = LISTWISE
/CRITERIA = CLUSTER(3) MXITER(10)

CONVERGE(0) /METHOD =
KMEANS(NOUPDATE)

/SAVE CLUSTER DISTANCE
/PRINT INITIAL ANOVA CLUSTER DISTAN.
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Table 8. Cont.

Output Created

Resources
Processor Time 00:00:00.44
Elapsed Time 00:00:00.00

Workspace Required 1944 bytes

Variables Created or Modified
QCL_1 Cluster Number of Case

QCL_2 Distance of Case from its Classification Cluster
Centre

Table 9. Interaction history.

Change in Cluster Centres

Iteration Sawing Screwing Hammering

1 261.0570 345.3322 323.5139
2 58.5810 76.7062 55.8298
3 65.0758 25.0337 21.6352
4 14.4996 11.5637 8.7550
5 3.3059 6.6206 3.7269
6 0.5369 4.2438 2.0083
7 0.4353 2.3990 1.0646
8 0 1.2704 0.5940
9 0 0.7804 0.3616
10 0 0.8472 0.3929

Table 10. Distances between final cluster centres.

Cluster Sawing Screwing Hammering

Sawing 260.6854 244.6953
Screwing 260.6854 108.0933
Hammering 244.6953 108.0933

Table 11. Number of cases.

Number of Cases in Each Cluster

Cluster Sawing 1172
Screwing 783

Hammering 1689
Valid 3644

Missing 0

Each of the 3644 lines (activities identified in each second) is identified by a cluster. A
small extraction of this information is shown in Table 12. Again, the true or false analysis
was carried out to evaluate the accurate labelling. The multivariate analysis of Manual
tools (Hammering, Sawing and Screwing) process and tasks indicated 2772 correct values
in 3644, reaching an accuracy of 76.07%. In contrast, using just three axes of the dominant
hand (10,932 data points), it achieved 76.23% accuracy.

Table 13 presents the set-up requirements for a non-hierarchical classification for the
group containing the activities of Wearing PPE, Sitting, Standing still and Walking. To
obtain the four clusters of activities, data of the wrists and one leg were used as nine
variables (23,562 data points).
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Table 12. Validation process.

Subject Task Time Wrist (Dominant) Wrist Leg Case N. Cluster Distance Test

2 Sawing 14:34:47 262 25 46 0 4 0 0 0 0 7 Sawing 290,162 TRUE
2 Sawing 14:34:48 171 36 35 0 1 0 0 0 0 8 Sawing 1,086,854 TRUE
2 Sawing 14:34:49 85 222 152 0 0 0 0 0 0 9 Screwing 1,380,763 FALSE
2 Sawing 14:34:50 43 91 314 0 0 0 0 0 0 10 Screwing 2,154,279 FALSE
2 Sawing 14:34:51 83 25 81 0 0 0 0 0 0 11 Hammering 821,257 FALSE
2 Sawing 14:34:52 337 72 32 0 0 0 0 1 1 12 Sawing 638,884 TRUE

Table 13. Set-up of four clusters.

Output Created

Input

Active Dataset DataSet0
Filter <none>

Weight <none>
Split File <none>

N of Rows in Working Data File 2618

Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.

Cases Used Statistics are based on cases with no missing
values for any clustering variable used.

Syntax
Wrist (dominant) 3 VAR

Wrist (non-dominant) 3 VAR
Leg (dominant) 3 VAR

QUICK CLUSTER
VAR00006-07-08-09-10-11-12-13-014

/MISSING = LISTWISE
/CRITERIA = CLUSTER(4) MXITER(10)

CONVERGE(0)
/METHOD = KMEANS(NOUPDATE)

/SAVE CLUSTER DISTANCE
/PRINT INITIAL ANOVA CLUSTER DISTAN.

Resources
Processor Time 00:00:00.37
Elapsed Time 00:00:00.00

Workspace Required 2288 bytes

Variables Created or Modified
QCL_1 Cluster Number of Case

QCL_2 Distance of Case from its Classification Cluster
Centre

Table 14 presents the interaction history that stopped because the maximum number
of iterations was performed. The minimum distance found between the initial centres is
531.495. With ten current iterations, the maximum absolute coordinate change for any
centre is 3.637. Table 15 presents the distances between the final cluster of activity centres.
Table 16 shows the number of cases in each cluster.

Table 14. Interaction history.

Change in Cluster Centres

Iteration Standing Still Walking Wearing PPE Sitting

1 253.1632 271.7627 253.8942 247.4363
2 34.6668 23.8132 28.9162 41.9111
3 15.3285 11.9069 30.5345 16.2089
4 12.8381 4.6949 37.3199 9.3450
5 11.1022 6.0636 29.6576 8.6092
6 9.2294 3.8355 19.1764 5.9783
7 7.2804 3.4810 15.1276 5.1283
8 7.4817 1.9499 12.9699 4.6997
9 6.0755 0.8473 10.0764 5.9705
10 3.6753 1.3617 6.6054 5.3191



Buildings 2022, 12, 1174 20 of 26

Table 15. Distances between final cluster centres.

Cluster Standing Still Walking Wearing PPE Sitting

Standing still 272.6942 185.9325 362.6586
Walking 272.6942 190.9127 162.3144

Wearing PPE 185.9325 190.9127 228.9966
Sitting 362.6586 162.3144 228.9966

Table 16. Number of cases.

Number of Cases in Each Cluster

Cluster Standing still 763
Walking 742

Wearing PPE 725
Sitting 388

Valid 2618
Missing 0

A small extraction of the clustering information regarding the processing of the
2618 lines (activities identified in each second) is shown in Table 17. The multivariate
analysis of the activities of Wearing PPE, Sitting, Standing still and Walking indicated
1249 correct values in 2618, reaching an accuracy of 47.71%. Finally, an accuracy of 46.60%
was achieved by clustering the data from three axes of the dominant hand (9138 data points).

Table 17. Validation process.

Subject Task Time Wrist (Dominant) Wrist Leg Case N. Cluster Distance Test

4 Walking 15:29:51 53 39 145 175 27 193 19 33 47 930 Wearing 1,636,731 FALSE
4 Walking 15:29:52 110 68 286 96 32 41 25 77 60 931 Wearing 2,104,327 FALSE
4 Walking 15:29:53 74 46 100 77 76 140 97 130 50 932 Walking 896,969 TRUE
4 Walking 15:29:54 124 48 73 22 99 208 115 175 28 933 Walking 1,569,528 TRUE
4 Walking 15:29:55 112 57 72 71 164 245 103 197 29 934 Walking 1,987,402 TRUE
4 Walking 15:29:56 58 126 233 68 188 302 104 168 38 935 Sitting 2,836,098 FALSE

Tables 18 and 19 present a summary of all the analyses. The process Manual tools
with the three activities (Hammering, Sawing and Screwing) achieved higher accuracy in
both situations—Wrists and Leg (76.07%) and Wrist-dominant (76.23%). Additionally, it
was the only case of the highest accuracy, only clustering the Wrist-dominant data. As
seen, the group of two processes and three activities, “Free-hand performing (Masonry) +
Manual tools (Painting, Roughcasting)”, achieved an accuracy of 60.90% (Wrists and Leg)
and (32.50%). In this case, the analysis by using only the wrist-dominant data decreased
the accuracy by almost a half. Finally, the lowest accuracy was identified in the group of
two processes and four activities—“Do not operate value (Wearing PPE, Sitting, Standing
still) + Walking (Walking)”—47.41% and 46.60%, respectively, for Wrists and Leg, and
Wrist-dominant data. In this case, a slight difference was noted.

In the “Free-hand performing (Masonry) + Manual tools (Painting and Roughcasting)”
group, when only the data of the dominant wrist was considered, a high increase in the
maximum absolute coordinate change for any centre was observed. Additionally, the
distances between the final cluster centres decreased significantly. This was not verified in
the other two cases, which maintained approximate values in both scenarios. Forward in
the next section, a summary analysis will be performed.
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Table 18. Classification results summary.

Data
Free-Hand

Performing Plus
Manual Tools

Manual Tools
Do Not

Operate Value
Plus Walking

Average Median

Accuracy
Wrists and Leg 60.90% 76.07% 47.41% 61.46% 60.90%

Wrist
(dominant) 32.50% 76.23% 46.60% 51.78% 46.60%

Difference >28.4% <0.16% >0.81%
Acceleration data

points
Wrists and Leg 27,414 32,796 23,562

Wrist
(dominant) 9138 10,932 7854

The maximum
absolute coordinate

change for any centre
Wrists and Leg 0.836 0.547 3.637

The minimum
distance between

initial centres
Wrists and Leg 584.024 575.296 531.495

Table 19. Clustering results summary.

Data Free-Hand Performing
Plus Manual Tools Manual Tools Do Not Operate Value

Plus Walking

Distances between final
cluster centres

i 159.1544 260.6854 272.6942
ii 283.4235 244.6953 185.9325
iii 233.6170 108.0933 362.6586
iv 190.9127
v 162.3144
vi 228.9966

Average 225.3983 204.4913 233.9182
The maximum absolute

coordinate change for any
centre

Wrist (dominant) 9.536 1.041 9.544

The minimum distance
between initial centres Wrist (dominant) 512.347 512.347 481.594

Distances between final
cluster centres

i 131.3473 241.3922 163.2217
ii 205.7065 107.7671 192.3734
iii 128.8105 257.2948 271.5576
iv 120.2651
v 111.9096
vi 195.5329

Average 155.2882 202.1514 175.8099

4.4. Classification and Clustering Cross-Analysis

Figure 14 illustrates the accuracy achieved by the machine-learning process and the
multivariate statistical analysis. The classifications performed through machine learning
reached high precision in all three cases. Multivariate statistical analysis evidenced moder-
ate accuracy. Subsequently, an analysis is developed to highlight the different classification
accuracy results when using the three collection points and is carried out only with the
wrist-dominant data. The objective is to explain why there is a loss of approximately 50%
of accuracy in the first group, while in another case (Manual tools), there is a subtle increase
in accuracy, and in the last group, only a difference of less than 1% is observed. Finally,
based on the results and the analyses, it is possible to put forward an overall evaluation
of the machine-learning methods and multivariate statistical analysis (see Figure 15). The
purpose of these classifiers is to avoid manual data processing, as in a real-life construction
situation, the large volume of data would result in extensive manual work.
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Accuracy 100%

Free-hand performing
(Masonry) 

+ 
Manual tools 

(Painting and Roughcasting)

Manual tools 
(Hammering, Sawing and Screwing)

Do not operate value 
(Wearing PPE, Sitting, Standing still)

+
Walking 

(Walking)

92.71%
96.07% 94.66%

60.90%

76.07%

47.41%

92.71%
96.07% 94.66%

60.90%

76.07%

47.41%

Machine-learning

Multivariate statistical analysis

32.50%

76.23%

46.60%

Only Wrist-dominant
data

Only Wrist-dominant
data

Only Wrist-dominant
data

Figure 14. Machine learning vs. Multivariate statistical analysis.

Machine
Learning

Multivariate
Statistical 
Analysis

Accuracy

very high
94%

moderate
60%

Computational 
demand

very high

low

Pre-
labelling

yes

yes

Standalone 
algorithm

yes

no

Expert 
knowledge

high

low

Training sets 
to process

yes

Features
(processed)

235 
(initially)

150 
(filtered)

9
(3x 3-axis)

3
(1x 3-axis)

no

Figure 15. Comparative evaluation.

It can be concluded that the multivariate statistical analysis method alone is not able
to label actions. However, multivariate analysis can speed up the labelling work, since a
preliminary process can seek to cluster the data and facilitate their visual interpretation.
The multivariate analysis method is more straightforward than machine learning and can
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achieve a moderate accuracy with fewer features to vectorise, demanding lower expert
knowledge and computational capacity. The enormous potential of machine learning is
in creating algorithms that, once able to interpret an activity (based on acceleration), can
perform this task without the need for pre-labelling or training sets. The idealised format
of an activity circuit can assist in the algorithms’ calibration, since a new individual can be
monitored in a known and pre-established sequence of activities/actions.

5. Conclusions

The dynamic circuit proposed in this paper makes EPM laboratory experimentation
more similar to the on-site reality. The option of grouping the activities with different mo-
tion characteristics proved essential for the analysis, since it was demonstrated that having
heterogeneous motions/acceleration activities hampers the classification process. Future
research in the field of EPM and activity classification should observe this practice of clus-
tering activities with distinct motion characteristics. Moreover, this is an accurate picture of
the work developed for the craft workers on site. The activities’ classifications and their
grouping over a process analysis allow a deep understanding of the motion characteristics.
However, process modelling analysis can provide better performance evaluation.

The experiment conducted to test the circuit feasibility deploys electronic monitoring,
using wearable devices (IMUs) to collect motion acceleration of wrists and the dominant
leg. Activities with multiple motions characteristics, such as free-hand performing (e.g.,
masonry), walking and do not operate value (e.g., Wearing PPE and Sitting), require more
motion analysis data points, such as wrists and legs. On the other hand, processes con-
ducted with Manual tools (e.g., painting, roughcasting, hammering, sawing and screwing)
have prominent dominant-hand motion characteristics that are easily detected with just
one wearable. In summary, processing the data with two approaches (i.e., machine learning
and MSA, in a laboratory circuit with six subjects using three activity groups resulted in
the following:

• The “free-hand performing (Masonry) plus two manual tools (Painting and Rough-
casting)” group achieved a 92.71% accuracy for the machine-learning approach and
60.09% for MSA when using three IMUs (both wrists and one at the dominant leg).
When using only one IMU (only wrist-dominant data), MSA reached 32.50% accuracy;

• The “manual tools (Hammering, Sawing and Screwing)” group achieved a 96.07%
accuracy for the machine-learning approach and 76.07% for MSA when using three
IMUs (both wrists and one at the dominant leg). When using only one IMU (only
wrist-dominant data), MSA reached 76.23% accuracy;

• Finally, the “do not operate value (Wearing PPE, Sitting, Standing still) and walking
(Walking)” group achieved a 94.66% accuracy for the machine-learning approach and
47.41% for MSA when using three IMUs (both wrists and one at the dominant leg).
When using only one IMU (only wrist-dominant data), MSA reached 46.60% accuracy.

In practice, the approach of classifying workforce activities is to better understand and
map the on-site processes. Proper activity classification is crucial for modelling the construc-
tion process and applying lean concepts and unnecessary motion elimination. Task data
analysis can quantify the time spent by the worker using a manual tool, walking–travelling
or carrying elements, for instance. These data can be used to implement improvements, for
example, providing electric tools or bench stations and reorganising the site stock to avoid
long walks to collect elements and accessories.

The main contribution of this research is to establish and test an EPM laboratory
circuit-based simulation that introduces a way to develop, test and improve in-house
EPM solutions for deployment on site. The laboratory circuit is the appropriate testbed
environment to develop data processing approaches, for example, mixing methodologies
to improve the accuracy and outcome lead time. Additionally, in the laboratory, multiple
wearable devices and other technologies (e.g., filming) can be combined in different ways,
changing data collection points and assessing the impact of these changes on the solutions’
autonomy, scalability and user comfort.
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It is expected that the development of similar circuits in other locations will enable
comparisons with the results presented in this paper. Further research will focus on setting
a larger circuit, adding activities such as inspection duties, electric tools use and machine
operations. Additionally, other mixed approaches to electronic performance monitoring
will be tested using images, sound and geolocation. Finally, developing faster and more
accurate data processing algorithms is a critical goal for this type of solution to be deployed
on site.
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