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Abstract: Masonry infilled RC frames are one of the most common structural forms, the damage
of which, in earthquake events, usually cause serious losses. The determination of the seismic
performance target is the key foundation of performance-based seismic evaluation and design for
masonry infilled RC frames. In this paper, an extensive database of experimental tests on infilled
RC frames loaded in an in-plane direction is collated. According to the crack propagation and
elastic-plastic characteristics of infilled RC frames, the damage process is divided into four stages,
and then the criteria of the damage states (DS) are proposed. In addition, the seismic performance
targets expressed as inter-story drift ratio (IDR) for the four stages are suggested, which would
support the performance-based in-plane seismic analysis of infilled RC frames. Finally, the proposed
in-plane seismic performance target is utilized to analyze the fragility of two masonry infilled RC
frame structures.

Keywords: masonry infilled RC frame; in-plane seismic performance target; damage state (DS);
inter-story drift ratio (IDR); fragility analysis

1. Introduction

Masonry infills are one of the most prevalent types of nonstructural elements used in
modern architecture buildings in both China and abroad [1]. The existence of infill walls
not only changes the stiffness and strength of the structural system and its distribution, but
also adversely affects the local restraint conditions of the main structural members [2,3].
The collapse of infill walls can cause significant property damage, and may even affect
emergency evacuation and endanger life safety [4–8]. Nonetheless, infill walls are consid-
ered to be non-structural components in most countries of the world, and the interaction
between infill walls and frames is ignored when designing reinforced concrete (RC) frame
structures. On the contrary, the seismic performance assessment of infill wall RC frames
requires the consideration of non-structural components [9–11]. Therefore, the seismic re-
sponse of masonry infills should be reliably characterized to accurately analyze the seismic
performance of the overall structure under different damage states (DSs).

Some researchers [12–15] utilized the degree and severity of cracking patterns observed
on panels, or the failure typology of brick units, to define the different DSs. Others [14], on
the other hand, related such DSs with the infilled RC frame peak load, or the achievement
of given strength reduction ratios. In general, the in-plane damage of infill walls was
divided into three or four stages in the literature [12–23]. The definition of inter-story drift
ratio (IDR) thresholds and their uncertainty corresponding to specific physical damage
levels on infill walls has been the subject of various research studies [13–15,24,25]. Some
researchers [26,27] proposed IDR limits for frame structures with infill walls corresponding
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to different DSs based on test data, which provided a basis for seismic code. Chiozzi [15]
collected a large amount of infill wall test data, classified the DS of infill walls by quantifying
the crack width, and proposed the corresponding IDR thresholds. Zhang [21] gave the IDR
limits for infill walls at different DSs by summarizing the damage modes and characteristics
of infill walls and referring to the existing performance index.

In this paper, an extensive database of experimental tests on infilled RC frames loaded
in an in-plane direction is collated. The in-plane DS of an infilled RC frame is divided into
four stages by considering both in-plane mechanical properties and the observed damage
of infill walls. The seismic performance targets expressed as inter-story drift ratio (IDR)
for the four stages are suggested. Finally, the seismic performance targets are applied to
analyze the fragility of two masonry infilled RC frame structures.

2. Database of Experimental Tests

The first step of the present research was the collection of a database of tests on
infilled RC frames. 132 experimental results of masonry infilled RC frames loaded in
an in-plane direction, in 46 studies completed over the last four decades, were collected.
The chronological distribution of these studies is shown in Figure 1, and the details are
described in Table 1. The research parameters in these studies vary, including, for example,
different openings and masonry materials. The selected infills in this paper are ordinary
masonry walls without special reinforcement and openings, which are loaded by lateral
in-plane cyclic loading through actuators.
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Table 1. The details of the literature.

Number Literatures Number of Selected Tests Research Parameters

1 Xiong (2013) [28] 4 axial compression ratio, opening
2 Sun, et al. (2005) [29] 1 masonry material
3 Shi, et al. (1996) [27] 1 opening
4 Angel, et al. (1994) [30] 5 in-plane damage
5 Cavaleri, et al. (2014) [31] 1 masonry material
6 Chiou, et al. (2015) [32] 2 Height, axial compression ratio
7 Colangelo (2005) [33] 6 in-plane damage
8 Haider (1995) [34] 3 in-plane damage
9 Mansouri, et al. (2014) [35] 1 opening
10 Misir, et al. (2015) [36] 1 masonry material
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Table 1. Cont.

Number Literatures Number of Selected Tests Research Parameters

11 Pereira, et al. (2011) [37] 1 masonry material
12 Schwarz, et al. (2015) [38] 5 height-width ratio
13 Sabouri-Ghomi, et al. (2017) [39] 3 boundary condition
14 Žarnić, et al. (1984) [40] 1 masonry material
15 Vasconcelos, et al. (2015) [41] 1 loading method
16 Zovkic, et al. (2013) [42] 1 masonry material
17 Huang (2011) [43] 5 masonry material, height-width ratio
18 Li, et al. (2015) [44] 1 boundary condition, masonry material
19 Gu, et al. (2010) [45] 5 masonry material
20 Jiang, et al. (2009) [46] 2 panel reinforcement
21 Lin, et al. (2018) [47] 4 masonry material
22 Zhou, et al. (2015) [48] 1 boundary condition, wall-filling rate
23 Su, et al. (2017) [49] 1 opening
24 Cheng, et al. (2013) [50] 1 opening
25 Lin (2019) [51] 4 masonry material
26 Li (2013) [52] 1 masonry material
27 Xiong, et al. (2017) [53] 2 masonry material
28 Tang, et al. (2012) [54] 5 number of layers, spans
29 Kakaletsis, et al. (2007) [55] 1 opening
30 Yang, et al. (2008) [56] 2 height-width ratio, opening, constructional column
31 Hao, et al. (2008) [57] 3 height-width ratio
32 Zhang, et al. (2007) [58] 2 masonry material
33 Wu, et al. (2016) [59] 1 masonry material
34 Zhan (2001) [60] 6 mortar strength
35 Wang, et al. (2003) [61] 1 prestress
36 Zhao (2005) [62] 1 Reinforcement, constructional column
37 Liao, et al. (2018) [63] 3 masonry material
38 Cheng, et al. (2005) [64] 2 constructional column
39 Xia (2004) [65] 5 boundary condition
40 Dautaj, et al. (2018) [66] 7 frame strength
41 Alwashali, et al. (2019) [67] 5 concrete strength, mortar strength
42 Cheng, et al. (1989) [68] 8 masonry material, opening
43 Bergami, et al. (2015) [69] 2 with or without block
44 Calvi, et al. (2008) [70] 2 in-plane damage
45 Gazić, et al. (2016) [71] 5 masonry material, mortar strength
46 C. Stylianidis (2012) [72] 7 strengthening

3. Seismic Performance Targets of Infilled RC Frame

In this section, the four damage stages are defined according to the damage status.
The damage process of the collected infilled RC frame specimens under increasing in-plane
lateral displacements is analyzed. The IDR value can reflect the damage degree of the infill
walls statistically. Finally, the IDR value corresponding to each DS is determined.

3.1. Definition of Damage States (DSs)

In recent years, different definitions of DSs have been proposed. Some definitions, such
as the one in study [15] (shown in Table 2), are about macroscopic damage descriptions, and
do not consider the mechanical properties of the infill wall. Although these definitions can
facilitate people to take appropriate repair measures, they easily make people infer different
understanding. Other definitions, which relate the DSs to the mechanical properties of
the infilled RC frame, can facilitate researchers in studying the performance of infilled RC
frames. However, the lack of a damage phenomena description makes it difficult to apply
in a practical earthquake event.
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Table 2. Definition of DSs in literature [15].

Damage Stage Brief Description

DS1 Minor cracks at the junction of the wall, gray joints or wall frames, no damage to blocks, no slippage in
cracks

DS2 Wall extension mortar joints or blocks with obvious cracks greater than 2mm, local block crushing, and
cracks with small slips appear

DS3 Large cracks appear, the crack width is generally greater than 4mm, cracks have obvious slippage,
masonry unit large area crushing and spalling

In this study, the test process of each collected infilled RC frame is analyzed, consider-
ing the cracking degree, block and mortar damage, the applied in-plane loads and lateral
displacement of the infilled specimen. The DS is divided into four stages, considering
both the damage description and the mechanical properties of the infill walls. The main
characteristics of each stage are described as follows:

In the DS1 stage, there are no obvious cracks in the infill wall. Even if there are small
cracks, they can restore to the original state immediately after unloading. There is no
damage in the frame members and the infill wall is well connected to the frame. The
load-displacement curve is almost linear, and the stiffness is constant in this stage, which is
the elastic stage.

In the DS2 stage, the diagonal cracks at the corners of the wall increase, the widths of
which expand and cannot restore to their original state after unloading. Different cracks
begin to connect to each other gradually through the whole wall. The plaster layer of the
wall spalls and falls down slightly. There are some tiny cracks in the columns and beams.
In this stage, the infilled RC frame gradually develops to the elastic-plastic stage.

In the DS3 stage, cracks increase and develop into an X shape. The appearance of
penetration cracks results in the division of the wall and the falling of broken blocks. Cracks
in the columns and beams increase, and the infill wall is detached from the frame at the top
corners. The structural plasticity develops further in this stage. The maximum lateral load
is reached.

In the DS4 stage, many broken masonry segments fall down and the wall is severely
damaged. Cracks in the beams and columns are enlarged and plastic hinges appear in the
structural member ends. In this stage, in order to avoid the completed detachment of the
wall from the frame and the wall collapse, the test is generally stopped while the applied
load decreases to 80% of the peak capacity. A brief description of the four DSs is described
in Table 3.

Table 3. Definition of DSs in this paper.

Stage State Elastic/Plastic State Infill Wall State RC Frame State Definition

DS1 Basically intact Elastic No cracks to small cracks Intact No cracks to small
cracks

DS2 Slight damage Elastic-plastic
Inclined cracks appear and

gradually penetrate the wall, and
mortar peels off at the cracks

Tiny cracks Small cracks to
Penetration cracks

DS3 Moderate
damage Plastic

Corner damage blocks fall down,
and the cracks develop into an X

shape
Increased cracks Penetration cracks to

peak load

DS4 Severe damage Failed Mass shedding of mortar and
broken blocks

Beam and column yield
and plastic hinges appear

Peak load to infill
collapse

3.2. IDR Limits at DSs of Each Test

IDR is a suitable index for reflecting the in-plane damage state of infill walls [13–15].
According to the assumed damage state definition, the IDR values related to the four DSs
are listed for each specimen in Table 4. Due to the lack of descriptive details in the literature,
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some information for the four damage states of specimens cannot be obtained. Therefore,
some IDR values are not given in Table 4, which is indicated by ‘-’. Moreover, due to the
uncertainty of wall damage in the actual test, the data of some tests deviate from most of
the test results (see Figure 2). In order not to affect the accuracy of the statistical results,
individual points with a large dispersion are excluded, which is represented in Table 4 with
a bold font; a total of four points were removed.

Table 4. IDR values at each DS.

# Reference Label DS1(%) DS2(%) DS3(%) DS4(%)

1

Xiong (2013) [28]

W-1 0.39 - 0.93 2.00
2 W-2 0.39 - 0.82 1.26
3 W-3 0.47 - 1.11 1.34
4 W-4 0.63 - 1.52 2.41
5 Sun, et al. (2005) [29] RCF 0.08 - 2.13 3.39
6 Shi, et al. (1996) [27] Infill wall frame 0.04 0.21 0.79 3.33
7

Angel, et al. (1994) [30]

2a 0.17 - - -
8 3a 0.11 - - -
9 6a 0.13 - - -

10 7a 0.13 - - -
11 8a 0.20 - - -
12 Cavaleri, et al. (2014) [31] s1b2 - - 0.50 1.53
13

Chiou, et al. (2015) [32]
B39L 0.13 0.50 - 2.00

14 B83T 0.13 0.50 - 2.00
15

Colangelo (2005) [33]

C1 0.03 0.05 - 1.42
16 C2 0.02 0.11 - -
17 L1 0.03 0.16 - 1.63
18 L2 0.03 0.16 - 2.28
19 N1 - - 0.21 2.03
20 N2 0.03 - 0.20 2.16
21

Haider (1995) [34]
A1 0.25 - - 2.50

22 B1 0.25 - - 2.50
23 D2 0.25 - - 2.50
24 Mansouri, et al. (2014) [35] S 0.05 - - 3.50
25 Misir, et al. (2015) [36] SWF - - - -
26 Pereira, et al. (2011) [37] Ref_Wall - - 0.20 -
27

Schwarz, et al. (2015) [38]

1000 0.33 - 1.20 2.67
28 1100 0.10 - 0.30 2.33
29 0000 - - 0.70 2.67
30 0100 0.33 - 0.40 4.00
31 0101 - - 1.20 -
32

Sabouri-Ghomi, et al. (2017)
[39]

CU2 0.05 - - 1.01
33 CU5 0.06 - - 1.23
34 CU6 0.07 - - 1.38
35 Žarnić, et al. (1984) [40] M2 0.11 - - -
36 Vasconcelos, et al. (2015) [41] 2 0.11 - 1.15 1.43
37 Zovkic, et al. (2013) [42] Model 3 0.06 - - -
38

Huang (2011) [43]

AFKJ1 0.20 0.33 4.40 4.00
39 AFKJ2 0.10 0.20 2.20 4.00
40 AFKJ3 0.10 0.14 1.69 4.00
41 AFKJ4 0.10 0.14 4.40 4.00
42 AFKJ5 0.10 0.50 4.40 4.00
43 Li, et al. (2015) [44] W2 0.06 - 1.62 -
44

Gu, et al. (2010) [45]

PD10-5-0.6 0.13 - 0.18 0.25
45 PD10-10-0.6 0.19 - 0.28 0.36
46 PM-0.3 0.10 - 0.15 0.20
47 PM-0.6 0.04 - 0.35 0.37
48 PM-0.9 0.26 - 0.35 0.37
49 Jiang, et al. (2009) [46] F2 0.09 0.22 - -
50 F3 0.10 0.19 - -
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Table 4. Cont.

# Reference Label DS1(%) DS2(%) DS3(%) DS4(%)

51

Lin, et al. (2018) [47]

IF1 0.19 0.33 0.94 1.61
52 IF2 0.06 0.20 0.62 1.56
53 IF3 0.19 0.33 0.47 1.68
54 IF4 0.06 0.20 1.52 2.68
55 Zhou, et al. (2015) [48] GWF2 0.13 0.14 1.80 3.09
56 Su, et al. (2017) [49] HBF-1 0.04 - 0.25 0.37
57 Cheng, et al. (2013) [50] MWF-11 - - 0.61 1.02
58

Lin (2019) [51]

IF1 0.18 0.30 0.91 1.46
59 IF2 0.09 0.13 0.76 1.66
60 IF5 0.06 0.18 1.82 2.85
61 IF6 0.18 0.30 0.68 1.88
62 Li (2013) [52] Infill wall RC frame 0.14 0.27 0.70 1.10
63 Xiong, et al. (2017) [53] KJQ-1 0.13 0.53 1.43 2.46
64 KJQ-3 0.09 0.48 0.78 1.49
65

Tang, et al. (2012) [54]

GPF-1 0.01 0.50 1.44 2.68
66 MGPF-0 0.17 - 1.96 2.66
67 MGPF-1 0.01 - 0.58 1.20
68 MGPF-2 0.06 - 0.86 2.72
69 MGPF-3 0.07 - 1.09 2.63
70 Kakaletsis, et al. (2007) [55] S - - 0.83 1.20
71 Yang, et al. (2008) [56] W-1a 0.35 - 0.77 0.90
72 W-3a 0.16 - 0.39 0.52
73

Hao, et al. (2008) [57]
W-5 0.03 - 0.22 0.30

74 W-6 0.03 - 0.20 0.33
75 W-7 0.04 - 0.17 0.67
76 Zhang, et al. (2007) [58] KZ1 0.08 0.77 - -
77 KZ2 0.07 -
78 Wu, et al. (2016) [59] QKJ 0.09 0.23 - -
79

Zhan (2001) [60]

W5.0-1 0.12 - 0.27 0.54
80 W5.0-2 0.06 0.18 0.27 -
81 W5.0-3 0.05 0.07 0.33 -
82 W7.5-1 0.12 0.15 0.18 -
83 W7.5-2 0.05 0.08 0.11 -
84 W7.5-3 0.02 0.05 0.08 -
85 Wang, et al. (2003) [61] W1 0.16 - 0.67 1.33
86 Zhao (2005) [62] ZS-1 0.05 - 0.21 0.35
87

Liao, et al. (2018) [63]
M-1 0.12 1.45 2.69 -

88 M-2 0.09 0.67 2.87 -
89 M-3 0.07 0.48 0.71 -
90 Cheng, et al. (2005) [64] CZ-1 0.10 - - 0.14
91 CZ-2 0.09 - - 0.09
92

Xia (2004) [65]

A1 0.09 - 0.19 -
93 A2 0.08 - 0.19 -
94 A3 0.12 - 1.08 -
95 B2 0.13 - 1.03 -
96 B3 0.70 - 1.18 -
97

Dautaj, et al. (2018) [66]

2 0.30 0.30 1.90 6.00
98 6 0.26 0.26 1.28 6.00
99 8 0.18 0.18 1.38 5.25

100 9 0.16 0.16 1.50 -
101 10 0.24 - 1.48 -
102 11 0.11 - 1.35 -
103 13 0.28 - 1.88 -
104

Alwashali, et al. (2019) [67]

F-0.4 0.10 - 0.80 -
105 F-0.6 0.08 0.10 0.50 -
106 F-1.5 - - 0.60 -
107 WM 0.10 - 0.60 -
108 WB 0.10 - 0.70 -
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Table 4. Cont.

# Reference Label DS1(%) DS2(%) DS3(%) DS4(%)

109

Cheng, et al. (1989) [68]

QZ-TJ-02 0.03 - 0.17 -
110 QZ-TJ-01 0.05 - 0.20 -
111 QZ-TJ-04 0.06 - 0.29 -
112 QZ-TJ-03 0.03 - 0.17 -
113 QZ-TJ-09 0.02 - 0.14 -
114 QZ-TJ-14 0.02 - 0.28 -
115 QZ-TJ-13 0.04 - 0.27 -
116 QZ-TJ-15 0.03 - 0.25 -
117 Bergami, et al. (2015) [69] FT1 0.16 - 1.21 -
118 FT2 0.09 - 1.08 -
119

Calvi, et al. (2008) [70]
2 0.06 0.18 - -

120 6 0.06 0.20 - -
121

Gazić, et al. (2016) [71]

O3 bpm 0.16 - - -
122 O4 bpm 0.18 - - -
123 O1 bpm 0.11 - - -
124 O1 bvm 0.06 - - -
125 O1 bpm * 0.05 - - -
126

C. Stylianidis (2012) [72]

F1,1,6 0.12 0.31 0.81 -
127 FN1,1,6 0.06 0.28 0.73 -
128 F1,1,9 0.14 0.31 0.81 -
129 FN1,1,9 0.08 0.31 0.81 -
130 FN1 0.07 0.28 0.72 -
131 FN2 0.09 0.31 0.81 -
132 FN6 0.20 0.83 2.15 -
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3.3. Seismic Performance Target

A drift-based fragility function is utilized in this paper, to estimate the probability of a
given damage state occurring in the RC frame under a specific level of drift. The definition
of the fragility function usually adopts a lognormal cumulative distribution function, as
shown in Equation (1).

P
[
DS ≥ dsi

∣∣IDRj
]
= Φ

(
ln
(

IDRj
)
− µi

βi

)
(1)

where P
[
DS ≥ dsi

∣∣IDRj
]

is the conditional probability that the component will experience
or exceed the ith DS given the inter-story drift value IDRj; Φ(·) is the standard normal
cumulative distribution function; µi is the logarithmic mean value; and βi is the logarithmic
standard deviation. The fragility function curves for the four DSs are shown in Figure 3.
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According to the proposal by Chiozzi et al. [15], the mean values of the IDR, IDR, for
the four DSs, are chosen as the in-plane seismic performance target of the infilled RC frame,
which is shown in Table 5. The statistical parameters µ and β for the fitted log-normal
probability distribution for each DS are listed in Table 5 as well, where µ= mean(ln(IDR)).

Table 5. Seismic performance target and statistical parameters.

Damage State IDR µ β

DS1 0.1% −2.3718 0.7952
DS2 0.3% −1.4255 0.6818
DS3 0.9% −0.4275 0.9039
DS4 1.9% 0.3626 0.8590

4. Fragility Analysis of Masonry Infilled RC Frames
4.1. Design of Structures

In order to assess the seismic fragility of infilled RC frames, two RC frames with
four and eight stories were designed according to the Chinese seismic design code [73].
The four-story structure had a site category of II and a design seismic group of III. The
eight-story structure had a site category of III and a design seismic group of I. They both
had a seismic intensity of eight degrees (0.2 g), a site characteristic period of 0.45 s, and a
seismic grade of II. The design load information of the two RC frame structures is shown
in Table 6. Figure 4 shows their elevations with the infill walls. The infill wall was made
of concrete hollow block with a strength grade of MU10, the size of which was 390 mm ×
190 mm × 190 mm. The beam and column cross-sections of the two RC frame structures
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and material information are shown in Table 7. The detailed design information can be
found in the literature [74].

Table 6. Design loads information.

Category
Dead Load (kN/m2) Live Load (kN/m2) The Thickness of Slab (mm)

4-Story 8-Story 4-Story 8-Story 4-Story 8-Story

Room 1.5 2 2.0 2.5 100 120
Corridor 1.5 2 3.5 3.5 100 120

Roof 5.5 3 0.4 2 120 120
Note: The dead load does not include the floor weight.

Table 7. Cross-section of beams and columns and material information.

Floor Beam (mm) Column
(mm)

The Stirrup
Ratio of Beam

The Stirrup Ratio
of Column

Concrete
Grades

Steel Bars
Grades

4-story 1~4 500 × 500 400 × 300 0.5% 0.3% C30

HRB400
8-story

1 Side
750 × 300

Middle
500 × 500

800 × 800
0.3% 0.8%

C50
2~3 C45

4 C30
5~8 650 × 650 C30

Buildings 2022, 12, x FOR PEER REVIEW 10 of 18 
 

Table 7. Cross-section of beams and columns and material information. 

 Floor Beam (mm) Column (mm) 
The Stirrup Ratio 

of Beam 
The Stirrup Ratio 

of Column 
Concrete 
Grades 

Steel Bars 
Grades 

4-story 1~4 500 × 500 400 × 300 0.5% 0.3% C30 

HRB400 
8-story 

1 Side 
750 × 300 
Middle 

500 × 500 

800 × 800 
0.3% 0.8% 

C50 
2~3 C45 
4 C30 

5~8 650 × 650 C30 
 

 
 

(a) (b) 

Figure 4. Elevation of infilled RC frame structure (Unit: mm). (a) 4-story structure; (b) 8-story structure. 

4.2. Modeling of Infilled RC Frame 
The numerical models of infilled RC frame structures were created utilizing the  

OpenSees platform. The RC beams and columns were simulated using nonlinear beam-
column elements, the cross-section of which was simulated using a force-based fiber sec-
tion model. The Concrete02 material model was used to simulate the properties of con-
crete, and the core concrete strength was calculated using the modified Scott–Kent–Park 
model. The Steel02 material model was used to simulate the properties of steel reinforcement, 
the strain-hardening ratio of which was taken as 0.01. The geometric nonlinear analysis of the 
frame columns was achieved by setting up a local coordinate transformation considering the 
P-Δ effect. 

The infill wall was simulated using an equivalent single brace model, which was rep-
resented by the Pinching4 uniaxial material model [75] shown in Figure 5. This material 
model can be used to simulate materials with pinching load-deformation response and 
degradation under cyclic loading. Its skeleton curve can be determined by referring to the 
method proposed by Liberatore et al. [76]. The skeleton curve model of infill, shown in 
Figure 6, is described by a multilinear curve with the following four characteristic points: 
( 40d , 0.40 pV ), ( 85d , 0.85 pV ), ( pd , pV ), and ( cd , 0). pV  is the peak load and pd  is the cor-

responding displacement; 40d  and 85d  are the displacement corresponding to 40% and 

80% of the peak load; and cd  is the displacement when the load decreases to zero. These 
parameters are calculated using Equations (2)–(8) through regression analysis [76]. This 
model does not take into account the residual strength of the infill wall, but in this paper 
the residual strength is set as 10% of the peak load [77]. The corresponding residual dis-
placement ud  is calculated by Equation (9). Finally, the values of the four key points 

5400 2700 5400

33
00

33
00

33
00

33
00

7300 3800 7300

42
00

42
00

×5
45

00
45

00

Figure 4. Elevation of infilled RC frame structure (Unit: mm). (a) 4-story structure; (b) 8-story
structure.

4.2. Modeling of Infilled RC Frame

The numerical models of infilled RC frame structures were created utilizing the
OpenSees platform. The RC beams and columns were simulated using nonlinear beam-
column elements, the cross-section of which was simulated using a force-based fiber section
model. The Concrete02 material model was used to simulate the properties of concrete,
and the core concrete strength was calculated using the modified Scott–Kent–Park model.
The Steel02 material model was used to simulate the properties of steel reinforcement, the
strain-hardening ratio of which was taken as 0.01. The geometric nonlinear analysis of the
frame columns was achieved by setting up a local coordinate transformation considering
the P-∆ effect.

The infill wall was simulated using an equivalent single brace model, which was
represented by the Pinching4 uniaxial material model [75] shown in Figure 5. This material
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model can be used to simulate materials with pinching load-deformation response and
degradation under cyclic loading. Its skeleton curve can be determined by referring to
the method proposed by Liberatore et al. [76]. The skeleton curve model of infill, shown
in Figure 6, is described by a multilinear curve with the following four characteristic
points: (d40, 0.40 Vp), (d85, 0.85 Vp), (dp, Vp), and (dc, 0). Vp is the peak load and dp is
the corresponding displacement; d40 and d85 are the displacement corresponding to 40%
and 80% of the peak load; and dc is the displacement when the load decreases to zero.
These parameters are calculated using Equations (2)–(8) through regression analysis [76].
This model does not take into account the residual strength of the infill wall, but in this
paper the residual strength is set as 10% of the peak load [77]. The corresponding residual
displacement du is calculated by Equation (9). Finally, the values of the four key points
($ePd1, $ePf1), ($ePd2, $ePf2), ($ePd3, $ePf3), and ($ePd4, $ePf4) of the Pinching4 material
model are (d40, 0.40 Vp), (d85, 0.85 Vp), (dp, Vp), and (du, 0.1 Vp), respectively.

d40 = θ40hm (2)

d85 = 1.04(d40 + ∆θ85hm) (3)

dp = 1.07
(
d40 + ∆θ85hm + ∆θphm

)
(4)

dc = 1.05
(
d40 + ∆θ85hm + ∆θphm + 0.9∆θchm

)
(5)

V40 = αVVp,0 (6)

Vp,0 = τh,e f f tlm (7)

Vp,0

tlm fmk
=

τh,e f f

fmk
=

0.269
f 0.641
mk

(8)

du = 0.9dc + 0.1dp (9)

where θ40 represents the drift ratio corresponding to 40% of the strength; ∆θ85, ∆θp and ∆θc
are the drift ratio increments; coefficient αV is a correction factor, which is taken here as
0.98; hm, lm and t are the height, width and thickness of the infill wall respectively; and fmk
is the compressive strength of the masonry.
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Then, the parameters of the hysteretic rule of the Pinching4 uniaxial material model
were determined according to the research of Blasi et al. [78] and Kumar et al. [79], as
follows:

[rDispP rForceP uForceP] = [rDispN rFprceN uForceN] = [0.5 0.1 −0.05]
gK1 gK2 gK3 gK4 gKLim
gD1 gD2 gD3 gD4 gDLim
gF1 gF2 gF3 gF4 gFLim
gE

 =


0.5 0.2 0.3 0.2 0.9
0.1 0.1 2.0 2.0 0.5
0.1 0.1 1.0 1.0 0.9
10


where rDispP, rForceP, uForceP, rDispN, rFprceN, and uForceN are the scaling factors
that control the pinching of materials; gK1, gK2, gK3, gK4, and gKLim control the cyclic
degradation model for unloading stiffness degradation; gD1, gD2, gD3, gD4, and gDLim
control the cyclic degradation model for reloading stiffness degradation; gF1, gF2, gF3,
gF4, and gFLim control the cyclic degradation model for strength degradation; and gE is
used to define maximum energy dissipation under cyclic loading.

4.3. Selected Ground Motions

The 22 remote ground motion records recommended by FEMA P695 (ATC-63) [80]
were selected for incremental dynamic analysis (IDA). Since each record has two directions,
a total of 44 records were used for the analysis. The selected earthquake intensity was the
spectral acceleration Sa for a ground motion record at the fundamental period of structures,
which was calculated with 5% viscous damping. The acceleration spectra of 44 ground
motions and the mean acceleration spectra are shown in Figure 7.

Buildings 2022, 12, x FOR PEER REVIEW 13 of 18 
 

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

Sa
 (g

)

T (s)

 Mean

 
Figure 7. The acceleration spectra of the selected 44 ground motions. 

4.4. Structure Fragility Analysis 
The seismic fragility of structures refers to the probability of reaching a certain dam-

age state or performance level under seismic excitations of different intensities. The definition 
of structure fragility function also adopts a lognormal cumulative distribution function, the 
parameters of which have different meanings from Equation (1), as shown in Equation (10). 

( ) μ
β

 −
  =     ≥

 

|I

|I

ln
Φ| EDP M

i
EDP M

P EDP ed
IM

p IM  (10) 

where   ≥ |iP EDP edp IM  is the conditional probability that a ground motion will cause 

the structure to reach the ith damage state; EDP is the seismic response of the structure, 
which in this paper is the maximum IDR of the structure; iedp  is the seismic capacity of 
the structure corresponding to the IDR value for each DS determined in the previous sec-
tion; IM  is the seismic intensity index, which is defined in this paper as the spectral ac-
celeration corresponding to the structural period of ground motion records; μ |IEDP M  is the 

logarithmic mean value; and β |IEDP M  is the logarithmic standard deviation. 
The incremental dynamic analyses were conducted for the four-story and eight-story RC 

frame structures with infill walls introduced in Section 4.1, and the IDA curves obtained are 
shown in Figure 8. The fragility curves of each DS, determined by Equation (10), are shown in 
Figure 9. 

0.5 1.0 1.5 2.00.0
0.0

1.0

2.0

3.0

4.0

5.0
 Mean

Sa
 (g

)

IDRmax (%)  

0.5 1.0 1.5 2.00.0
0.0

1.0

2.0

3.0

4.0

5.0
 Mean

Sa
 (g

)

IDRmax (%)  
(a) (b) 

Figure 8. The IDA curves of the two structures: (a) 4-story; (b) 8-story. 

Figure 7. The acceleration spectra of the selected 44 ground motions.



Buildings 2022, 12, 1175 12 of 16

4.4. Structure Fragility Analysis

The seismic fragility of structures refers to the probability of reaching a certain damage
state or performance level under seismic excitations of different intensities. The definition
of structure fragility function also adopts a lognormal cumulative distribution function, the
parameters of which have different meanings from Equation (1), as shown in Equation (10).

P[EDP ≥ edpi|IM] = Φ

(
ln(IM)− µEDP|IM

βEDP|IM

)
(10)

where P[EDP ≥ edpi|IM] is the conditional probability that a ground motion will cause
the structure to reach the ith damage state; EDP is the seismic response of the structure,
which in this paper is the maximum IDR of the structure; edpi is the seismic capacity of the
structure corresponding to the IDR value for each DS determined in the previous section;
IM is the seismic intensity index, which is defined in this paper as the spectral acceleration
corresponding to the structural period of ground motion records; µEDP|IM is the logarithmic
mean value; and βEDP|IM is the logarithmic standard deviation.

The incremental dynamic analyses were conducted for the four-story and eight-story
RC frame structures with infill walls introduced in Section 4.1, and the IDA curves obtained
are shown in Figure 8. The fragility curves of each DS, determined by Equation (10), are
shown in Figure 9.
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The probability of the two structures reaching DS1 was 79% and 97%, respectively,
when Sa was 0.5 g. Meanwhile, the probability of the two structures reaching DS2 was
20% and 40%, respectively, when Sa was 0.5 g. The probability of the two structures
reaching DS3 was 3% and 9%, respectively, when Sa was 0.5 g. However, reaching DS4
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was challenging for the two structures, which required ground motion intensity several
times larger. The probability of the four-story structure reaching DS4 was 79%, 20% and 3%,
requiring Sa 3.1 g, 1.6 g and 1.1 g, respectively. The probability of the eight-story structure
reaching DS4 was 97%, 40% and 9%, requiring Sa 4.82 g, 1.9 g and 1.2 g, respectively.

The fragility curves of the structure in Figure 9 flattened as the structures reached
DS1 to DS4, i.e., the probability of transcendence became progressively smaller. The DS1
curves in the figure are the steepest and the structures reached DS1 when Sa was very small,
indicating that the structure could easily break through the DS1 limit to reach DS2 under a
low seismic action. The DS4 curves are the flattest, which required a larger Sa for the same
transcendence probability, indicating that it was difficult for the structures to reach DS4.

5. Conclusions

In this paper, a definition of the damage state of infill walls loaded in an in-plane
direction was developed. A corresponding performance target was proposed, which was
applied to carry out a fragility analysis of two infilled RC frames.

First, an extensive database of experimental tests on infilled RC frames stressed by
in-plane loading was collected and presented. The in-plane damage state (DS) of infill
walls was defined as four stages according to the observed damage process as well as
the mechanical properties during the test. The IDR values corresponding to each DS
were identified, and fitted to the lognormal distribution function. The parameters of the
lognormal fragility functions corresponding to each DS were obtained. The mean value of
the IDR was chosen as the performance target of each DS, which was 0.1%, 0.3%, 0.9% and
1.9%, respectively.

Then, the proposed seismic performance targets were used to conduct a fragility
analysis of two infilled wall RC frames. The probability of the four-story structure reaching
DS1, DS2 and DS3 was 79%, 20% and 3%, respectively, when Sa was 0.5 g. However, the
probability of the four-story structure reaching DS4 was 79%, 20% and 3%, requiring Sa
3.1 g, 1.6 g and 1.1 g, respectively. The results demonstrated that the infilled RC frame
structures could reach DS1 and DS2 under a relatively low seismic intensity. When the
seismic intensity increased, DS3 could be reached gradually. However, reaching DS4 was
challenging, which required ground motion intensity several times larger.

It should be noted that the conclusions obtained in this study are related to the data
collected due to the empirical IDR value. In the future, more effort will be made to expand
the experimental database and the out-of-plane seismic performance target of the infill walls.
Furthermore, the overall seismic performance of infilled RC frames under bidirectional
seismic motions should be researched as well.
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40. Žarnić, R.; Tomazevic, M. Study of the Behavior of Masonry Infilled Reinforced Concrete Frames Subjected to Seismic Loading—Part One;
Report ZRMK/IKPI-84/04; Institute for Testing and Research in Materials and Structures: Ljubljana, Yugoslavia, 1984.

41. Vasconcelos, G.; Akhoundi, F.; Loureno, P.B.; Palha, C.; Silva, L. In-plane and out-of plane experimental characterization of
RC masonry infilled frames. In Proceedings of the 6th International Conference on Mechanics and Materials in Design, Ponta
Delgada, Portugal, 26–30 July 2015.

42. Zovkic, J.; Sigmund, V.; Guljas, I. Cyclic testing of a single bay reinforced concrete frames with various types of masonry infill.
Earthq. Eng. Struct. Dyn. 2013, 42, 1131–1149. [CrossRef]

43. Huang, Q.X. Study on Seismic Behavior and Elastic-Plastic Analysis Method for Seismic Responses of RC Frame Infilled with
New Masonry. Ph.D. Thesis, Huaqiao University, Quanzhou, China, 2011.

44. Li, J.H.; Xue, Y.T.; Xiao, C.Z.; Chang, Z.Z.; Li, Y. Experimental study on seismic performance of full-scale RC frame infilled with
autoclaved aerated concrete blocks. China Civ. Eng. J. 2015, 48, 12–18. [CrossRef]

45. Gu, X.L.; CHEN, G.L.; Ma, J.Y.; Li, X. Experimental study on mechanical behavior of concrete perforated brick walls under cyclic
loading. J. Build. Struct. 2010, 31, 123–131. [CrossRef]

46. Jiang, L.X.; Zheng, Q.W. Tests of seismic behavior of reinforced concrete frames with infilled wall or strengthened infilled wall.
Ind. Constr. 2009, 39, 40–47. [CrossRef]

47. Lin, C.; Guo, Z.X.; Huang, Q.X.; Ye, Y.; Chai, Z.L.; Liu, Y. Experimental study on seismic behavior of full-scale infilled RC frames.
J. Build. Struct. 2018, 39, 30–37. [CrossRef]

48. Zhou, X.J.; Li, Z.X.; Xu, D.D.; Jiang, X.L. Experiment on Seismic Behavior of Flexible Connection Masonry Infilled Frame Structure.
J. Tianjin Univ. Sci. Technol. 2015, 48, 155–166. [CrossRef]

49. Su, Q.W.; Zhang, Y.; Xu, Z.Y.; Cai, H.R. Full-Scale Tests on Seismic Behavior of RC Frames Infilled with Hollow Bricks. J. SouthWest
Jiaotong Univ. 2017, 52, 532–539. [CrossRef]

50. Cheng, J.T.; Tang, X.R. Nonlinear finite element analysis of reinforced concrete frame structures with opening masonry infilled
wall. J. Suzhou Univ. Sci. Technol. Eng. Technol. 2013, 26, 24–27.

51. Lin, C. Seismic Performance and Interaction Mechanism of Infilled RC Frames Using New Masonry Blocks. Ph.D. Thesis, Huaqiao
University, Quanzhou, China, 2019.

52. Li, X.D. Experimental and Analytical Study of Seismic Performance of Lightweight Masonry-Infilled RC Frames. Master’s Thesis,
Harbin Institute of Technology, Harbin, China, 2013.

53. Xiong, F.; Wang, P.; Zhang, W.B.; Chen, J. Experimental Study on the Seismic Behavior of RC Frame with Fiber Gypsum Infilled
Wall. Adv. Eng. Sci. 2017, 49, 1–9. [CrossRef]

54. Tang, X.R.; Zhou, Z.Y.; Liu, L.H.; Yang, L. Experimental study on seismic behavior of multi-story masonry infilled reinforced
concrete frame structures. J. Build. Struct. 2012, 33, 72–81. [CrossRef]

55. Kakaletsis, D.; Karayannis, C. Experimental investigation of infilled r/c frames with eccentric openings. Struct. Eng. Mech. 2007,
26, 231–250. [CrossRef]

56. Yang, W.J.; Chen, L.Q.; Zhu, X.Q. Experimental study on seismic behavior of concrete perforated brick walls. Eng. Mech. 2008, 25,
126–133.

http://doi.org/10.13197/j.eeev.2005.05.020
http://doi.org/10.1016/j.soildyn.2014.06.016
http://doi.org/10.1002/eqe.2564
http://doi.org/10.1002/eqe.477
http://doi.org/10.1002/tal.1115
http://doi.org/10.1080/13632469.2015.1104748
http://doi.org/10.1016/j.istruc.2015.06.005
http://doi.org/10.1007/s40999-017-0240-5
http://doi.org/10.1002/eqe.2263
http://doi.org/10.15951/j.tmgcxb.2015.08.002
http://doi.org/10.14006/j.jzjgxb.2010.12.016
http://doi.org/10.13204/j.gyjz2009.10.012
http://doi.org/10.14006/j.jzjgxb.2018.09.004
http://doi.org/10.11784/tdxbz201410041
http://doi.org/10.3969/j.ISSN.0258-2724
http://doi.org/10.15961/j.jsuese.201601311
http://doi.org/10.14006/j.jzjgxb.2012.11.009
http://doi.org/10.12989/sem.2007.26.3.231


Buildings 2022, 12, 1175 16 of 16

57. Hao, T.; Liu, L.X.; Wang, R.Y. Experimental study on seismic performance of concrete perforated brick wall. Struct. Units Units
Archit. 2008, 22–25.

58. Zhang, Y.T.; Shen, D.M. Quasi-static Experimental Study on Concrete Perforated Brick Wall. Build. Struct. 2007, 3, 91–93.
[CrossRef]

59. Wu, F.B.; Zhu, H.F.; Ouyang, J.; Jiang, W.; Zhou, X.H. Experiment on Seismic Behavior of Concrete Horizontal-hole Hollow Blocks
Infilled Wall-RC Frames. J. Archit. Civ. Eng. 2016, 33, 7–13.

60. Zhan, H. Experimental Research on the Seismic Behavior and Shear-Bearing Capacity of the Walls Made of KP1 Burned
Shale-Farinosecoal Porous Bricks. Master’s Thesis, Hunan University, Changsha, China, 2001.

61. Wang, Y.H.; Ai, J.; Zhang, C.F.; Lv, Z.T. Experimental study on prestressed concrete block wall under low cyclic reversed loading.
Build. Struct. 2003, 4, 3–7. [CrossRef]

62. Zhao, Q.B. Experimental Research on the Improvement of Seismic Behavior of Load Bearing Masonry made of Autoclaved
Aerated Concrete. Master’s Thesis, Tianjin University, Tianjin, China, 2005.

63. Liao, Q.; Li, B.X.; Shi, Y.X.; Meng, C.Y. Experimental study on seismic performance of RC frames filled with lightweight wallboards.
J. Build. Struct. 2018, 39, 44–51. [CrossRef]

64. Cheng, C.Y.; Wu, M.S. Experimental study on seismic performance of yitong aerated concrete masonry wall. In Proceedings of
the 2005 National Masonry Structure Basic Theory and Engineering Application Conference, Shanghai, China, 17 December 2005;
pp. 99–104.

65. Xia, G.M. Testing Study on Anti-Seismic Behavior of the Masonry Walls of Nonbearing Anti-Seismic Energy-Saving Bliocks.
Master’s Thesis, Dalian University of Technology, Dalian, China, 2004.

66. Dautaj, A.D.; Kadiri, Q.; Kabashi, N. Experimental study on the contribution of masonry infill in the behavior of RC frame under
seismic loading. Eng. Struct. 2018, 165, 27–37. [CrossRef]

67. Alwashali, H.; Sen, D.; Jin, K.; Maeda, M. Experimental investigation of influences of several parameters on seismic capacity of
masonry infilled reinforced concrete frame. Eng. Struct. 2019, 189, 11–24. [CrossRef]

68. Cheng, C.Y.; Zhu, B.L.; Wang, X.M.; Zheng, Y. Seismic performance of lime-sand brick wall under low cyclic loading. Sichuan
Build. Sci. 1989, 5–9.

69. Bergami, A.V.; Nuti, C. Experimental tests and global modeling of masonry infilled frames. Earthq. Struct. 2015, 9, 281–303.
[CrossRef]

70. Calvi, G.M.; Bolognini, D. Seismic Response of Reinforced Concrete Frames Infilled with Weakly Reinforced Masonry Panels. J.
Earthq. Eng. 2008, 5, 153–185. [CrossRef]
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