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Abstract: Bipedal models for walkers, originally developed in the research field of biomechanics,
have been identified as potential candidates for modelling pedestrians in structural engineering
applications. These models provide insight into both the kinetics and kinematics of walking loco-
motion and are considered to have a significant potential to improve the vibration serviceability
assessment of civil engineering structures. Despite this notion, the ability of the bipedal models to
represent the key features of the walking gait and natural variability within the pedestrian population
are still under-researched. This paper critically evaluates the performance of two bipedal models
with rigid legs to realistically both reproduce key features of an individual pedestrian’s walking
gait and represent a wide range of individuals. The evaluation is performed for walking on a rigid,
rather than vibrating, structure due to the availability of experimental data and expectation that
successful modelling on rigid surfaces is a necessary condition for progressing towards modelling
on the vibrating structures. Ready-to-use equations are provided and the ability of the models to
represent the kinematics and kinetics of individual pedestrians as well as the inter-subject variability
typical of the human population is critically evaluated. It was found that the two models could
generate realistic combinations of the gait parameters and their correlations, but are less successful in
reproducing genuine kinetic and kinematics profiles.

Keywords: walking locomotion; bipedal inverted pendulum; ground reaction force; walking kinematics

1. Introduction

It is more than four decades since the first design guidance for the vibration serviceabil-
ity assessment of footbridges, BS5400, was developed in 1978 [1] in recognition of the need
to evaluate the structural vibration response to dynamic excitation induced by pedestrians.
A pedestrian was modelled as a harmonic force moving across the bridge at a constant
speed and at a “pacing” (also called “step”) frequency matching a natural frequency of
the structure. This single-pedestrian-exciting-the-resonance loading scenario has been at
the heart of the vibration serviceability assessment of footbridges for almost three decades.
A gradual introduction of high-strength and light-weight materials in contemporary struc-
tural design has resulted in new footbridges that are usually more slender, lighter, and less
damped, and, therefore, more sensitive to dynamic loading than their older counterparts.
As a consequence, there is a need for an improved modelling of pedestrian loading that
exists. Some refinements, such as the inclusion of multi-pedestrian loading scenarios and
the consideration of inter-subject variability in the pacing rate within a pedestrian crowd,
have already been introduced in the new generation of design guidelines [2–4]. Research
into stochastic models for pedestrian-induced force have been advanced from those that

Buildings 2022, 12, 1216. https://doi.org/10.3390/buildings12081216 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12081216
https://doi.org/10.3390/buildings12081216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-2581-2692
https://orcid.org/0000-0001-6166-0895
https://doi.org/10.3390/buildings12081216
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12081216?type=check_update&version=2


Buildings 2022, 12, 1216 2 of 19

account for variations in the pacing rate within a pedestrian population [5] towards the
inclusion of the probability distributions of pedestrian mass, dynamic force amplitude, and
walking speed [6–8]. In addition, a detailed modelling of intra-subject (i.e., step-by-step)
variations in pedestrian locomotion parameters is also available [6,9]. These relatively
recent developments are underpinning the shift from a deterministic towards a proba-
bilistic assessment of the vibration serviceability limit state of the structure. Nevertheless,
the currently available models are limited to the structures on which pedestrians (and,
therefore, the resulting dynamic forces) do not interact with the oscillating structure. The
interaction term in this paper refers to the pedestrian–structure feedback loop, in which
the structural vibration forces pedestrians to alter their walking locomotion which, in turn,
alters the vibration response of the structure.

The excessive sway of the Millennium Bridge in London in June 2000, caused by a
crowd of walkers, exposed a weakness in the design procedures that did not envisage the
possibility of pedestrians interacting with the vibrating bridge deck [10]. The Millennium
Bridge problem highlighted the need to understand the interaction mechanism and served
as a motivation for developing more sophisticated models of pedestrians. An extensive
experimental and theoretical line of research demonstrated that the structural behaviour
could be explained by pedestrians continuously adjusting their placement of the foot
on the moving deck to preserve their balance [11–13]. There is also some evidence that
people might respond to deck vibration by synchronising with it [10,14]. In both cases, it
has been acknowledged that pedestrians act as adaptable systems, highlighting the need
for developing models that can genuinely represent pedestrian’s walking on vibrating
structures [15]. Similar detailed studies of walking gait are required for developing and
understanding the human–structure interaction in the vertical direction of vibration [16–20].
The vertical component of the human-induced dynamic force will be the focus of this paper.

A number of researchers have identified that bipedal models for walkers, originally
developed in the research fields of biomechanics and robotics, can qualitatively describe the
pedestrian–structure interaction. These models include both a simple inverted pendulum
model with rigid legs [13,16,17,21] and more complex bipedal models with deformable and
damped legs [22–24]. While the initial studies show the potential of the bipedal models to
be used in structural engineering applications, there is a need for a more detailed insight
into the performance of these models, especially in terms of their ability to cover relevant
parameter space and genuinely represent inherent variability in the pedestrian population.
This is important for the accurate modelling of individuals to both study an emerging crowd
behaviour [25] and the pedestrian–structure interaction. An overview of the governing
equations for these models, relatively new to the structural engineering community, is also
required to facilitate wider validation of the models.

The aim of this paper is to provide a reference source for the two simplest inverted
pendulum models of the vertical force and evaluate their performance on rigid level
ground surfaces. The evaluation will focus on the ability of the models to generate walking
locomotion parameters observed in practice. The study concentrates on rigid level surfaces
due to the availability of experimental data that can be used for the evaluation of the
models, and due to the expectation that a satisfactory performance of the bipedal models
on the rigid surface is a necessary condition for these models to be considered as good
candidates for modelling walking on vibrating structures. To achieve the main aim, the
paper also explains the human walking locomotion process. This is done by transferring
knowledge from medical and biomechanics research areas and presenting it in the context
relevant for civil engineering applications to enable the evaluation of the bipedal models
not only in this paper, but also those to be published in the future.

The paper starts with describing the kinematic and kinetic features of the walking
gait. It then proceeds towards a detailed evaluation of the performance of the two bipedal
models with rigid legs: the inverted pendulum model (IPM) and inverted pendulum
with rocker foot model (IPRFM). The discussion of the findings and their relevance to
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modelling pedestrians on vibrating structures are then presented and conclusions are
briefly summarised.

2. Characteristics of Walking Locomotion
2.1. Kinematics and Kinetics of a Walking Gait Cycle

Gait analysis is a systematic study of the walking locomotion [26]. Traditionally, it is
the ground reaction force (GRF) generated whilst walking that has been of most interest in
structural engineering applications. This section, however, aims to describe not only the
development of the force throughout a typical gait cycle (GC), but also the corresponding
reference actions of the walker (e.g., heel-strike, toe-off, and other gait events) and the
kinematics of the body centre of mass (BCoM). A GC is a cycle between two of the same
nominal gait events of the same foot [27], such as the heel strike events of the right foot
shown in Figure 1. Hence, a GC consists of two consecutive steps. Letters “R” and “L” in
the figure refer to the right and left foot, respectively.

The human body in a walking posture is composed of a passenger unit and a locomotor
unit [28]. The passenger unit consists of the upper body segments, which include head,
arms, and trunk. These segments are carried by the lower body and they represent a passive
contributor to the walking process. The locomotor unit, consisting of thighs, shanks, and
feet, generates the body movement. Consequently, all gait events in a GC are usually
described with reference to the positioning of the lower body parts, in particular, the
two feet.

A GC consists of a stance and a swing phase of each leg (Figure 1). The stance phase is
represented by the continuous contact of a leg with the ground, while the swing refers to
the airborne phase of a leg. Besides the stance and swing phases, a GC can also be divided
into a single support phase (SSP), when one foot only is in the contact with the ground,
and double support phase (DSP), when both feet are simultaneously in the contact with the
ground (Figure 1). SSP and DSP each occur twice in a GC.

Ayyappa [29], and Perry and Burnfield [28] have provided detailed descriptions of
the walking phases and functions of body segments’ joints. Key information from their
work will be summarised here, with frequent cross-referencing to Figure 1. Assuming the
heel strike of the right leg is adopted as the reference event, the GC can be said to start
with the DSP and, at the same time, the right stance phase. The right foot makes an initial
contact (IC, 0–2%, where the two percentage values refer to the typical start time and the
end time, respectively, relative to the GC duration), during which the right knee is close
to full extension and the leg is nearly straight. The abrupt impact of the foot generates a
short-lasting peak in the time history of the GRF (the heel strike transient in Figure 1) and
the body weight starts to be transferred to the ground through the right heel.

After the IC, the GRF time history enters the loading response phase (LR, 2–12%).
During LR, the rapid transfer of the body weight to the right leg hinders the extended
posture of the knee, and the knee starts to flex. As a result, the BCoM starts to descend,
reaching the minimum elevation approximately half way through the LR/DSP (Figure 1).
The bony segment between the heel and the ankle joint (also known as the heel rocker) of
the right foot acts as a lever arm, in which the forward momentum of the leg drives the
forefoot to the ground. The GRF builds up along with an increase of the contact area of the
right foot. On the contrary, the left foot prepares to lift off by pushing against the ground
and propelling the pedestrian forward. The push of the left foot increases the BCoM’s
elevation in the second half of the DSP (Figure 1). By the end of the LR, the GRF of the right
leg reaches the first peak at F1, while the force induced by the left leg decreases to zero, and
the BCoM is at nominally the same elevation as at the beginning of the DSP. Meanwhile,
the right knee is at the maximum flexion and the right foot is approximately in full contact
with the ground. The DSP ends with the toe-off event of the left leg and the GC enters the
SSP (Figure 1).
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Figure 1. Ground reaction force, trajectory of body centre of mass, and key events in a gait cycle
(adapted from [27]).

In the SSP (12–50%), only the right leg is in contact with the ground, while the left
leg enters the swing phase. As soon as the left foot loses contact with the ground, the
time history of the GRF only consists of the right leg’s reaction (Figure 1). The first part
of this SSP, during which the right foot is relatively stationary, is called the mid-stance
(MSt, 12–30%). Due to the forward momentum, the body moves in front of the ankle
joint axis (often referred to as the ankle rocker). At the same time, the knee-flexion keeps
decreasing since the stability during the stance phase is at its optimum when the knee is
in full extension. The swinging momentum of the left leg also plays a role in extending
the right knee. As a consequence of the knee’s extension, the BCoM’s elevation continues
to increase. On the contrary, the amplitude of the GRF decreases because of the upward
momentum of the swinging leg. By the end of the MSt, the magnitude of GRF descends
to its lowest point, F2, while the BCoM reaches its maximum elevation (Figure 1). Once
the swinging left leg becomes the leading leg (by overtaking the right leg), the left knee
extends rapidly, allowing the pedestrian to achieve a certain step length.

After the MSt, the GC enters the terminal stance (TSt, 30–50%) that is initiated by
the heel rise of the right foot. The TSt completes the SSP of the right leg and the swing
phase of the left leg. The entire body makes a forward fall over the bony segment of the
forefoot, acting as the forefoot rocker. The right knee reaches the state of full extension that
makes the falling-forward movement of the BCoM relatively similar to the trajectory of an
inverted pendulum. To prepare for the stance phase of the left leg, the left knee is in full
extension. By the end of the TSt, the GRF of the right leg reaches the second peak at F3. The
TSt ends when the swing leg makes first contact with the ground. The SSP ends and the
GC enters the second DSP.

Right after the TSt is the pre-swing (PS, 50–62%) phase of the right leg. This phase
occurs at the same time as the IC and the LR of the left leg, and therefore, the BCoM
experiences a similar trajectory pattern, as explained earlier in relation to the IC and LR
phases of the right leg. The body weight is transferred from the right leg to the left leg,
resulting in the rapid decrease of the GRF for the right and increase for the left leg (Figure 1).
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To prepare for the swing phase, the right knee experiences significant flexion. Meanwhile,
the right foot pushes the ground through metatarsal heads and toes (known as toe rocker)
to progress the limb forward. The pre-swing phase ends with the toe-off event, which is
also the terminal event of the stance phase of the right leg. The rest of the GC (62–100%) is
the SSP of the left leg (and the swing phase of the right leg). The GC ends with the heel
strike event of the right foot.

During a GC, the forward velocity is lowest when the BCoM is at its highest position,
at around midstance [30], while it is at its maximum when the body descends to the lowest
position during the DSP. In the walking process, therefore, the potential and kinetic energies
are continuously interchanged, although it should be noted that the total energy is not
conserved due to the damping effects of the human body [31]. To continue walking, the
humans recover the lost energy by means of “external” work done by muscles [32].

The overview of the walking phases in a GC has shown three important aspects of a
walking gait. First, the BCoM trajectory approximately resembles a series of arcs (Figure 1),
especially during the SSPs. The transitions from one SSP to another are smoothened due
to the influence of knee and ankle flexion [31]. The vertical excursion (i.e., the difference
between maximum and minimum elevations of the BCoM) is observed to be 2–6 cm [33,34].
Second, during the stance phase, the foot that is in contact with the ground utilises four
functional rockers: heel, ankle, forefoot, and toe rocker. These rockers maintain the stability
of the gait and assist the forward progression of the limb [28]. Third, the time history of the
GRF generated by one leg follows an M-shape with two peaks occurring approximately
at the beginning and at the end of the SSP. At the normal walking speed, the peaks are
about 110% of the body weight, while the trough, approximately in the middle of the SSP,
is about 80% of the body weight [28]. These observations will be useful when evaluating
the performance of the bipedal models.

2.2. Frequency Content of Ground Reaction Force

Modelling a continuous, multi-step GRF in civil engineering applications started with
summing up a sequence of nominal single-step GRFs with an appropriate time overlap
between two successive steps to achieve the intended pacing frequency (and therefore
time period T), as shown in Figure 2a [35,36]. This created a periodic force consisting of
distinct harmonics in the frequency domain. The typical continuous GRF, however, is of a
narrow-band nature, as shown in Figure 2b. Its energy is concentrated not only in the main
harmonics that occur at the pacing frequency and its integer multiples and less pronounced
sub-harmonics that are consequence of the slight differences in forces generated by the left
and right foot, but it also spills over to the neighbouring frequency lines [6,37]. The main
harmonics are usually normalised by the weight of the pedestrian and expressed in the
form of dynamic loading factors (DLFs).

The dynamic loading factor for the first harmonic, DLF1, shows a strong dependency
on the pacing frequency (Figure 3a), while the higher harmonics are frequency indepen-
dent [38] (data for the 2nd harmonic only are shown in Figure 3b). It should be noted that
DLFs are independent from the pedestrian’s weight [9].

While DLF1 can reach values as high as 0.7 (Figure 3a) for fast walking, DLF2 (Figure 3b),
DLF3, and DLF4 are characterised by maximum values around 0.22, 0.14, and 0.12, and
mean values of 0.07, 0.06, and 0.05, respectively [38]. All four harmonics can have extremely
low values approaching zero. In case of DLF1, however, the values below 0.1 are only
possible for extremely slow (and rarely seen in practice) walking frequencies below 1.3 Hz.

2.3. Pacing Frequency and Pedestrian’s Forward Speed

Pacing frequency is one of the most important locomotion parameters in civil engineer-
ing applications [39]. When the pacing frequency (or one of its integer multiples) is close or
equal to a natural frequency of a structure that is, at the same time, light and/or lightly
damped, strong vibrations that might compromise the vibration serviceability state of the
structure could develop [40]. While the pacing frequency for a population of structure users
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is known to follow a normal distribution, the distribution parameters (the mean and the
standard deviation, STD) vary between user populations and structural purpose. Table 1
shows a summary of parameters observed on nine structures. Taking the mean ± 3STD as
the boundaries of the possible pacing rates in each case suggests that the pacing rate ranges
from 1.3 Hz to 2.5 Hz.

Figure 2. (a) Periodic GRF representation in the time domain and (b) actual GRF representation in
the frequency domain (vertical component only).

Figure 3. (a) Data points for DLF1 versus pacing frequency. Solid black line—best data fit. Red solid
lines—best fit ± 2 standard deviations. (b) Data points for DLF2 versus pacing frequency. Solid black
line—mean value. (after Kerr [38]).

Table 1. Statistics of pacing rate and walking speed on a range of structures.

Structure
Country

Sample Pacing Rate (Hz) Walking Speed (m/s)

[Reference] Size Mean STD Mean STD

Road [41] Japan 505 1.99 0.17 - -
Footbridge 1 [42] UK 200 1.86 0.11 1.38 0.13
Footbridge 2 [42] UK 200 1.80 0.10 1.23 0.09

Two shopping floors [42] UK 400 2.00 0.13 1.41 0.13
Footbridge [43] Germany 251 1.82 0.12 1.37 0.15
Walkway [44] Italy 116 1.84 0.17 1.41 0.22

Indoor footbridge [45] UK 939 1.94 0.19 1.47 0.23
Footbridge [46] Montenegro 2019 1.87 0.19 1.39 0.20

Pedestrians’ forward speed influences the amount of time a pedestrian requires to
cross a structure, and therefore, the amount of time the structure is exposed to the dy-
namic excitation by the pedestrian. Assuming the possible speed values are within the
mean ± 3STD of the data shown in Table 1, the speed could be as low as 0.7 m/s and as
high as 2.1 m/s.

Some studies also report the mean and standard deviation for the step length: 0.75 m
and 0.07 m [43], 0.77 m and 0.10 m [44], and 0.74 m and 0.08 m [46]. The range of step
length values can be estimated to be from 0.47 m to 1.07 m.

For any individual pedestrian, the average pedestrian speed v, pacing rate fp, and
step length ls are mutually dependent parameters (v = fpls). Investigating the correlation
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of each pair of parameters on a population level suggests that the step length is relatively
independent from the pacing frequency (Figure 4a), while the speed of walking increases
with an increase in both pacing rate and step length (Figure 4b,c) [44,46].

Figure 4. (a) Step length and (b) walking speed as functions of pacing frequency. (c) Pedestrian speed
as a function of step length (adapted from [46]).

2.4. Criteria for Evaluation of Bipedal Models

When modelling pedestrian traffic in civil engineering applications, it is important
to correctly reproduce the key time- and frequency-domain features of an individual
pedestrian-induced dynamic force as well as the variability in the gait parameters within
the studied population. The latter aspect requires the models to be able to generate the
realistic range of gait parameters (e.g., DLF, pacing rate, and walking speed) as well as to
correctly represent their correlation. The ability of the two simple bipedal models (IPM and
IPRFM) to reproduce kinematics and kinetics of individual walkers as well as to cover the
parameter space typical of a pedestrian population is investigated in the next section.

3. Inverted Pendulum Models with Rigid Legs

The research into walking locomotion was motivated by the curiosity about its me-
chanics [47], and it resulted in the development of a number of bipedal models. Most of
the existing models have been developed based on the observations of major determinants
of walking gait: (1) pelvic rotation, (2) pelvic tilt, (3) knee flexion, (4) the foot mechanism,
(5) knee mechanisms, and (6) lateral displacement of the pelvis [31]. Since this study is
concerned with the investigation of the walking gait in the sagittal plane (i.e., the vertical
plane that includes the direction of progression), the first and sixth determinants could be
excluded from considerations.

Bipedal models of walking locomotion were initially used to study normal and patho-
logical gaits in medical applications [31]. Apart from medicine, the walking locomotion has
been a subject of interest in research fields of biomechanics, animated image processing,
and robotics. A number of models are shown in Figure 5 in order of increasing complexity.
A detailed representation of the first two models will be presented in this paper; we hope
this will inspire a similar type of analysis for other models in the future. The main feature
of all these models is that the body mass is lumped into a single point representing the
BCoM. As a result, the human kinematics is represented by the movement of this single
point, as dictated by the geometry (and elasticity and damping, if included) of the legs.

Figure 5. Bipedal walking locomotion models: (a) inverted pendulum [31], (b) inverted pendulum
with rocker foot [30], (c) spring-loaded inverted pendulum, SLIP [48], (d) SLIP with rocker foot [49],
(e) spring mass with damper [22], and (f) spring mass with rocker foot and damper [50].
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3.1. Inverted Pendulum Model

The inverted pendulum model (IPM) is the simplest bipedal walking model (Figure 5a)
developed by Saunders et al. [31]. The model consists of a point mass mp and two rigid,
straight, and massless legs (Figure 6). The human body is assumed to be symmetrical,
i.e., the two legs have the same length. The foot is modelled as a point foot that does not
slip during contact with the ground.

Figure 6. Inverted pendulum model.

The time instant when one leg touches the ground can be taken as a starting point of a
step in the IPM. The model is set into motion by specifying the initial conditions for the
attack angle θ0 and angular speed

.
θ0. The resulting motion of the point mass is in the form

of an arc, defined by the geometry of the supporting leg. A step is completed when the
angle formed by the supporting leg, θ(t), (see Figure 6) becomes equal to the supplement of
the attack angle θ0. This angle is also called the end-of-step angle, denoted as θe in Figure 6.

At the time of step completion, the swinging leg touches the ground and the pedes-
trian’s weight is instantaneously transferred from one foot to another. The next step is
initiated by specifying a new set of initial conditions, which are usually assumed to be the
same for all the steps.

Using the Lagrangian approach [51], the equation of motion for a single step can be
written as:

..
θ(t) =

cos θ(t)
l

g, (1)

where
..
θ(t) is the second derivative of θ(t) with respect to time, l is the distance from the

BCoM to the foot (hereafter referred to as the pendulum length), and g is the acceleration
of gravity (g = −9.81 m/s2). Equation (1) describes the stance phase of the gait cycle only
because the IPM neglects the DSP. The GRF generated within a single step Fp(t) is:

Fp(t) = −mp sin θ(t)
(

g sin θ(t) + l
.
θ(t)2

)
, (2)

where
.
θ(t) is the first derivative of θ(t) with respect to time, while all other variables are

the same as before.
The step transition process requires redirecting the BCoM upwards, from the falling

downwards momentum at the end of a step. During walking, this upwards momentum
is provided by a foot pushing off the ground just before the toe-off event (Figure 1), and
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it can be simulated in the model by applying an upward impulse to the point mass. The
amplitude of this vertical upward impulse In at the end of the nth step is [16]:

In = −mp
.
ye,n + mp

.
x0,n+1cot

.
θ0, (3)

where
.
ye,n and

.
x0,n+1 are the vertical speed of the BCoM at the end of the nth step and

the forward speed at the beginning of the (n + 1)th step, respectively. The first part of the
impulse in Equation (3) cancels the falling effect at the end of nth step, while the second
part pushes the mass upwards so to supply the initial forward speed

.
x0,n+1. The initial

forward speed
.
x0 is assumed to be the same in all steps and it is linked to the initial angular

speed
.
θ0 and the attack angle θ0 through the equation:

.
x0 = l

.
θ0sin θ0. (4)

3.1.1. Model Inputs

To perform simulations using the IPM, two sets of input parameters are required:
model parameters and initial conditions. The model parameters consist of pedestrian mass
and the pendulum length. The body mass of 77.5 ± 17.2 kg (mean ± STD) and height of
1.676 ± 0.097 m of an average person are chosen as representative values in this paper [52].
This body height corresponds to the physical leg length of 0.864 ± 0.050 m [53]. The
physical leg length has to be increased by about 20% [54] to obtain the pendulum length
parameter, which amounts to 1.037 ± 0.060 m.

Initial conditions required by the model are θ0 and
.
θ0 (or

.
x0 instead of

.
θ0, see Equation (4)).

The attack angle θ0 ranges between 65◦ and 80◦ [48]. The exact range of the initial forward
speed

.
x0 is not well known. After initial simulation trials, the range has been set to

1.0–2.5 m/s for the needs of the parametric study. The locomotion is assumed to be periodic,
i.e., the initial conditions remain constant in each step.

3.1.2. Simulation Results

The solver ode45 from the MATLAB library [55] that utilises the Runge–Kutta inte-
gration method with a variable step size was used to solve Equation (1). The maximum
time step of the solver is set at 10−3 s. An example of the GRF generated by the model
for the input values of mp = 77.5 kg, l = 1.037 m, θ0 = 69◦, and

.
x0 = 1.61 m/s is shown

in Figure 7. The initial conditions were chosen to generate walking at a pacing rate of
1.87 Hz and an average walking speed of 1.39 m/s, which correspond to the mean values
observed on an as-built bridge (reported in [46], and included in Table 1). The arcs in the
figure represent the inertia force of mass mp while the vertical lines represent the externally
applied impulses. The duration of each impulse for the numerical simulation is chosen to
be such that the average of the total force is equal to the pedestrian weight.

Figure 7. Normalised GRF as a function of time.
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The amplitude of the first harmonic of this GRF is within the measured range shown
in Figure 3. The DLFs for higher harmonics in the IPM are significantly overestimated due
to the simplified modelling of the push-off phase using the impulses [17].

To investigate the ability of the IPM to reproduce realistic combinations of the pacing
rate, DLF1, step length, and average forward speed, the model has been exposed to a range
of initial conditions: the initial forward speed varies between 1.0 m/s and 2.5 m/s (in
discrete steps of 0.01 m/s) and the attack angle varies between 65◦ and 80◦ (in steps of 0.01◦).
The light grey area in Figure 8a shows all the combinations of the attack angle and initial
forward speed that result in the physically relevant pacing rate between 1.3 and 2.5 Hz.
The light grey in Figure 8b covers the parameter space which results in DLF1 ≤ 0.7, while
the darker grey in the same figure represents the parameter combinations that produce
realistic values of both the pacing frequency and DLF1. It can be seen that unrealistically
low values of DLF1 (i.e., DLF1 ≤ 0.1) correspond to an unrealistically low pacing frequency,
which is consistent with the data shown in Figure 3a. The light grey area in Figure 8c shows
a parameter space that covers the realistic range of the walking speed (0.7–2.1 m/s) and
the dark grey area in the same figure represents all the parameter combinations that result
in a realistic pacing frequency, DLF1, and pedestrian speed. Figure 8c reveals that, for the
given pendulum parameters (i.e., mp = 77.5 kg, l = 1.037 m), the most extreme pedestrian
speeds (i.e., around 0.7 m/s and 2.1 m/s) are not achievable. To better represent extremely
slow walkers, the pendulum length must be shortened, while the fastest walkers can be
modelled by lengthening the pendulum length. Using a pendulum length between 0.9 m
and 1.2 m (in agreement with the data reported by Hof et al. [54], it is possible to select
initial conditions that result in realistic simulations of all of the pacing frequencies, DLF1,
and walking speeds.

To check the correlation between the gait parameters of interest, only those initial
conditions that produced realistic ranges of the pacing rate, DLF1, and average forward
speed are utilised in Figure 9. The boundary of the parameter space that includes the points
within the dark grey area in Figure 8c are shown as solid lines in Figure 9. Boundaries are
also shown for a shorter pendulum length of 0.9 m (dashed line) and elongated pendulum
length of 1.2 m (chain line). In addition, the experimental data points from Figure 4 are also
shown in Figure 9a–c, while the boundaries for DLF1 from Figure 3a are shown in Figure 9d.
Figure 9 shows that the IPM is able to reproduce a (empirically observed) lack of correlation
between the step length and the step frequency, as well as the positive correlations between
the speed and step frequency, speed and step length, and DLF1 and step frequency. It is also
noticeable that the model covers a larger parameter space than that seen in practice (e.g., for
a given step frequency of, say, 2 Hz, it can both underestimate and overestimate the DLF1
value, depending on the choice of the pendulum length and the initial conditions).

The trajectory of the BCoM that is represented by a series of arcs in the IPM overes-
timates the vertical excursion by a factor of two or more [56]. The trajectory also lacks
smoothness of the actual trajectory shown in Figure 1 due to an instantaneous transfer of
the body weight from one foot to another and the inherent inability of the IPM to depict
the double support phase of the gait.

The inability of the IPM to replicate the kinematics of the BCoM accurately is a
drawback for the quantitative modelling of pedestrians on a vibrating structure as the
kinematic state of the foot–structure interface cannot be genuinely represented. On the other
hand, this simple model is a building block for understating more complex bipedal models
and could offer some qualitative insight into the pedestrian–structure interaction [16,17].

3.1.3. Dimensional Analysis

Dimensional analysis is a convenient means of exploring how changing some param-
eters influences the others. Let us select mass mp, pendulum length l, and acceleration
of gravity g as the base quantities. For a given attack angle θ0, it is possible to determine
how changing the mp or l (or gravity g, although this change is not of actual interest in this
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work) influences other parameters of interest. The new value of a parameter of interest can
be found by preserving the dimensionless value, defined in Table 2, for the same parameter.

Figure 8. (a) Pacing rate, (b) DLF1, and (c) average forward speed of a pedestrian resulting from
different combinations of the initial conditions in the IPM (mp = 77.5 kg, l = 1.037 m). Refer to the
text for explanation of the colours.

Figure 9. Relationships between (a) step length and step frequency, (b) speed and step frequency,
(c) speed and step length, and (d) DLF1 and step frequency, in the IPM. Blue dashed line: l = 0.9 m,
black solid line: l = 1.037 m, red chain line: l = 1.2 m. Black dots: experimental data from Figure 4.
Dotted lines: experimental data (mean and mean ± 2 STD) by Kerr [38].
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Table 2. Parameters of interest.

Parameter Dimensionless Parameter

Step frequency fp f ∗p = fp

√
l
g

Step length d d∗ = d
l

Average speed v v∗ = v√
gl

Dynamic load factor DLF1 -

This can be used, for example, to observe consequences of extending the pendulum
length from, say, 1.037 m to 1.2 m. Let us assume the initial conditions: θ0 = 70◦ and
.
x0 = 1.5 m/s. These inputs (for l = 1.037 m) correspond to the following gait parameters:
fp = 1.79 Hz and v = 1.27 m/s (Figure 8). In addition, DLF1 = 0.31. Extending the pendu-
lum length to 1.2 m, keeping the same attack angle, and using dimensional analysis leads
to an increase in the initial forward speed from

.
x0 = 1.5 m/s to

.
x0
√

1.2/1.037 = 1.61 m/s.
Table 2 indicates that the step frequency would reduce to 1.79

√
1.037/1.2 = 1.66 Hz, the

average speed of walking would increase to 1.27
√

1.2/1.037 = 1.36 m/s, while DLF1, be-
ing a dimensionless quantity, would remain 0.31. Moreover, the step length can now be
calculated as a ratio between the average speed and step frequency. It has increased from
0.71 m (1.27 m/s/1.79 Hz) to 0.82 m (1.36 m/s/1.66 Hz), which corresponds to the expected
increase by a multiplication factor of 1.2/1.037 (Table 2). A change in the pedestrian mass,
on the other hand, does not influence the resulting parameters. However, an increase in
the pedestrian mass will proportionally increase the harmonic force value, given that DLF1
represents the force normalised by a pedestrian’s weight.

3.2. Inverted Pendulum with Rocker Foot Model

The IPM overestimates the vertical excursion of the BCoM since it does not include
all the relevant determinants of the walking gait in the modelling process [31]. While
pelvic tilt and knee flexion (the second and third determinants) have little or no effect on
the amount of the vertical excursion [57,58], the foot and ankle mechanisms (the fourth
and fifth determinants) influence the excursion significantly. Thus, a way to improve the
modelling of the vertical excursion is to replace point foot with a rocker. This intervention
results in the inverted pendulum with the rocker foot model, IPRFM, shown in Figure 10
and explained in more detail by Hansen et al. [59], and Gard and Childress [30].

Figure 10. Inverted pendulum with rocker foot model.

The introduction of the rocker, in the form of a circular arc having radius r, is equivalent
to lengthening the pendulum length of the IPM. In addition, it represents the walking
mechanism during the stance phase more accurately as it enables the transition of the
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centre of pressure (CoP) from the “heel” to the “toe” as the foot rolls forward. Although the
trajectory of the BCoM in the IPRFM still follows the pattern of a series of arcs, the effective
lengthening of the leg and the forward progression of the CoP reduce the total excursion of
the BCoM in comparison with the IPM [56,59].

Using the Lagrangian approach, the equation of motion for the IPRFM can be written as:

..
θ(t) =

l cos θ(t)
(

g− r
.
θ

2
(t)
)

r2 + l2 + 2rl sin θ(t)
. (5)

The GRF generated by the IPRFM within a single step is:

Fp(t) = −mp

g + l
.
θ

2
(t) sin θ(t)− l2 cos2 θ(t) (g− r

.
θ

2
(t))

r2 + l2 + 2rl sin θ(t)

. (6)

The end-of-the-step condition and the amplitude of applied impulses are calculated
using the same approach as in the calculations for the IPM.

3.2.1. Model Inputs

The inputs for the IPRFM are pendulum length, l + r, and body mass, mp. They are
chosen in the same way as for the IPM. In addition, the proportion of r in the pendulum
length has to be specified. McGeer [47] assumed that the supporting foot travels a distance
of 20% of the leg length, and calculated that this requires a roller radius r that is equal to 30%
of the leg length. Whittington and Thelen [49] reported that a roller radius of 0.3 m, which
is approximately 30% of the limb length, resulted in the centre of pressure excursion that
best agreed with experimental data at slow, preferred, and fast walking speeds. Adamczyk
et al. [60] added that this size of the rolling feet appeared energetically advantageous,
partially due to decreased work in step-to-step transitions. Hence, the rocker radius of
0.3 m is adopted in this paper.

3.2.2. Simulation Results

As before, ode45 solver utilising the Runge–Kutta integration with a variable step size
was implemented to solve the differential equation. Figure 11a shows how the introduction
of a rocker in the IPRFM reduces the vertical excursion of the BCoM when compared with
the IPM, while Figure 11b demonstrates that the progression of the CoP (i.e., excursion of
the CoP in Figure 10) and the pacing frequency both increase with an increase in the rocker
radius from 0.00 m to 0.45 m.

Figure 11. (a) Trajectory of the BCoM in the IPM and IPRFM: mp = 77.5 kg, l + r = 1.037 m (r = 0 m
in IPM, r = 0.3 m in IPRFM). (b) Pacing rate and the CoP excursion as functions of the rocker radius:
mp = 77.5 kg, l + r = 1.037 m. In all simulations: θ0 = 69◦ and

.
x0 = 1.61 m/s.
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The results of a parametric scan of the IPRFM are shown in Figure 12. The rocker
radius was set to r = 0.3 m and length l + r = 1.037 m. As before, the initial forward speed
ranges from 1.0 m/s to 2.5 m/s, and the attack angle is between 65◦ and 80◦. The light
grey area in Figure 12a shows all the combinations of the initial conditions that result in the
expected pacing rate between 1.3 and 2.5 Hz. Among the identified combinations, those
that also result in a viable value of DLF1 ≤ 0.7 are shown as the dark grey area in Figure 12b.
Furthermore, the dark grey area in Figure 12c denotes the parameter space that results in
viable values of the pacing rate, DLF1, and the average forward speed. In comparison with
the IPM (Figure 8c), the IPRFM provides a slightly wider range of initial conditions that
result in realistic walking parameters (Figure 12c). Varying the leg length and/or the rocker
radius offers further flexibility in modelling different pedestrians.

Figure 12. (a) Pacing rate, (b) DLF1, and (c) average forward speed of a pedestrian resulting from
different combinations of the initial conditions in the IPRFM (l + r = 1.037 m, r = 0.3 m). Refer to the
text for explanation of the colours.

Figure 13 shows that the correlation graphs typical of the IPRFM are similar to those
derived for the IPM in Figure 9. The solid lines represent the l + r = 1.037 m case, whereby
l = 0.737 m and r = 0.3 m. The chain lines are derived for l + r = 1.2 m (achieved by
increasing the original value for either l or r) and the dashed lines are for l + r = 0.9 m
(achieved by decreasing either l or r). As before, increasing the pendulum length enables
the modelling of pedestrians with the longest step lengths and fastest walking speeds,
while a decrease in the pendulum length has the opposite effect. However, the pendulum
length increase also increases the DLF1 to values not easily encountered in practice. The
lower boundary for DLFs underestimates the measured values for almost all but the slowest
pacing frequencies. There is little difference between the cases having the same value of
l + r in Figure 13a–c, suggesting similar effects on the parameter space are achieved by
changing either l or r. The effects on the DLF parameter are slightly more noticeable.

In summary, the IPRFM is a kinematic upgrade of the IPM as it reduces the vertical
excursion of the BCoM and enables the progression of the CoP. However, it still models
the single support phase of the gait only and requires applying the impulses as an external
source of power to keep the model in motion. The latter means that the generated GRF has
the same shortcomings as the IPM in terms of overestimating the higher harmonics.

3.2.3. Dimensional Analysis

As in the case of the IPM, the three base quantities (mp, l and g) are used to determine
how changing mp or l influences other parameters of interest for a given θ0. Both r and
l have a dimension of length, and therefore, multiplying l by the factor l∗ would require
multiplying r by the same factor. The dimensionless parameters of interest are the same as
those presented in Table 2.

Let us assume the initial conditions: θ0 = 70
◦

and
.
x0 = 1.5 m/s. These inputs correspond

to fp = 1.85 Hz and v = 1.32 m/s (Figure 12). In addition, DLF1 = 0.30. Let us observe how
extending length l + r = 1.037 m (whereby l = 0.737 m and r = 0.3 m) to l∗(l + r) = 1.2 m
influences the other derived parameters. This corresponds to l∗ = 1.2/1.037 = 1.16, and
therefore, the new lengths l = 0.853 m and r = 0.347 m. Dimensional analysis (Table 2)



Buildings 2022, 12, 1216 15 of 19

suggests that the observed lengthening of the pendulum results in the initial forward speed,
which increases from

.
x0= 1.5 m/s to

.
x0
√

1.16 = 1.61 m/s. The step frequency will reduce to
.
x0
√

1/1.16 = 1.72 Hz, the average speed of walking will increase to 1.32
√

1.16 = 1.42 m/s,
while DLF1 will remain 0.30. The step length (a ratio between the average speed and step
frequency) has increased from 0.71 m (1.32 m/s/1.85 Hz) to 0.82 m (1.42 m/s/1.72 Hz),
which corresponds to the expected increase by a multiplication factor of 1.16 (Table 2). The
change in the pedestrian mass does not influence any quantity apart from the harmonic
force amplitude.

Figure 13. Relationships between (a) step length and step frequency, (b) speed and step frequency,
(c) speed and step length, and (d) DLF1 and step frequency, in the IPRFM. Blue dashed lines:
l + r = 0.9 m (thick l = 0.6 m and r = 0.3 m, thin l = 0.737 m and r = 0.163 m), black solid line:
l + r = 1.037 m (thick l = 0.737 m and r = 0.3 m), red chain lines: l + r = 1.2 m (thick l = 0.9 m and
r = 0.3 m, thin l = 0.737 m and r = 0.463 m). Black dots: experimental data from Figure 4, yellow
thin solid lines in (d): experimental data (mean ± 2 STD) by Kerr [38].

4. Discussion and Conclusions

Both the IPM and IPRFM are simplifications of human gait that have no capability of
modelling the double support phase of walking locomotion. As a result, the kinematics of
the body’s centre of mass consists of a series of arcs with a non-smooth transition between
the successive steps. The vertical excursion of the centre of mass is exaggerated in the
IPM and reduced to a more realistic level by enabling the forward progression of the
centre of pressure in the IPRFM. However, due to a lack of the double support phase,
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the kinematics in the two models are unrepresentative of actual human walking. As the
kinematic compatibility of the leg and vibrating surface is likely to play an important role
in the realistic simulation of actual walking on lively structures, it is unrealistic to expect
that these models can be used in a quantitative vibration serviceability assessment of civil
engineering structures. Initial research into using the IPM on lively structures confirms
this notion. Namely, simulations by Bocian et al. [16] demonstrated that the IPM produces
reasonable estimates of additional damping that pedestrians could add to the structures
under a specific vibration frequency, pacing frequency, and vibration amplitude conditions,
as observed in practice. However, the IPM also predicts negative damping effects for some
parameter combinations—a phenomenon that has not been observed in practice so far.
In addition, Dang [17] demonstrated that the IPM, on average, generates an improved
prediction of the measured vibration response compared with the classical harmonic force
model that neglects the pedestrian–structure interaction. At the same time, however, the
IPM tends to react to the oscillating structure by reducing the pacing rate, especially when
the pacing rate is close to the natural frequency of the structure. This is in contradiction
with the slight increase in the pacing rate observed in experiments, and it makes the model
erroneous in the most important frequency region. The authors are unaware of the research
that investigated the performance of the IPRFM on lively structures.

Parametric analysis focused on the gait parameters for the two models showed that
they are able to generate realistic combinations of the gait parameters and their correlations.
In addition, they include some parameter combinations that are not seen in pedestrian
populations. Namely, a realistic value for one parameter, say DLF1, is not necessarily
associated with the realistic values of the other parameters, e.g., pacing frequency. The
introduction of the rocker foot has a kinematic effect similar to extending the pendulum
length in the IPM. However, the ranges of the locomotion parameters that the two models
can produce are similar, with no obvious advantage of using one model over another.
Finally, it should be noticed that the two models have the ability to generate a realistic
value of the DLF1, while higher harmonics are overestimated due to presence of impulse
components in the dynamic force.

The next natural step in the evolution of pedestrian modelling is to replace the rigid leg
with a compliant (i.e., deformable) leg (with or without a rocker foot), which is a feature of
the spring-loaded inverted pendulum, SLIP, models (Figure 5c,d). These models are known
to improve the kinematics of the body centre of mass and replicate a typical M-shaped
GRF pattern [48]. However, these models, together with the two models analysed in this
paper, neglect the role of the muscles in generating walking locomotion by relying on either
artificially generated external impulses (as in the IPM and IPRFM) or energy preservation
(in SLIP models). They also neglect the energy dissipation that characterises the walking
process [32]. In response to these drawbacks, models that account for leg damping and
positive work done by muscles have been developed (Figure 5e,f). Both constant [50]
and time-variant damping models [22,23,61] exist. They propose different modelling
mechanisms for compensating the energy lost due to damping. This brief model overview
illustrates the richness of modelling approaches within the inverted pendulum model
family. Unfortunately, the verification of these models, especially on lively structures, lags
behind the theoretical developments. The adoption of one or more models in the vibration
serviceability field could be accelerated by: (1) the development of an open-access database
of experimental data related to walking on lively structures (that preferably should include
kinematic and kinetic data for the human, as well as vibration data for the structure) and
(2) providing detailed insight into the performance of the inverted pendulum models on
both rigid and lively surfaces.

To conclude, the IPM and IPRFM are the simplest models from the bipedal family of
models of pedestrians. This paper provides the necessary background for the application of
these models by other researchers and information about their ability to represent kinematic
and kinetic features that characterise human walking locomotion on rigid level surfaces. A
limited amount of research into the performance of the IPM on lively structures suggests
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that, while the model can qualitatively describe some effects observed on as-built structures,
it cannot be relied upon for the accurate assessment of structural vibration, especially in
the most interesting case of (near) resonance excitation. Further research should investigate
whether more complex bipedal models could provide a better representation of pedestrian
locomotion on both rigid and lively surfaces.
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ware, B.L. and H.V.D.; validation, M.Ć. and S.Z.; formal analysis, B.L. and H.V.D.; writing—original
draft preparation, H.V.D. and S.Ž.; writing—review and editing, B.L., S.Z., C.C. and Q.Z.; supervi-
sion, S.Ž. and Q.Z.; funding acquisition, S.Ž., S.Z. and B.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the UK Engineering and Physical Sciences Research Council,
grant numbers EP/I03839X/1 (Pedestrian interaction with lively low-frequency structures) and
EP/M021505/1 (Characterising the dynamic performance of fibre-reinforced polymer structures for
resilience and sustainability), EU funding from the Horizon 2020 MSCA-IF project vPERFORM, grant
number 898216 (Developing advanced vibration performance assessment for a new generation of
lightweight pedestrian structures using motion platforms and virtual reality environments), and the
China Scholarship Council (CSC) scholarship No. 202006120341 for B.L.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. BS 5400; Steel, Concrete and Composite Bridges-Part 2: Specification for Loads; Appendix C: Vibration Serviceability Requirements

for Foot and Cycle Track Bridges. British Standards Association: London, UK, 1978.
2. Sétra. Footbridges: Assessment of Vibrational Behaviour of Footbridges under Pedestrian Loading: Technical Guide; Service d’Études

Techniques des Routes et Autoroutes: Paris, France, 2006.
3. NA to BS EN 1991-2:2003; UK National Annex to Eurocode 1: Actions on Structures-Part 2: Traffic Loads on Bridges. British

Standards Institution: London, UK, 2008.
4. Research Fund for Coal and Steel. Human Induced Vibrations of Steel Structures: Design of Footbridges—Guideline. RFS2-CT-

2007-00033. 2009. Available online: https://www.coursehero.com/file/59133890/Footbridge-Backgroundpdf/ (accessed on
5 April 2013).

5. Brownjohn, J.M.W.; Pavic, A.; Omenzetter, P. A spectral density approach for modelling continuous vertical forces on pedestrian
structures due to walking. Can. J. Civ. Eng. 2004, 31, 65–77. [CrossRef]
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19. Ahmadi, E.; Caprani, C.; Živanović, S.; Heidarpour, A. Assessment of human-structure interaction on a lively lightweight GFRP
footbridge. Eng. Struct. 2019, 199, 109687. [CrossRef]

20. Caprani, C.C.; Ahmadi, E. Formulation of human-structure interaction system models for vertical vibration. J. Sound Vib. 2016,
377, 346–367. [CrossRef]

21. Bocian, M.; Macdonald, J.H.G.; Burn, J.F. Biomechanically inspired modelling of pedestrian-induced forces on laterally oscillating
structures. J. Sound Vib. 2012, 331, 3914–3929. [CrossRef]

22. Qin, J.W.; Law, S.S.; Yang, Q.S.; Yang, N. Pedestrian-bridge dynamic interaction, including human participation. J. Sound Vib.
2013, 332, 1107–1124. [CrossRef]

23. Lin, B.; Zhang, Q.; Fan, F.; Shen, S. A damped bipedal inverted pendulum for human-structure interaction analysis. Appl. Math.
Model. 2020, 87, 606–624. [CrossRef]

24. Vega Ruiz, D.; Magluta, C.; Roitman, N. Experimental verification of biomechanical model of bipedal walking to simulate vertical
loads induced by humans. Mech. Syst. Signal Process. 2022, 167, 108513. [CrossRef]

25. Carroll, S.P.; Owen, J.S.; Hussein, M.F.M. Modelling crowd-bridge dynamic interaction with a discretely defined crowd. J. Sound
Vib. 2012, 331, 2685–2709. [CrossRef]

26. Whittle, M.W. Gait Analysis: An Introduction, 3rd ed.; Butterworth-Heinemann Elsevier: Oxford, UK, 2001.
27. Inman, V.T.; Ralston, H.; Todd, F. Human Walking; Edwin Mellen Press Ltd.: Lewiston, NY, USA, 1989.
28. Perry, J.; Burnfield, J.M. Gait Analysis: Normal and Pathological Function, 2nd ed.; SLACK Incorporated: Thorofare, NI, USA, 2010.
29. Ayyappa, E. Normal human locomotion, Part 2: Motion, ground-reaction force and muscle activity. Prosthet. Orthot. 1997, 9, 4957.

[CrossRef]
30. Gard, S.A.; Childress, D.S. What determines the vertical displacement of the body during normal walking? J. Prosthet. Orthot.

2001, 13, 6467. [CrossRef]
31. Saunders, J.B.D.M.; Inman, V.T.; Eberhart, H.D. The major determinants in normal and pathological gait. J. Bone Jt. Surg. 1953, 53,

543–558. [CrossRef]
32. Cavagna, G.A.; Thys, H.; Zamboni, A. The sources of external work in level walking and running. J. Physiol. 1976, 262, 639657.

[CrossRef]
33. Whittle, M.W. Three-dimensional motion of the center of gravity of the body during walking. Hum. Mov. Sci. 1997, 16, 347–355.

[CrossRef]
34. Gard, S.A.; Miff, S.C.; Kuo, A.D. Comparison of kinematic and kinetic methods for computing the vertical motion of the body

center of mass during walking. Hum. Mov. Sci. 2004, 22, 597610. [CrossRef]
35. Blanchard, J.; Davies, B.L.; Smith, J.W. Design criteria and analysis for dynamic loading of footbridges. In Proceedings of the

Symposium on Dynamic Behaviour of Bridges at the Transport and Road Research Laboratory, Crowthorne, UK, 19 May 1977;
pp. 90–100.

36. Rainer, J.H.; Pernica, G. Vertical dynamic forces from footsteps. Can. Acoust. 1986, 14, 12–21.
37. Racic, V.; Pavic, A.; Brownjohn, J.M.W. Experimental identification and analytical modelling of human walking forces: Literature

review. J. Sound Vib. 2009, 326, 1–49. [CrossRef]
38. Kerr, S.C. Human Induced Loading on Staircases. Ph.D. Thesis, University College London, London, UK, 1998.
39. Pedersen, L.; Frier, C. Sensitivity of footbridge vibrations to stochastic walking parameters. J. Sound Vib. 2010, 29, 2683–2701.

[CrossRef]
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