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Abstract: PPVC modular construction building has become one of the most recent construction
technologies in the civil engineering sector and has piqued researchers’ interest. Few published
studies consider the overall structural response to extreme wind load. As a result, there is a lack of
appropriate design for PPVC modular systems under extreme wind standards. However, the existing
literature has not yet studied the wind flow dynamic behaviors of PPVC modular steel construc-
tion (MSC) systems subjected to extreme wind loads. This paper, therefore, presents a numerical
investigation into the structural performance and wind flow dynamic behavior of innovative PPVC
modular steel construction (MSC) systems under extreme wind loads. The numerical technique
varied in comparison with previous studies. The results showed that the suggested novel (MSC1)
modular system is applicable to prevention of extreme wind action up to cyclone 2nd degree, the high
story drift resistance compared with previous research, high stiffness performance, and overall strain
energy. Additionally, the actual wind velocity surrounding (MSC2) was 31.5% higher compared to
the Saffir–Simpson wind speed scale, and the 1.5 wind speed safety factor was suggested.

Keywords: PPVC; modular steel construction (MSC); extreme wind load; numerical model; wind
flow dynamic behavior; structural performance

1. Introduction

Prefinished volumetric construction (PPVC) modular construction is a new off-site
construction technique; PPVC modular construction permits a considerable advantage
in terms of quality control, environmental factors, time, and cost efficiency [1,2]. PPVC
construction demonstrated significant benefits in mid- and high-rise construction, particu-
larly in structures with repeated units (module) such as hospitals, hotels, schools, shelters,
residences, etc. [3,4]. Extreme wind loads are one of the leading natural hazards that
causes severe damage in terms of human life and construction demolition [3,5,6]. There-
fore, extreme wind load has become a hotspot critical research area. However, only a few
researchers have investigated PPVC modular system structural behavior under extreme
wind loading scenarios to provide a superior construction in terms of extreme wind load
hazard resistance. However, few research articles investigate PPVC structural behavior
when subjected to lateral loads and the load transfer mechanism; moreover, there is a
significant lack of knowledge on the extreme wind loading impact in mid- and high-rise
PPVC modular construction systems [2,5,7,8].

Lacey et al. [9] studied the overall structural performance of a six-story modular apart-
ment complex case study in Port Hedland, Western Australia. The numerical investigation
consisted of evaluating the model regarding equivalent static and variable wind loads; the
analysis indicated that the highest inter-story drift occurs between the second and third
floors of the proposed modular construction model. Moreover, Lacey et al. [10] undertook
a numerical assessment of the overall structural behavior of the previously mentioned
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case study, connected with an inter-module connection and a stiffener. The results show
that the corresponding static analyses for wind and earthquake loading offered a decent
overall structural behavior assessment. On the other hand, Peng et al. [11] investigated the
structural performance of a composite 12-story modular construction subjected to various
wind load actions. According to the authors, the suggested hybrid multi-story modular
system has appropriate load-carry capability under lateral wind loads and endures regional
wind speeds of up to 65 m/s; however, the proposed modular system fails to meet the
deflection control required.

Further, Bi et al. [12] investigated the wind performance of a typical high-rise hybrid
modular system; the suggested modular system is made of steel modules and a reinforced
concrete core. Researchers numerically investigated the proposed modular system under
the Typhoon Ksmmuri wind field. The authors claim that the cylinder lead viscoelastic
damper (SCLVD) has an exceptional energy dissipation capacity, causes an increase in
terms of overall stiffness and energy dissipation performance of beam-column joints, and
has a remarkable damping effect for acceleration and displacement. Table 1 illustrate sum-
maries of existing research studies on PPVC modular construction structural performance
subjected to wind loading and presents the proposed study’s novelty.

Table 1. Existing articles on wind flow impact on the PPVC modular system.

Ref. Modular
Type

Wind Type Design Code FEM
Software

Structure Performance Wind Flow Dynamic
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[9] Steel Normal AS 1170-2 SAP2000 - - Inter-story - - - -

[10] Steel Normal AS 1170-2 SAP2000 - Initial Inter-story - - - -

[11] Steel–
concrete Cyclone 2nd AS 1170-2 ABAQUS Defamation - Overall - - - -

[12] Concrete Tropical storm - ABAQUS SCLVD - - - - - -

Present
study Steel Extreme

E.C 1 EN
1991-1-4/E.C 3

EN 1993-1-1
ANSYS Local/Global Overall Interstory/Overall Overall 4 4 4

The lack of a specific standard for designing the PPVC modular construction systems
under wind turbulence led to the absence of a clear design index. However, global and
local structural mechanism behavior is still under investigation, and no existing research
has investigated the wind flow dynamic impact on PPVC modular construction systems.
Therefore, the proposed study aims to provide a novel PPVC modular steel construction
(MSC) system designed based on Eurocode 1 EN 1991-1-4 [13], action on structures in
normal wind speed conditions [14,15], and Eurocode 3 EN 1993-1-1 [16]. Additionally,
a numerical investigation presents the structural performance and wind flow dynamic
behavior for an innovative modular steel construction (MSC) system subject to various
extreme wind load scenarios, FEM results compared with the normal wind condition (con-
trol model), and the previous literature. Empirical formulas present the overall structural
response and the wind flow dynamic behavior. The numerical model utilizes two novel
steel modular mid-rise buildings designed with/without steel wall frames to simulate
extreme wind loads on the suggested modular system. This article’s results are expected
to develop and implement the future development of the PPVC modular system under
extreme wind loading.
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2. PPVC Modular System Structural Design
2.1. PVVC Modular System Detailing

Two mid-rise PPVC modular steel construction (MSC) systems were designed based
on Eurocode 1 EN 1991-1-4 [13], action on structures in normal wind conditions [14,15];
in the terrain category (IV), in which the area of at least 15% of the surface is covered
with buildings and their average height exceeds 15.0 m, and Eurocode 3 EN 1993-1-1 [16]
design of steel structures. The two suggested modular steel constructions are designed
to resist the normal wind load pressure load. The study assumption is to design two
modular steel construction systems (MSC10 and (MSC2); (MSC1) was utilized to study the
structural performance, while (MSC2) was utilized to investigate the wind flow dynamically.
Each suggested modular is made of 8 story levels with a 24 m height and 24 × 20 m
dimension; each story is made of 12 modules per story and a total of 96 modules with a
total mass weight of 26 tons, as shown in Figure 1. MSC2 is covered by corrugated steel
plate shear walls (CSPSWs), which provide high seismic resistance, energy dissipation
capacity, adequate initial stiffness, and enhanced buckling strength [17–19]. According to
previous researchers [20–24], utilizing CSPSWs improves energy dissipation and improves
initial stiffness. The individual module illustrated in Figure 2 is designed based on EN
1993-1-1 [16]. The individual proposed module section details are presented in Table 2, and
material specifications are shown in Table 3.
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Table 2. Proposed modular system element details.

Parameter MSC1 MSC2

SHS Column (mm) 200 × 200 × 12.6 200 × 200 × 12.6
SHS Long beam (mm) 200 × 200 × 12.6 200 × 200 × 12.6
SHS Short beam (mm) 200 × 200 × 12.6 200 × 200 × 12.6

Wall A (cm) - 960 × 260 × 20
Wall B (cm) - 960 × 360 × 20
Wall C (cm) - 360 × 260 × 20

Table 3. Proposed modular system material specifications.

Module
Elements Steel Grade Yield Strength

(MPa)
Tensile

Strength (MPa)

Young’s
Modulus

(GPa)
Position Ratio Density

(Kg/m3)

SHS column

Mild

275 370 210 0.3 7850

SHS long beam 275 370 210 0.3 7850

SHS short beam 275 370 210 0.3 7850

Wall A 275 370 210 0.3 7850

Wall B 275 370 210 0.3 7850

Wall C 275 370 210 0.3 7850

2.2. Extreme Wind Load Design

Wind action is presented by a simplified collection of pressure and forces when the
wind actions change over time and exert direct pressure on the exterior modular steel
construction surfaces. The selected wind flow categories and speed are presented in Table 4,
the parameters from the Saffir–Simpson scale [14,15], and designed wind pressure and
wind force determined based on the results of Equations (1)–(3) as shown in Table 4. The
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wind flow effects are equivalent to the turbulent extreme wind impacts. The applied
wind load force on the proposed modular and wind pressure based on EN 1991-1-4 [13] is
the following:

P = F/A (1)

where in Equation (1) P is the wind pressure, F is the force effect on the structure surface,
and A is the surface area of pressure affected.

Table 4. Saffir–Simpson wind speed scale [14,15] and wind design results.

Wind Category Saffir–Simpson Wind
Speed Scale (m/s) [14,15]

Design Wind
Pressure (kN/m2) Force (kN)

Normal 7.0 30.625 14,700.0

Tropical depression 17.0 180.625 86,700.0

Tropical storm 32.0 640.0 307,200.0

Cyclone 1st degree 42.0 1102.5 529,200.0

Cyclone 2nd degree 49.0 1500.625 720,300.0

Cyclone 3rd degree 58.0 2102.5 1,009,200.0

Cyclone 4th degree 62.0 22.5 1,153,200.0

Cyclone 5th degree 70.0 3062.5 14,70,000.0

However, wind flow pressure depends on wind velocity (vb) set using Equation (2);
wind velocity is defined as a fraction of the wind direction and time of year at 10 m above
ground (terrain category II) based on wind load climate [13].

vb = cdir·cseason ·vb,0 (2)

where in Equation (2) vb is basic wind velocity in m/s, cdir is a directional factor, cseason is a
seasonal factor, and vb,0 and is the fundamental value of the basic wind velocity.

Finally, the designed wind flow pressure impacts the suggested modular set
using Equation (3):

qb = 0.5pair·vb
2 (3)

where in Equation (3) qb. is design wind pressure in kN/m2, pair. is the density of air
(1.25 kg/m3), and vb is basic wind velocity in m/s.

3. Proposed Numerical Investigation
3.1. Structural Performance

The innovative modular steel construction (MSC1) structural performance was investi-
gated using ANSYS2021 R2 simulation software. The suggested modular steel construction
(MSC1) geometry is illustrated in Figure 3. The material properties utilized in the simula-
tion model are mentioned in Table 3. The force method was used to analyze the internal
forces and wind flow pressure reactions for the proposed modular construction (MSC1).
A multi-zone mesh method with a 20 cm element size was utilized to mesh the proposed
modular construction with a growth rate of 1.2 and a maximum of five element layers.
Figure 4 illustrates the meshing technique and mesh quality test.
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Figure 4. MSC1 mesh quality detailing and mesh quality test.

The 60 steps automatically applied time stepping controlled by one second for each
step. The innovative modular steel construction boundary conditions depend on the pro-
posed assumption to investigate the structural and mechanical performance of (MSC1). The
wind flow pressure illustrated previously in Table 4 is applied horizontally on a modular
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surface cross-section area in a negative (z-axis) direction; (MSC1) modular foundations and
connections are simulated as fixed support, as shown in Figure 5.

Buildings 2022, 12, x FOR PEER REVIEW 7 of 23 
 

 
Figure 5. MSC1 FEM boundary conditions. 

3.2. Wind Flow Dynamic FEM Investigation 
Wind flow dynamic behavior was investigated using the proposed innovative 

(MSC2) modular steel construction via ANSYS2021 R2 software. The assumed enclosure 
shape surrounds the modular steel construction (MSC2) with a dimension of 30 m in the 
positive (y-axis) direction and 20 m in both the negative and positive (z-axis) directions, 
illustrated in Figure 6. The 50 cm mesh element size utilized the physical Tera and Heza 
zone performance methods to provide a smooth transition and span angle center with a 
growth rate of 1.5 and a maximum of three element layers, as shown in Figure 7. 

 
Figure 6. MSC2 wind flow dynamic. 

Figure 5. MSC1 FEM boundary conditions.

3.2. Wind Flow Dynamic FEM Investigation

Wind flow dynamic behavior was investigated using the proposed innovative (MSC2)
modular steel construction via ANSYS2021 R2 software. The assumed enclosure shape
surrounds the modular steel construction (MSC2) with a dimension of 30 m in the positive
(y-axis) direction and 20 m in both the negative and positive (z-axis) directions, illustrated
in Figure 6. The 50 cm mesh element size utilized the physical Tera and Heza zone
performance methods to provide a smooth transition and span angle center with a growth
rate of 1.5 and a maximum of three element layers, as shown in Figure 7.

Buildings 2022, 12, x FOR PEER REVIEW 7 of 23 
 

 
Figure 5. MSC1 FEM boundary conditions. 

3.2. Wind Flow Dynamic FEM Investigation 
Wind flow dynamic behavior was investigated using the proposed innovative 

(MSC2) modular steel construction via ANSYS2021 R2 software. The assumed enclosure 
shape surrounds the modular steel construction (MSC2) with a dimension of 30 m in the 
positive (y-axis) direction and 20 m in both the negative and positive (z-axis) directions, 
illustrated in Figure 6. The 50 cm mesh element size utilized the physical Tera and Heza 
zone performance methods to provide a smooth transition and span angle center with a 
growth rate of 1.5 and a maximum of three element layers, as shown in Figure 7. 

 
Figure 6. MSC2 wind flow dynamic. Figure 6. MSC2 wind flow dynamic.



Buildings 2022, 12, 1347 8 of 23Buildings 2022, 12, x FOR PEER REVIEW 8 of 23 
 

 
Figure 7. MSC2 mesh quality detailing and mesh quality test. 

The program automatically times fluid flow steps. Modular steel construction 
(MSC2) boundary conditions are assumed based on those previously mentioned in Table 
4. The wind flow velocity applied with horizontally inlet positive (z-axis) and outlet neg-
ative (z-axis) movement on the cross-section enclosure shape surface is illustrated in Fig-
ure 8. 

 
Figure 8. Wind velocity applied on the enclosure shape. 

4. Results  
4.1. Displacement 

Wind flow category displacement is illustrated in Figure 9; the average wind flow 
presented a lower overall displacement and the (MSC1) impact was located in an elastic 
deformation zone. Displacement increased significantly from tropical wind to the cyclone 
1st degree extreme load, and (MSC1) reached the plastic deformation zone. The suggested 
modular (MCS1) reached the peak deformation point under cyclone 2nd degree. The mod-
ular failed under extreme wind load impact of cyclone 3rd, cyclone 4th, and cyclone 5th de-
grees. The numerical investigation on (MSC1) presented the maximum displacement im-
pact on the upper modular stories long beams of levels five and six. However, the mini-
mum displacement impact acted on the end-edge of the modular steel construction 

Figure 7. MSC2 mesh quality detailing and mesh quality test.

The program automatically times fluid flow steps. Modular steel construction (MSC2)
boundary conditions are assumed based on those previously mentioned in Table 4. The
wind flow velocity applied with horizontally inlet positive (z-axis) and outlet negative
(z-axis) movement on the cross-section enclosure shape surface is illustrated in Figure 8.
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4. Results
4.1. Displacement

Wind flow category displacement is illustrated in Figure 9; the average wind flow
presented a lower overall displacement and the (MSC1) impact was located in an elastic
deformation zone. Displacement increased significantly from tropical wind to the cyclone
1st degree extreme load, and (MSC1) reached the plastic deformation zone. The suggested
modular (MCS1) reached the peak deformation point under cyclone 2nd degree. The
modular failed under extreme wind load impact of cyclone 3rd, cyclone 4th, and cyclone 5th

degrees. The numerical investigation on (MSC1) presented the maximum displacement
impact on the upper modular stories long beams of levels five and six. However, the
minimum displacement impact acted on the end-edge of the modular steel construction
(MSC1) where the shear wall was implemented; therefore, the modular shear walls will not
affect the overall construction displacement on the modular end-edges.
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The proposed modular steel construction (MSC1) displacement result is illustrated in
Figure 10. The normal wind flow category showed a low displacement behavior on the
control (MSC1) and the FEM results were 0.0013 m; however, the modular displacement
increased to reach 0.0078 m for tropical depression airflow and 0.0278 m for a tropical storm.
For cyclone 1st, cyclone 2nd, cyclone 3rd, cyclone 4th, and cyclone 5th extreme airflow degrees
stiffness results were 0.0478, 0.0651, 0.0931, 0.104, and 0.133 m, respectively. Compared
with the control (MSC) module under normal airflow, the novel suggested modular can be
constructed under extreme load cyclone 1st and 2nd degrees.
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Figure 10. Displacement behavior of MSC1 under (a) normal, tropical depression, and tropical storm
wind flow categories and (b) cyclone wind flow categories.

Modular columns are the main critical elements used to ensure the load transfer to
the foundation; Figure 11 presents the displacement impact and the load path in mod-
ular steel construction (MSC1) columns. Column size could increase to provide high
deformation resistance.
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The numerical equations for the charts were based on data fitting for the suggested
eight categories of wind loads subjected to the modular steel construction (MSC). Table 5
presents the relationship between the overall displacement and airflow forces, where (∆) is
the overall steel modular construction (MSC1) displacement and (F) is the airflow force.

Table 5. MSC1 displacement formula under selected wind flow categories.

Wind Flow Categories Chart Equation R-Squared %

Normal ∆ = 2 × 10−5F − 9 × 10−5 94.7%

Tropical depression ∆ = 0.0001F − 0.0004 98.2%

Tropical storm ∆ = 0.0004F + 0.0022 98.3%

Cyclone 1st deg. ∆ = 0.0007F + 0.0041 97.5%

Cyclone 2nd deg. ∆ = 0.0010F + 0.0050 97.8%

Cyclone 3rd deg. ∆ = 0.0014F + 0.0067 97.9%

Cyclone 4th deg. ∆ = 0.0015F + 0.0236 88.5%

Cyclone 5th deg. ∆ = 0.0019F + 0.0304 86.7%

4.2. Stiffness

The suggested modular steel construction (MSC1) stiffness after applying the selected
wind flow categories and stiffness results is presented in Figure 12. The stiffness perfor-
mance of (MSC1) under the normal wind flow category showed an adequate stiffness
behavior and the FEM results were 2779.6 N/m. However, the modular ultimate stiffness
decreased to reach 476.6 N/m for tropical depression air flow, tropical storm. For cyclone
1st, cyclone 2nd, cyclone 3rd, cyclone 4th, and cyclone 5th extreme airflow degree stiffness
results were 133.9, 77.7, 57.7, 40.7, 35.6, and 27.9 N/m, respectively. Regarding the struc-
tural configuration method for the design, the two suggested modular steel constructions
(MSC2) were designed to resist the normal wind pressure loading conditions previously
mentioned in Section 2.2. Therefore, the control sample (MSC2 subjected to normal wind
pressure loading) observed high stiffness performance.
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Figure 12. MSC1 stiffness performance under (a) normal, tropical depression, and tropical storm
wind flow categories and (b) cyclone wind flow categories.

The stiffness formulas of the suggested modular steel construction (MSC1) under the
selected wind flow categories are presented in Table 6 where (S) is MSC1 modular system
stiffness and (F) is the applied wind flow forces.
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Table 6. MSC1 stiffness formulas under selected wind flow categories.

Wind Flow Categories Chart Equation R-Squared %

Normal S = −41.194F + 2173 77.1%

Tropical depression S = −7.0088F + 369.72 77.1%

Tropical storm S = −1.1443F + 60.362 77.1%

Cyclone 1st deg. S = −1.1443F + 60.362 77.1%

Cyclone 2nd deg. S = −0.8411F + 44.366 77.1%

Cyclone 3rd deg. S = −0.6F + 31.653 77.1%

Cyclone 4th deg. S = −0.5251F + 27.70 77.1%

Cyclone 5th deg. S = −0.4119F + 21.73. 77.1%

4.3. Drift Ratio

The suggested modular steel construction (MSC1) stories drift showing a sideways de-
flection of the higher floor relative to the sideways deflection of the lower floor. Figure 13 il-
lustrates the relationship between the drift ratio and the height of the proposed
modular system.
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Figure 13. MSC1 modular system drift ratio under selected wind flow categories.

The drift ratio performance of the innovative modular steel construction system
(MSC1) is compared with the existing PPVC modular systems presented in Figure 14.
Lacey et al. [9,10] investigated a case study modular system under normal airflow loading
circumstances; the case study modular system showed a low drift resistance compared to
the proposed innovative (MSC1) modular system. Moreover, compared to Peng et al. [11]
who developed a hybrid steel–concrete 12-story modular system under extreme wind load
cyclone 4th degree, the results show that the suggested innovative inter-module system
has a higher drift resistance under same cyclone fourth extreme airflow circumstance.
Therefore, the proposed modular steel system (MSC1) can be adequately utilized in areas
affected by extreme wind loadings.
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Figure 14. Modular systems’ drift ratio compression.

Drift ratio formulas are presented in Table 7, where (H) is the vertical height of
the suggested modular steel construction (MSC1) and (D) is the story drift ratio of the
modular system.

Table 7. MSC1 modular system strain energy under selected wind flow categories.

Category Chart Equation R-Squared %

Normal H = 2476.8D − 1.4864 92.1%

Tropical depression H = 155.05D − 3.7289 92.1%

Tropical storm H = 53.869D − 4.4181 92.1%

Cyclone 1st deg. H = 39.451D − 3.9557 89.3%

Cyclone 2nd deg. H = 30.265D − 3.8791 89.1%

Cyclone 3rd deg. H = 19.884D − 4.2251 89.3%

Cyclone 4th deg. H = 17.425D − 4.0888 89.8%

Cyclone 5th deg. H = 14.226D − 2.8754 89.8%

4.4. Strain Energy

Strain energy depends on the deformation results of the suggested modular steel
construction (MSC1). Figure 15 presents the strain energy results of the proposed modular
system under selected wind flow loading scenarios. Strain energy results for normal wind
flow, tropical depression, tropical storm, cyclone 1st degree, cyclone 2nd degree, cyclone 3rd

degree, cyclone 4th degree, and cyclone 5th degree are 0.024, 0.843, 31.6, 85.2, 114.9, 150.2,
and 243.9 mJ, respectively.
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Figure 15. MSC1 stain energy performance under (a) normal, tropical depression, and tropical storm
wind flow categories, and (b) cyclone wind flow categories.

The strain energy of the suggested modular steel construction (MSC1) formulas is
presented in Table 8, where (U) is the MSC1 modular system strain energy and (F) is the
applied selected wind flow load.

Table 8. MSC1 modular system strain energy under selected wind flow categories.

Category Chart Equation R-Squared %

Normal U = 0.0004F − 0.0034 92.3%

Tropical depression U = 0.0140F − 0.1170 92.3%

Tropical storm U = 0.1776F − 1.4797 92.3%

Cyclone 1st deg. U = 0.5269F − 4.3911 92.3%

Cyclone 2nd deg. U = 0.9754F − 8.1285 92.3%

Cyclone 3rd deg. U = 1.9163F − 15.969 92.3%

Cyclone 4th deg. U = 2.5023F − 20.853 92.3%

Cyclone 5th deg. U = 4.0658F − 33.882 92.3%

4.5. Wind Velocity

Wind velocity was investigated by surrounding the modular steel construction (MSC2)
enclosure shape, as shown in Figure 16. The selected wind flow velocity and movements
applied on the suggested modular cross-surface areas caused a downdraft attack, producing
a high-speed effect with the modular system height. Then, a wake of large revolving
downwind eddies increased by increasing the wind speed, causing a counter-current
impact on the modular roof and ground-level sides.

The selected maximum wind flow velocity increased by increasing the inlet enclosure
curve, as shown in Figure 17. The FEM investigation showed that the output wind velocity
was higher at 31.5% compared to the Saffir–Simpson wind speed scale; therefore, the PPVC
modular system design requires attention to the applied wind speed. The suggested study
show that the wind speed safety factor is 1.5. Thus, the modular design system must
consider that the safety factor should be multiplied by the Saffir–Simpson wind speed scale.
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Figure 17. Wind velocity results of the MSC2 modular system under (A) normal, (B) tropical
depression, (C) tropical storm, (D) cyclone 1st, (E) cyclone 2nd, (F) cyclone 3rd, (G) cyclone 4th,
and (H) cyclone 5th wind flow loading categories.
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4.6. Dynamic Wind Flow Pressure

The dynamic pressure was investigated to understand the actual wind pressure behav-
ior on the suggested modular steel construction (MSC2); Figure 18 illustrates the dynamic
wind flow pressure of each selected wind loading circumstance. Dynamic wind flow pres-
sure caused negative and positive wind pressure. However, the negative dynamic wind
pressure causes high humidity that can cause steel corrosion. Therefore, steel modular
construction systems require developed steel materials to prevent corrosion. Additionally,
negative dynamic wind flow pressure increases the inner temperature of the modular steel
system that requires innovative heat isolation materials utilized in modular steel systems.
Moreover, high positive dynamic wind pressure causes a high deformation for the modular
steel construction system. Therefore, high-rise modular steel construction under positive
dynamic pressure requires high-deformation resistance techniques.
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Figure 18. Cont.
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Figure 18. Dynamic wind flow pressure results applied on the MSC2 modular system under
(A) normal, (B) tropical depression, (C) tropical storm, (D) cyclone 1st, (E) cyclone 2nd, (F) cyclone 3rd,
(G) cyclone 4th, and (H) cyclone 5th wind flow loading categories.

4.7. Turbulence Kinetic Energy (TKE)

The kinetic energy was investigated to understand the turbulence kinetic energy im-
pact on the suggested modular steel construction (MSC2). Figure 19 presents the turbulent
kinetic energy (TKE) of each selected wind flow loading applied horizontally in the cross-
surface modular area. The results indicated that wind velocity vectors moved randomly
when the wind loading changed from a tropical storm to a cyclone storm. This resulted in
a significant increase in turbulence kinetic energy (TKE), as shown in Figure 19 (C).
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Figure 19. Turbulent kinetic energy (TKE) results applied on the MSC2 modular system under
(A) normal, (B) tropical depression, (C) tropical storm, (D) cyclone 1st, (E) cyclone 2nd, (F) cyclone 3rd,
(G) cyclone 4th, and (H) cyclone 5th wind flow loading categories.
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Wind velocity, dynamic wind flow pressure, and turbulence kinetic energy are formu-
lated as illustrated in Table 9, where (V) is the wind velocity in m/s, (P) is the dynamic
wind pressure in Pa, (k) is the turbulence kinetic energy (TKE) in m2/s2, and (x) is the
horizontal distance of the enclosure shape in m.

Table 9. MSC1 modular system wind velocity, dynamic wind flow pressure, and turbulence kinetic
energy formulas.

Category

Wind Velocity Dynamic Pressure TKE

Chart Equation
R

-S
qu

ar
ed

%
Chart Equation

R
-S

qu
ar

ed
%

Chart Equation

R
-S

qu
ar

ed
%

Normal V = 0.0844x + 4.1429 26.6% P = 0.7339x + 6.5955 44.8% k = −0.0097x + 0.3494 23.4%

Tropical dep. V = 0.2109x + 10.207 28.2% P = 4.2722x + 42.871 46.4% k = −0.0483x + 1.7611 22.2%

Tropical storm V = 0.3763x + 19.827 24.2% P = 15.91x + 162.940 46.4% k = −0.1478x + 6.4241 10.6%

Cyclone 1st deg. V = 0.5299x + 25.126 32.5% P = 24.723x + 283.56 48.5% k = −0.2786x + 9.6346 27.4

Cyclone 2nd deg. V = 0.6069x + 28.743 31.5% P = 33.711x + 367.62 47.2% k = −0.3475x + 12.377 25.4%

Cyclone 3rd deg. V = 0.7455x + 34.714 32.5% P = 48.926x + 527.38 46.3% k = −0.5016x + 18.011 25.5%

Cyclone 4th deg. V = 0.7912x + 37.089 32.6% P = 55.757x + 632.88 48.1% k = −0.5859x + 20.451 20.7%

Cyclone 5th deg. V = 0.885x + 41.6210 31.3% P = 69.417x + 738.36 47.8% k = −0.7246x + 25.728 25.6%

According to the results shown in Table 9, the horizontal distance of the enclosure over
the wind velocity, dynamic pressure, and turbulence kinetic energy relationships accounts
for between 10.6% and 48.5%; the results show unpredictable, unique cause variations
due to the random wind movements surrounding the modular construction (MSC2). As
a result, further research is needed to explain the relationship between variations in the
horizontal distance (x) and wind velocity (V), dynamic wind pressure (P), and turbulence
kinetic energy (k).

5. Conclusions and Recommendations for Future Work

This article illustrates a numerical method for the structural performance and wind
flow dynamics of an innovative modular steel structure (MSC) under various extreme
wind actions. The modeling approach predicted the modular system’s structural re-
sponse to extreme wind loads, which was validated by previous studies. The findings are
described below.

(i) Eurocode 1 EN 1991-1-4 is applicable for the design of a mid-rise modular steel
system under wind actions. However, future experimental investigation is required to study
the actual structural behavior to develop modular design guidelines for mid/high-rise steel
modular construction under extreme wind conditions.

(ii) Modular steel construction (MSC1) is applicable for the prevention of extreme
wind load up to the cyclone 2nd degree; modular sides show the lower displacement effect;
internal modular long beams show a high displacement impact. An increase in internal
module column size could enhance displacement resistance.

(iii) The suggested (MSC1) has adequate strain energy performance against selected
wind flow loading; additionally, (MSC1) shows a high stiffness performance under extreme
wind loads circumstances. In future, a modular-beam column-bolted longitudinal stiffener
can be utilized to increase the ultimate modular stiffener performance.

(iv) The proposed MSC1 modular system shows a high drift resistance under extreme
loading conditions compared to the previous studies. However, the story drift ratio
increases by increasing modular high. Therefore, high-rise modular steel construction
requires more future investigation to study the impact of the extreme wind actions on the
modular story drift ratio.
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(v) The actual wind velocity surrounding modular steel construction (MSC2) was
higher at 31.5% compared to the input wind velocity conducted using the Saffir–Simpson
wind speed scale. This study suggested that the wind speed safety factor is 1.5 of the
applied wind actions.

(vi) Dynamic wind flow pressure causes a negative wind pressure to lower (MSC2)
modular system stories and a high positive wind pressure to upper (MCS2) modular system
stories. Furthermore, turbulence kinetic energy (TKE) increases by increasing extreme wind
flow velocity. It is suggested that the dynamic wind flow behavior should be established
from the numerical model. However, dynamic wind flow behavior empirical formulas
require future investigation to understand the wind movements that surround the modular
construction systems.

This topic has progressively become part of the researcher’s efforts to develop PPVC
modular system models and investigate extreme wind load’s impact. Overall, it can
be said that the results of the numerical simulations clearly show that the suggested
model can be used in PPVC modular system studies and promote further development
of structural behavior, extreme wind load impact analysis, dynamic wind flow behavior,
and the development of their design. There are also further research opportunities such
as experimental investigations (e.g., seismic performance and failure mode analysis) or
simplified parametric methods (e.g., the effect of module column size on overall modular
system structure performance subjected to extreme wind loads).
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