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Abstract: The intelligent design method based on generative adversarial networks (GANs) represents
an emerging structural design paradigm where design rules are not artificially defined but are
directly learned from existing design data. GAN-based methods have exhibited promising potential
compared to conventional methods in the schematic design phase of reinforced concrete (RC) shear
wall structures. However, for the following reasons, it is challenging to apply GAN-based approaches
in the industry and to integrate them into the structural design process. (1) The data form of
GAN-based methods is heterogeneous from that of the widely used computer-aided design (CAD)
methods, and (2) GAN-based methods have high requirements on the hardware and software
environment of the user’s computer. As a result, this study proposes an integrated schematic design
method for RC shear wall structures, providing a workable GAN application strategy. Specifically,
(1) a preprocessing method of architectural CAD drawings is proposed to connect the GAN with
the upstream architectural design; (2) a user-friendly cloud design platform is built to reduce the
requirements of the user’s local computer environment; and (3) a heterogeneous data transformation
method and a parametric modeling procedure are proposed to automatically establish a structural
analysis model based on GAN’s design, facilitating downstream detailed design tasks. The proposed
method makes it possible for the entire schematic design phase of RC shear wall structures to be
intelligent and automated. A case study reveals that the proposed method has a heterogeneous data
transformation accuracy of 97.3% and is capable of generating shear wall layout designs similar to
the designs of a competent engineer, with 225 times higher efficiency.

Keywords: intelligent structural design; generative adversarial networks; parametric modeling;
reinforced concrete shear wall structures; schematic design

1. Introduction

Intelligent structural design is an essential aspect of the fourth industrial revolution in
the architecture, engineering, and construction (AEC) sector [1–3]. A reinforced concrete
(RC) shear wall structure is an effective lateral force-resistant structural system commonly
employed in high-rise residential buildings and is an important research object in intelligent
structural design [4,5]. Schematic design is the first step in the structural design of RC shear-
wall structures, which mainly involves the spatial layout of the primary force-transmitting
components, including shear walls and beams. It is an essential basis for subsequent
detailed design tasks and significantly impacts the final design outcomes [6].

Currently, the schematic design is usually manually completed by experienced engi-
neers, resulting in low design efficiency and high labor costs. Existing intelligent schematic
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design methods can generally be separated into rule-based and learning-based meth-
ods [7,8]. Rule-based methods rely significantly on user-defined design rules, which tend
to be less effective for complex real-world problems. Additionally, the length of time they
require (usually several hours to dozens of hours) hinders their application in the indus-
try. In contrast, learning-based methods do not require artificially defined explicit design
rules but can automatically discover and master design laws from existing design data.
Moreover, they have the advantage of extremely high design efficiency in the application
stage [8,9]. As a typical representative of learning-based methods, generative adversar-
ial networks (GAN)-based methods have recently made substantial strides in intelligent
structural design. Existing studies have shown that GAN-based methods can effectively
learn from existing design data and efficiently complete structural designs. The overall
performance of the structures designed by GANs is close to that of structures designed by
engineers [10–14].

However, several obstacles prevent existing GAN-based methods from being effec-
tively applied in the industry. (1) GANs are based on computer vision techniques, and
their inputs are in the form of pixel images. Consequently, GANs cannot directly perform
structural designs based on the architectural computer-aided design (CAD) drawings com-
monly used in the industry. (2) GANs have a high requirement in terms of the computer
environment. In terms of software, a deep learning framework and dependent libraries
are needed. In terms of hardware, a graphics processing unit (GPU) is needed to achieve
high design efficiency. (3) The outputs of GAN-based methods are also pixel images,
where structural design-related information is unstructured data, making it challenging to
establish the structural analysis model required for subsequent detailed design tasks.

This study focuses on the above research gaps and proposes a systematic solution,
i.e., an integrated schematic design method based on GAN, as shown in Figure 1. First,
a preprocessing method for architectural CAD drawings is proposed. Second, a cloud
design platform is built based on the concept of software as a service (SaaS). Third, a
high-precision data transformation method is proposed for transforming pixel images
into structured data. Subsequently, a parametric modeling procedure is constructed to
establish the structural analysis model. The proposed method can be easily embedded
in the existing structural design process and can automatically complete the schematic
design task traditionally manually finished by engineers. It should be noted that, at present,
the structural designs are mainly stored in the form of 2D CAD drawings in China, and
mainstream building information modeling software (e.g., Revit) supports exporting 3D
models into 2D drawings. Therefore, this study takes 2D CAD drawings as the input of the
structural design workflow.
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The remainder of this study is organized as follows. Section 2 is the literature review.
Section 3 presents the framework of the integrated schematic design method. Section 4
introduces the preprocessing method of architectural CAD drawings. Section 5 introduces
the intelligent design method based on GANs. Section 6 introduces the heterogeneous data
transformation method and the parametric modeling procedure. A typical case study using
the proposed method is presented in Section 7. Finally, conclusions are drawn in Section 8.

2. Literature Review
2.1. Learning-Based Structural Design Method

In recent years, machine learning has been extensively applied in the AEC sector [2].
As a novel paradigm, the machine learning-based structural design method has attracted
substantial attention [7–9]. Compared with traditional rule-based methods, it can auto-
matically discover and master design rules from existing design data without artificially
defining them. Additionally, once the machine learning model is trained, it has the advan-
tage of extremely high design efficiency. For example, Almasabha et al. [15] used several
machine learning algorithms in the design of shear links for steel buildings; Zheng et al. [16]
adopted artificial neural networks to speed up the topological design of shell structures;
and Chang and Cheng [17] applied graph neural networks in the structural optimization of
framed structures.

More recently, breakthroughs have been made in structural design methods using
computer vision techniques, particularly GANs [18]. A GAN consists of a generator and
a discriminator, where the generator strives to generate real-looking designs to fool the
discriminator, and the discriminator tries to discriminate between real and fake designs. In
a game between the two, the generator can learn to generate realistic designs after Nash
equilibrium is reached. Liao et al. [10] and Pizarro et al. [11] effectively applied GANs to the
shear wall layout design. Liao et al. [12] further proposed a “fused-text-image-to-image”
GAN to consider the influence of design conditions on an intelligent structural design.
Zhao et al. [13] expanded the applicability of GANs to the beam–slab system of shear wall
residential buildings. Liao et al. [10] and Zhao et al. [13] evaluated the structural design
performance of GANs using the intersection over union (IoU) of model-generated and
engineer-designed structural pixel images. However, this evaluation method measures
unstructured pixel-by-pixel consistency, which is not equivalent to the structural layout
consistency on which the schematic design task focuses. Meanwhile, the performance of
solely data-driven GANs depends on the quality and quantity of the training data, which
limits their applications [10,12]. Consequently, Lu et al. [14] further embedded physical
mechanisms into GANs and proposed a physics-enhanced GAN for the shear wall layout
design. The physics-enhanced GAN features better interpretability, and its performance
is less affected by training data. However, the inputs and outputs of the above method
are still in the form of pixel images, limiting its embedment in the existing structural
design process.

2.2. Parametric Modeling

Parametric modeling is a crucial tool for automated structural design, which can signif-
icantly improve design efficiency [19] and potentially benefit design creativity [20]. Existing
studies have offered various parametric design systems that can automatically search for
optimal solutions by combining optimization algorithms with parametric models [21–24].
However, these methods require structured design data as input and are difficult to apply
to the unstructured design data obtained by GAN-based methods.

2.3. Transformation between Pixel Image and Structured Design Data

The input and output of the GAN-based method are unstructured pixel images, but
structured design data are commonly used in the structural design process. In practical
applications, it is necessary to convert the structured design data (architectural CAD draw-
ing) into an architectural pixel image (GAN’s input) and then convert the structural pixel
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image (GAN’s output) into structured design data (structural analysis model). Pizarro
and Massone [25] proposed a method to extract the polygons of wall contours from archi-
tectural CAD drawings, but the error rate was around 15%, requiring manual inspection
and correction. To establish the structural analysis model from the structural pixel image,
Lu et al. [14] proposed a vectorization method for pixel images of shear walls, but the
accuracy was unsatisfactory, resulting in errors and missing elements frequently. Therefore,
there is still a lack of high-precision preprocessing and heterogeneous data transformation
methods for GAN-based methods.

3. Framework

The proposed integrated schematic design method based on GAN for RC shear wall
structures is shown in Figure 2. It can complete structural design and establish structural
analysis models according to the architectural CAD drawings and design conditions within
10 min, accomplishing the intelligent and automated design of RC shear wall structures.
The proposed method includes the following modules.
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(1) Preprocessing of architectural CAD drawings: Figure 2a shows the extraction of ar-
chitectural elements using the AutoCAD plugin GANIO developed based on the
AutoCAD application programming interface (API) using C# [26]. GANIO can au-
tomatically identify and extract essential architectural elements (i.e., partition walls,
doors, and windows) and output their coordinates. Engineers can also check and
adjust the extraction results through human–computer interaction. Subsequently,
the architectural pixel image can be generated based on the architectural element
coordinates. This process requires approximately 5 min.

(2) Generation of structural schematic design: Figure 2b shows the cloud design platform
developed based on SaaS, which can swiftly generate a schematic design of the shear
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wall structure. After the architectural pixel image is uploaded, the cloud platform
inputs it into the pre-trained GAN deployed on the cloud server. The GAN generates
the corresponding structural pixel image in seconds and outputs it to the cloud
platform for users to download. This process requires approximately 1 min.

(3) Establishment of structural analysis model: Figure 2c shows the automatic modeling
from the pixel image to the structural analysis model. First, identify and extract the key
structural elements in the structural pixel image and obtain their coordinates. Next,
utilize the parametric modeling software Swallow (ESD) [27], developed based on the
Grasshopper API, to import structural element coordinates and establish a parametric
model according to a predetermined modeling procedure. Finally, export the para-
metric model to ETABS for structural analysis. This process requires approximately
2 min.

It should be noted that the floor area affects the time consumption of the preprocessing
of architectural CAD drawings and the establishment of a structural analysis model. Their
time consumption mentioned above is based on a common RC shear wall structure with a
floor area of around 500 m2. The time consumption of the generation of structural schematic
design is affected by the hardware performance and bandwidth of the cloud server. Its
time consumption mentioned above is based on a common cloud server equipped with
one Intel ® Xeon ® E5-2682 v4 CPU (two cores, 2.5 GHz), one NVIDIA P4 GPU (8 GB), and
a bandwidth of 1 Mbps.

4. Preprocessing of Architectural CAD Drawings

Architectural CAD drawings contain numerous elements, as shown in Figure 2a.
However, the elements related to structural design are sparse, mainly including three
categories: partition walls (where shear walls can be positioned), doors, and windows
(where shear walls cannot be positioned) [10,14]. To enable deep neural networks to extract
the key features of architectural design and avoid the influence of irrelevant data, Liao
et al. [10] proposed an architectural design representation method using semantic pixel
images, extracting the key elements in the architectural CAD drawing and representing their
categories with different colors in the RGB pixel image. However, manually completing
these operations is inefficient, prone to errors, and unrealistic for industrial applications.
Therefore, this study develops a CAD plugin, GANIO, based on the AutoCAD API [26],
which can automatically extract and output the axis coordinates of critical elements. The
coordinates are also used in Section 6.1 for the automatic identification and extraction of
shear walls in semantic structural pixel images.

Specifically, the user interface of the GANIO plugin, depicted in Figure 3a, has three
major functions: parameter setup, axis extraction, and coordinate export. The first step
involves setting up six parameters. The first three are the maximum wall thickness, mini-
mum wall thickness, and minimum wall length. These parameters are the thresholds for
determining whether an element is a partition wall. The remaining three parameters are
the layer names of the partition wall, door, and window. GANIO extracts the correspond-
ing elements from a specified layer. The second step is to select the target elements and
click on the “Extraction” button. GANIO locates key elements by matching parallel lines,
calculates the coordinates of their axes, and draws the axes on a new layer. Engineers can
check and adjust the extracted axes using an AutoCAD user interface. The third step is
to select the extracted axes and click on the “Export” button. The axis coordinates of the
key architectural elements are exported in a readable text format. Finally, according to the
coordinates and categories of the key elements, Python-OpenCV is used to represent the
key elements as RGB pixel images, as shown in Figure 3b. Distinct categories of elements
are represented by different colors: the partition wall is gray (RGB = (132, 132, 132)), the
door is blue (RGB = (0, 0, 255)), and the window is green (RGB = (0, 255, 0)).
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5. Intelligent Structural Design Based on GANs
5.1. Physics-Enhanced GAN

Experience and mechanics are two indispensable aspects of structural design. This study
adopts the physics-enhanced GAN proposed by Lu et al. [14] (referred to as StructGAN-PHY)
to generate the structural schematic design. The architecture of a conventional data-driven
GAN is shown in Figure 4a (referred to as StructGAN), which only comprises a generator
and a discriminator [10]. The architecture of StructGAN-PHY is shown in Figure 4b. Apart
from a generator and a discriminator, StructGAN-PHY also comprises a physics evaluator.
The generator generates a structural design according to the architectural design and
design conditions. The discriminator judges whether the generated structural design is
real or fake and forms an image loss LG−img, which is fed back to the generator to improve
the image quality of its designs. Meanwhile, the physics evaluator predicts the physical
performance of the generated structural design considering the design conditions and
forms a physics loss LG−PHY, which is fed back to the generator to improve the physical
performance of its designs. The loss functions of the generator and discriminator are shown
in Equations (1) and (2), respectively. The generator, discriminator, and physics evaluator
work together in the training stage until the model performance is stabilized and the Nash
equilibrium is reached.

LG = ωimgLG−img + ωPHYLG−PHY, (1)

LD = LD−GAN, (2)

where LG−img is the image loss, as shown in Equation (3); LG−PHY is the physics loss
predicted by the physics evaluator; ωimg and ωPHY are the weights of LG−img and LG−PHY,
respectively [14]; is the discriminator loss [28].

LG−img = LG−GAN + λFM(LG−FM + LG−VGG), (3)

where LG−GAN, LG−FM, and LG−VGG are different types of image losses and λFM is the
weight [10,28].

The physics evaluator is a surrogate model based on neural networks, which can
output the physics loss of a generated structural design corresponding to its physical
performance. For details, please refer to Lu et al. [14]. For RC shear wall structures,
the inter-story drift under earthquakes is a critical indicator that reflects their physical
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performance, which can be evaluated by Pdrift as shown in Equation (4). The physical loss
predicted by the physical evaluator is an approximation to Pdrift.

Pdrift =

 1− dmax
dlimit

, dmax ≤ dlimit(
dmax
dlimit
− 1
)0.5

, dmax > dlimit
, (4)

where dmax is the maximum inter-story drift; dlimit = 0.001 is the drift limit specified by the
Chinese design code [29].
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5.2. Dataset

This study collects 159 sets of architectural and structural CAD drawings and their
design conditions from 10 top architectural design institutes in China. The collected CAD
drawings have been used in real-world construction projects. Before that, they had been
comprehensively optimized by the engineers to guarantee that all design code requirements
were fulfilled. Therefore, the CAD drawings have a high design quality. The preprocessing
method described in Section 4 is adopted to extract the coordinates of partition walls, doors,
and windows from architectural CAD drawings and obtain corresponding architectural
pixel images. Similarly, the coordinates of the shear walls are extracted from the structural
CAD drawings, and the corresponding structural pixel images are obtained. One hundred
thirty-five sets of architectural pixel images and their corresponding structural pixel images
are used as the training set. Then, the training set is enlarged four times through data
augmentation (flipping and mirroring). The remaining 24 sets of architectural pixel images
are used as the test set, and their corresponding structural pixel images are not visible to
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the GAN. Typical architectural and structural pixel images and their design conditions
(seismic intensity and structural height) are shown in Figure 5.
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Figure 5. Typical datasets for StructGAN-PHY training [14].

Although the dataset is small in comparison to other deep learning tasks, it is effective
for the training of StructGAN-PHY for the following reasons. (1) The focus of this research is
on common shear wall structures in residential buildings. StructGAN-PHY can effectively
learn general design rules from a relatively small dataset because the structures to be
designed are in similar forms. (2) Key structural design elements are extracted from CAD
drawings and processed into semantic pixel images. It is easier for StructGAN-PHY to
learn from the preprocessed semantic images, and therefore fewer data are needed. (3) The
incorporation of the physics mechanism reduces the model’s reliance on data even further.
(4) Data augmentation is used to increase the size of the training set.

5.3. Cloud Design Platform

Using StructGAN-PHY as the core algorithm, this study develops a cloud design
platform based on the concept of SaaS, as illustrated in Figure 6. The cloud platform
provides software services for users, with minimum requirements for users’ local hard-
ware and software, and the design process is straightforward and efficient. The client
provides a human–computer interaction interface, including project creation, file upload,
project design, and result download functions. The server is used to handle client re-
quests and manage user data. All computing and design processes are performed on a
GPU-powered server.

(1) Client: Figure 6a shows the homepage of the cloud platform, which has a login entry,
manual, technical support, version history, and introduction to the technical details of
the core algorithm. Figure 6b shows the window for creating a new project, including
inputting the project name, uploading the architectural pixel image, selecting the
design conditions (i.e., seismic intensity and structural height), and inputting the scale
(unit: mm/pixel). The seismic intensity can be selected among 6 degrees (0.05 g),
7 degrees (0.10 g), 7 degrees (0.15 g), 8 degrees (0.20 g), 8 degrees (0.30 g), and 9 degrees
(0.40 g). The numbers in brackets represent the seismic design acceleration with an
exceedance probability of 10% in 50 years. The structural height can be selected as <40,
40–60, 60–80, 80–100, and >100 m. Figure 6c shows the project list. The initial status
of a project is “to be converted”. Clicking the “Convert” button calls the pre-trained
StructGAN-PHY deployed on the server for the design. The obtained design result



Buildings 2022, 12, 1295 9 of 17

is a structural pixel image (Figure 6d), where red (RGB = (255, 0, 0)) represents the
shear wall layout. This pixel image can be downloaded by the user for subsequent
parametric modeling.

(2) Server: The Python, Flask, and Nginx environments are set up on a Windows system.
The website front-end is developed based on HTML and CSS, where Flask-login is
adopted for the login interface management. The database for user data management
adopts PyMySql, and data can be delivered by Flask-sqlalchemy. The website backend
is developed based on Python, where the PyTorch deep learning framework and
its dependent libraries are installed to run the pre-trained StructGAN-PHY model.
Furthermore, Nginx builds network services, connecting the client and the server.
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6. Establishment of the Structural Analysis Model
6.1. Heterogeneous Data Transformation

Based on Lu et al. [14], this study proposes a heterogeneous data transformation
method that considers architectural design information, as shown in Figure 7. This method
involves the following steps:

Step 1: Extract shear wall pixels
First, the RGB pixel image is expressed in the HSV color. Second, the red pixels (i.e.,

shear walls) are stripped from the structural pixel image and binarized. Subsequently, the
corrosion (cv2.erode()) and dilation (cv2.dilate()) functions in Python-OpenCV are used
to remove the noise in the binary image. Finally, a binary pixel image of the shear walls
is obtained.
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Step 2: Extract shear wall axes
Based on the assumption that the shear walls can only be positioned at the location of

the partition walls, the intersection points between the axis of the partition wall and the
contour of the shear wall pixels in the binary image are searched pixel-by-pixel and used as
the endpoints of the axis of the shear wall. All axes of the partition walls are traversed to
complete the extraction of the shear wall axes.

Step 3: Assign frame and coupling beams
The axes of the partition walls, doors, and windows are collectively called the archi-

tectural axes. It is assumed that (1) beams are only positioned on architectural axes and
(2) coaxial shear walls are connected by coupling beams. First, assign the beams over the
architectural axes, excluding the positions where the shear walls are already positioned.
Subsequently, check the topological relationship of the beams, delete cantilever beams, and
confirm that both ends of the beams are connected to the shear walls or other beams.
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Note that GAN-based methods focus on common residential buildings so that gen-
eral design rules can be learned from existing design data. Therefore, the assumptions
described in Step 3 are generally acceptable. If the assumptions are not applicable, the
beam layout obtained with the proposed method might be unreasonable, resulting in
inaccurate structural analysis results. However, in the schematic design phase of RC shear
wall structures, the beam layout is less crucial than the shear wall layout. Additionally,
inaccuracy in the structural analysis model is acceptable because it can be corrected in the
subsequent detailed design phase by optimization algorithms or manual adjustments to
fulfill special requirements.

Based on the above steps (Figure 7), the axis coordinates of the shear walls, frame
beams, and coupling beams are derived. Furthermore, the shear wall thickness is estimated
according to the empirical law proposed by Lu et al. [14]. The section heights of the frame
and coupling beam can also be determined according to the empirical law presented by
Qian et al. [4] as 1/12 and 1/8 of the beam span, respectively. The axis coordinates and
section dimensions of the shear walls, frame beams, and coupling beams are used as
the input data for the parametric modeling. Based on the initial structural layout and
section size, subsequent adjustments and optimizations can be easily accomplished using a
parametric model.

6.2. Parametric Modeling

Parametric modeling is a digital modeling method that builds structural models from
input data according to predefined rules, thereby realizing real-time mapping between
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input data and structural models. By leveraging the human–computer interaction in-
terface developed via visual programming, users can modify the structural design and
corresponding model in real-time. Rhino and its Grasshopper plugin are the commonly
used parametric modeling platforms in the industry, but they lack professional structural
analysis capabilities. In this study, Swallow (ESD), a parametric modeling plugin for build-
ing structures based on Grasshopper, is used as a bridge between the Grasshopper and
structural analysis software (e.g., ETABS) [27]. Using Swallow (ESD), structural properties
can be defined in Grasshopper, and structural analysis models can be assembled. ETABS
can be called in real-time through the ETABS API for structural analysis, and the analysis
results of ETABS can be viewed.

Figure 8a demonstrates the parametric modeling procedure based on Swallow (ESD),
and the final parametric model is shown in Figure 8b. (1) Firstly, the structural parameter
interpretation module is built to read the axis coordinates and section sizes of structural
components generated in Section 6.1; to convert them into structured data required for
the modeling of shear walls, coupling beams, and frame beams; and to read the overall
parameters of the structure specified by the user, including the story height and the number
of stories. (2) Subsequently, the structural element modeling module is built to model shear
walls and coupling beams using shell elements, model frame beams using beam elements,
and model slabs using membrane elements; to define the properties of the material, section,
and element; and to assemble all structural elements to complete the structural analysis
model. (3) Next, a load definition module is built to distribute beam-end loads according
to the structural layout and set seismic and wind loads according to the seismic and wind
design requirements. (4) Finally, an ETABS calling module is constructed to complete the
establishment and analysis of the ETABS model by calling the ETABS API.
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7. Case Study
7.1. Evaluation Method of Shear Wall Layout

The schematic design of RC shear wall structures focuses on the shear wall layout.
This study uses the IoU of the shear wall axes to evaluate the consistency of the model-
generated and engineer-designed planar layouts, which is more reasonable than the IoU of
pixel images [10,13]. Meanwhile, the shear wall layout significantly influences the vertical
load-transfer mechanism of the floor system. A reasonable shear wall layout can effectively
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hold the slabs so that they are uniformly stressed [30]. Therefore, this study uses the
supported floor ratio to evaluate the vertical load transferability of slabs. In addition, with
the help of structural analysis models, the physical performance of the designed structure
is also evaluated.

(1) Planar layout consistency

The heterogeneous data transformation method described in Section 6.1 is utilized to
obtain the coordinates of the shear walls designed by the GAN. Subsequently, the shear
wall planar layout is drawn as a set of rectangles, and the intersection and union areas of
the GAN’s and the engineer’s designs are calculated. Furthermore, the difference between
the total length of the shear walls designed by the GAN and the engineer is calculated
as a correction coefficient. Figure 9a shows the calculation of the intersection and union
areas, where green represents the intersection area, blue represents the exclusive part of the
engineer’s design, and red represents the exclusive part of the GAN’s design. The union
area is a combination of green, red, and blue colors. The modified planar layout consistency
indicator SIoU−M can be calculated using Equations (5) and (6).

SIoU−M = ηDiffSwall
Ainter

Aunion
, (5)

ηDiffSwall = 1− |LGAN − LENG|
LENG

, (6)

where Ainter and Aunion are the intersection and union areas of the shear walls designed
by the GAN and the engineer, respectively; ηDiffSwall is the correction coefficient for the
difference in total shear wall length; and LGAN and LENG are the total lengths of the shear
walls designed by the GAN and the engineer, respectively.

(2) Vertical load transferability

The vertical load transferability is assessed by the floor area supported by the shear
walls, as shown in Figure 9b. First, the floor boundary (blue contour) is obtained; then,
the floor area that each shear wall can support (red contour) is calculated, as shown in
Figure 9c [30]. Furthermore, all the supported floor areas are subtracted from the floor area.
Finally, the unsupported floor areas (green contours) are obtained, and the supported floor
ratio under the vertical load (SFloorA) is obtained based on the ratio of the green area to the
blue area, as indicated in Equation (7).

SFloorA = 1− Aminus

Afloor
, (7)

where Aminus is the floor area that is not supported by the shear walls, and Afloor is the
total area of the floor.
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(3) Physical performance under horizontal seismic load

After the ETABS model is established, a refined structural analysis can be performed
to evaluate the physical performance of the structure. For example, the inter-story drift
under earthquakes is a critical indicator in evaluating the lateral resistance capacity of RC
shear wall structures. Equation (8) calculates the consistency of the inter-story drifts of the
structures designed by the GAN and the engineer.

SIDR = 1−
(∣∣∣∣1− θGAN,X

θENG,X

∣∣∣∣+ ∣∣∣∣1− θGAN,Y

θENG,Y

∣∣∣∣)/2, (8)

where θGAN,X and θGAN,Y are the maximum inter-story drifts of the GAN’s design in the X
and Y directions, respectively, and θENG,X and θENG,Y are the maximum inter-story drifts of
the engineer’s design in the X and Y directions, respectively.

7.2. Basic Information of a Typical Case

This case study is based on a typical residential building in northern China. The build-
ing has a structural height of 96 m and 30 stories. It is lower than 100 m and is classified
as a common high-rise building. Its floor has a bounding area of 41.2 m × 17.7 m (around
500 m2). The seismic intensity is 8-degree, corresponding to a 0.20 g seismic design acceler-
ation with an exceedance probability of 10% in 50 years. This seismic design acceleration
a is medium-level (0.05 g ≤ a ≤ 0.40 g). The characteristic site period Tg is 0.55 s, which
is also medium-level (0.2 s ≤ Tg ≤ 0.9 s). The architectural CAD drawing, corresponding
pixel image, and structural design by the engineer are shown in Figure 10a–c, respectively.
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7.3. Detailed Analyses of a Typical Case

The building was designed using the proposed integrated design method. The struc-
tural pixel image downloaded from the cloud design platform (i.e., the output of the
StructGAN-PHY model) is shown in Figure 11a, and the details in the black dashed box
are shown in Figure 11b. Two heterogeneous data transformation methods, one proposed
by Lu et al. [14] and another proposed in this study, were used to convert the structural
pixel image into structured data. The results are compared in Figure 11c,d. Lu et al.’s
method [14] results in the absence of several short shear walls and an undesirable offset
of the shear wall axes, which is adverse for the subsequent modeling task. The proposed
method prevents these problems and accurately extracts nearly all shear walls. In this
case study, the StructGAN-PHY lays out a total of 73 shear walls. Lu et al.’s method [14]
correctly extracted 44 shear walls with an accuracy of 60.3%. The proposed method cor-
rectly extracted 71 shear walls with an accuracy of 97.3%. The accuracy therefor increases
significantly by 37.0%. It should be noted that the above results are obtained from the
typical case study in Section 7.2.
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The design of the proposed integrated method is evaluated using the methods de-
scribed in Section 7.1. The evaluation results are shown in Figure 12 and Table 1 (StructGAN-
PHY). Regarding the planar layout consistency, generally, IoU > 0.5 implies that the con-
sistency between the designs from GAN and the engineer is acceptable [10]. The SIoU−M
in this case is 0.9902, which shows that the design of the proposed method is very similar
to that of the engineer. In terms of the vertical load transferability, SFloorA is 0.9334, indi-
cating that the designed shear walls can support vertical loads of the floor. In terms of
physical performance, the SIDR is 0.9602, and the inter-story drift is within the 1/1000 limit
specified in the code [29]. It is noteworthy that with the help of the parametric model, the
structural design can be manually adjusted by engineers and automatically optimized by
algorithms [31,32] in the future.

Table 1. Comparison between designs of data-driven and physics-enhanced models.

Designer SIoU−M SFloorA SIDR

StructGAN-PHY 0.9902 0.9334 0.9602
StructGAN 0.5855 0.8372 0.9380
Difference 69.1% 11.5% 2.4%

Furthermore, to illustrate the superiority of StructGAN-PHY adopted in this study, its
evaluation results are compared with those of a data-driven GAN, i.e., StructGAN [10], as
shown in Figure 12 and Table 1. The shear walls designed by StructGAN are insufficient
in number and length, resulting in lower evaluation indicators. The evaluation indicators
of StructGAN-PHY are improved by 69.1%, 11.5%, and 2.4%, respectively, compared with
those of StructGAN.

Moreover, in terms of design efficiency, the times required for a competent engineer,
StructGAN-PHY, and the proposed method to complete the schematic design of an RC
shear wall structure are presented in Table 2. Compared with the results for engineers,
the design efficiency is dramatically boosted by 225 times when the proposed method is
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used. Additionally, the preprocessing and modeling method proposed in this study boosts
the efficiency by 2.5 times for the entire design phase compared to existing studies (i.e.,
StructGAN-PHY).

Buildings 2022, 12, x FOR PEER REVIEW 16 of 19 
 

that the consistency between the designs from GAN and the engineer is acceptable [10]. 
The 𝑆୍୭ି in this case is 0.9902, which shows that the design of the proposed method is 
very similar to that of the engineer. In terms of the vertical load transferability, 𝑆୪୭୭୰ is 
0.9334, indicating that the designed shear walls can support vertical loads of the floor. In 
terms of physical performance, the 𝑆୍ୈୖ is 0.9602, and the inter-story drift is within the 
1/1000 limit specified in the code [29]. It is noteworthy that with the help of the parametric 
model, the structural design can be manually adjusted by engineers and automatically 
optimized by algorithms [31,32] in the future. 

 
Figure 12. Evaluation results of the typical case: (a) planar layout consistency; (b) vertical load trans-
ferability; (c) physical performance. 

Table 1. Comparison between designs of data-driven and physics-enhanced models. 

Designer 𝑺𝐈𝐨𝐔ି𝐌 𝑺𝐅𝐥𝐨𝐨𝐫𝐀 𝑺𝐈𝐃𝐑 
StructGAN-PHY 0.9902 0.9334 0.9602 

StructGAN 0.5855 0.8372 0.9380 
Difference 69.1% 11.5% 2.4% 

Furthermore, to illustrate the superiority of StructGAN-PHY adopted in this study, 
its evaluation results are compared with those of a data-driven GAN, i.e., StructGAN [10], 
as shown in Figure 12 and Table 1. The shear walls designed by StructGAN are insufficient 
in number and length, resulting in lower evaluation indicators. The evaluation indicators 
of StructGAN-PHY are improved by 69.1%, 11.5%, and 2.4%, respectively, compared with 
those of StructGAN. 

Moreover, in terms of design efficiency, the times required for a competent engineer, 
StructGAN-PHY, and the proposed method to complete the schematic design of an RC 
shear wall structure are presented in Table 2. Compared with the results for engineers, 
the design efficiency is dramatically boosted by 225 times when the proposed method is 
used. Additionally, the preprocessing and modeling method proposed in this study 
boosts the efficiency by 2.5 times for the entire design phase compared to existing studies 
(i.e., StructGAN-PHY). 

Figure 12. Evaluation results of the typical case: (a) planar layout consistency; (b) vertical load
transferability; (c) physical performance.

Table 2. Comparison of design efficiency between different methods.

Designer Preprocess Design Model Total Efficiency
Enhanced

Engineer (manually) 0 min 20 h 10 h 30 h /
StructGAN-PHY 15 min 1 min 4 min 20 min 90 times faster
Proposed method 5 min 1 min 2 min 8 min 225 times faster

Note that the design efficiencies of the proposed method and StructGAN-PHY were
obtained under the conditions described in Section 3. The design efficiency of engineers is
obtained by consulting several senior engineers from top architectural design institutes in
China. It is also based on common RC shear wall structures with a floor area of around
500 m2.

8. Conclusions

Despite showing potential in intelligent structural design, GAN-based methods are
difficult to apply in the industry because of their heterogeneous data form with traditional
CAD methods and high requirements in terms of the computer environment. This study
proposes an integrated schematic design method based on GAN, enabling the entire
schematic design phase of the RC shear wall structures to be intelligent and automated and
providing a workable solution for the industrial application of GAN-based methods. First,
a preprocessing method for architectural CAD drawings is proposed to connect GAN with
upstream architectural design tasks. Second, a user-friendly cloud design platform is built
to reduce the user’s local computer environment requirements. Third, a heterogeneous data
transformation method and a parametric modeling procedure are developed to establish
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the structural analysis model based on GAN’s design, facilitating subsequent detailed
design tasks. The following conclusions are drawn from the study:

(1) The cloud design platform and its pre- and post-processing methods have the advan-
tage of being straightforward and efficient. For common RC shear wall structures with
a floor area of around 500 m2, as shown in the case study, the overall efficiency is 225
times higher than that of a competent engineer and 2.5 times higher than that of the
existing intelligent design method.

(2) In a typical case, the heterogeneous data transformation method can convert the shear
wall design from a pixel image to structured data with a high accuracy of 97.3% and
enable the data transfer between GAN and parametric modeling.

(3) According to the case study, the shear wall layout obtained using the proposed method
is close to the engineer’s design, with a planar layout consistency SIoU−M of 0.9902. It
can also support the vertical load of the floor system with a vertical load transferability
SFloorA of 0.9334. Additionally, the inter-story drift under design-based earthquakes
can meet the requirements of the code.

Currently, the scope of this study is limited to the schematic design of RC shear
wall structures. In the future, parametric modeling can be used to improve structural
optimization algorithms. This will allow the proposed integrated design method to be used
in the detailed design phase and take into account more design factors, such as structural
stability. Additionally, the applicability of the proposed method to other material and
structure types should be investigated further.
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