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Abstract: The compressive capacity of the column is one of the key parameters in the design. The
importance of such structural members and their performance under load conditions are very
effective in the overall behavior of the structure, and its failure can lead to the collapse of the
entire structure. Therefore, determining the capacity of columns is considered an important issue in
structural problems. Thus, this article presents an applicable computational framework to predict the
compression capacity of stirrups-confined concrete. A machine learning model based on neuro-fuzzy
systems was considered to formulate the proposed model. For this purpose, some experimental
datasets were gathered from the literature to tune the unknown parameters of the model and evaluate
its accuracy. The target, the ratio of the ultimate axial capacity to bearing area, was predicted with
consideration of the column properties, including the compressive strength of concrete, stirrups
section area, dimension of the stirrups, and the column section. The results showed that the proposed
framework could be used as an applicable technique to determine the compressive capacity of the
stirrups-confined concrete columns.

Keywords: axial load; concrete column; compressive capacity; stirrup; neuro-fuzzy

1. Introduction

In building structures, the role of columns in the overall performance of the structure is
very important. The failure of this element can lead to a great reduction in the strength and
even collapse of the whole structure. Therefore, determining the capacity of the columns
is one of the most important parameters considered in the design process. Reinforced
Concrete (RC) columns, as an axial member, should be able to perform optimally against
axial pressures and meet the designer’s expectations. Researchers have conducted various
laboratory and analytical investigations to understand the behavior of columns better and
improve their performance. Dujmović et al. [1] studied the composite columns subjected
to axial compressive and bending loads. They found that the design of such columns
should be based on the combination of loads. The behavior of RC columns under axial
compression loads was investigated by Jain et al. [2]. The proposed effective strengthening
methods for the damaged columns concluded that the most efficient technique combines
near-surface mounting and external bonding. Miao and Zheng [3] experimentally studied
the effects of bond stress on the compressive behavior of RC columns and developed a
formulation to estimate the bearing capacity [4–6].

Concrete core has a significant role in the compressive behavior of RC columns.
Therefore, some researchers studied this part of columns and its improvements to increase
the compressive capacity. Sunayana and Barai [7] studied the performance of RC columns
under compression incorporated by recycled coarse aggregates and fly ash. Their results
indicated that the load capacity of the columns with recycled aggregates was higher than
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those made by natural aggregates. Tian et al. [8] tested some RC columns made of ultra-
high performance concrete and investigated their axial behavior. The results showed that
these columns provided more axial capacity. Moreover, a model was proposed to predict
the axial capacity of composite columns. The compressive capacity of columns containing
precast ultra-high performance concrete jackets has been evaluated by Zhang et al. [9].
They showed that sufficient confinement could improve the load bearing of the column.
A prediction model was also provided to estimate the ultimate capacity. Zhang et al. [10]
investigated the behavior of RC column transfer structures subjected to different axial
loads. The results indicated that the load capacity of the columns is increased by the high
value of the axial force ratio. Da et al. [11] studied the effect of corrosion on the axial
compression behavior of RC columns made by coral aggregates under eccentric loads.
Their results showed that the capacity of columns decreases as the eccentricity increases.
They also developed a model to estimate the behavior of the considered types of columns.
Vijaya et al. [12] experimentally evaluated the compressive behavior of RC columns having
manufactured sands and found that the axial capacity of these types of columns was better
than elements with only normal sands. Dong et al. [13] experimentally studied the effect
of impact loads on the residual axial compression capacity of RC columns and proposed
models to determine the capacity.

Due to the complex and non-linear behavior of concrete structural members, the
use of more efficient methods than classical statistical techniques is expected. One such
method is models based on machine learning (e.g., neural networks and neuro-fuzzy
systems). The use of such techniques in determining the behavior of structural elements
has been investigated in various studies. Mirrashid and Naderpour [14] have reviewed
the applications of machine learning models to estimate the capacity of structural RC
members like columns. Using the datasets, Chang and Zheng [15] developed a neural
network model to determine the compressive strength of RC circular columns confined
with stirrups. They found that their model could estimate the considered goal with an
acceptable error. Naderpour and Mirrashid [16] proposed new formulations based on
machine learning techniques to assess the moment capacity of RC columns. They used
some experimental databases to prepare and evaluate the models. It was found that the
machine learning approach is an efficient framework that can be successfully considered for
estimating the structural columns. New models based on machine learning methods have
been previously provided to predict the ultimate capacity of structural RC members [17].
For this purpose, the moment capacity has been used as a target for RC columns. Five
techniques were considered using neural networks and fuzzy systems, and finally, the
mathematical frameworks have been extracted from the proposed models. The provided
computational formulations also were validated using an experimental database. Failure
modes of RC columns are an important issue that can be predicted based on the machine
learning approach [18] using the properties of the columns. The prediction of the moment
capacity of spirally RC columns was another goal that machine learning techniques were
used for in literature [19]. Li et al. [20] proposed a neural network model to predict
RC columns’ compression behavior with stirrups. They have validated their model and
extracted a mathematical formulation from the model to make it more user-friendly.

2. Research Significance

Due to the importance of determining the compressive behavior in RC columns,
several analytical and laboratory studies have been conducted on these elements. Most
of the mentioned studies are based on providing calculation methods in the framework
of statistical and regression techniques. When the system has complex behavior, using
classical approaches cannot be a suitable solution. The reason for this is the presence of
many influential parameters and non-linear behavior, which practically challenges the
effectiveness of such methods. The use of machine learning methods is an alternative and
suitable technique with acceptable accuracy, which has also been used to determine the
performance of structural elements. Nevertheless, due to the structural complexities of the
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machine learning models proposed in the references, presenting the computational relations
derived from such models has been omitted in many cases. This reduces the capabilities
of predictive models and their uses. Considering the ability of machine learning-based
systems, this article used a neuro-fuzzy technique to estimate the compressive behavior of
RC stirrups-confined columns. Moreover, to resolve the computational challenge of the
model, a mathematical framework from the model was extracted, and relationships were
provided. This increases the efficiency of the proposed model and makes it user-friendly.

3. Methodology

One of the most widely used models based on machine learning is Artificial Neural
Networks (ANN). The performance of these methods has been evaluated in different
sciences. Meanwhile, due to the complexity of the computational structure of such models,
especially in cases where the number of nodes is large, extracting relationships from the
network structure is not easily possible. However, its various branches and algorithms are
still being improved due to the suitable performance of these methods. Today, ANN has
a very special place in machine learning-based sciences. Fuzzy Systems (FS) are another
approach to Soft Computing (SC), which are widely used in literature because of their
ability to consider the uncertainties of the problem and the possibility of applying empirical
rules to the problem. In a fuzzy system, each input variable is placed in some categories
representing a linguistic expression. Each above type is called a fuzzy Membership Function
(MF). For example, if three membership functions are considered for variable number one,
each can represent a low, medium, and high value. In addition to the membership function,
such systems have a set of fuzzy rules based on model reasoning and output determination.
Both characteristics (membership functions and fuzzy rules) must be accurately specified
when modeling a fuzzy system. Considering that determining these items is not easily
possible and in cases where the model has a lot of complexity, including a large number
of input variables, practically determining things such as the number of MF, the type and
values of the parameters of each function, and system rules, is a challenge. To solve this
problem, the learning ability of neural networks is used, and the determination of the above
cases is left to the neural network.

The combination of ANN and FS as Neuro-Fuzzy systems may create a model with the
advantages of the above two methods. In fact, in a neuro-fuzzy model, a fuzzy system is the
implementation in the layered structure of the neural network. Here, using a set of data, the
unknown parameters of the fuzzy model are estimated and verified by the neural network.
One of the most famous techniques is Adaptive Neuro-Fuzzy Inference System (ANFIS),
introduced by Jang [21]. The use of the ANFIS technique has been previously evaluated
in order to determine the behavior of structures, and they have provided acceptable
results [22,23]. Due to the advantages of neuro-fuzzy systems, in this article, the ANFIS is
used to estimate the compressive behavior of stirrups in confined concrete columns. The
details of the proposed ANFIS model and its relationships are presented in the following
sections. An example of ANFIS can be seen in Figure 1 for a model with four inputs and
three MF for each input.
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pressive strength of concrete, the ratio of the gross supporting area to the bearing plate 
area, the ratio of the area confined by stirrups to the bearing plate area, the ratio of the 
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Figure 2. The RC columns considered in this research (adapted from [20]): (a) Confined columns 
with ties; (b) Confined columns with spirals. 

Figure 1. An example of the ANFIS model with four inputs and three membership functions for
each input.

4. Database

In machine learning techniques, a set of data is needed. Based on this information,
the model’s unknown parameters are optimized and determined by learning algorithms.
Considering that the approach used in this article is also a machine learning model, a set
of laboratory results related to 180 column tests with different details (Figure 2) has been
collected from literature [20,24–29]. Then, it is necessary to specify the input variables based
on which the value of the target parameter is predicted. This work has been done with a
trial and error approach. In total, six input parameters (Table 1), including the compressive
strength of concrete, the ratio of the gross supporting area to the bearing plate area, the
ratio of the area confined by stirrups to the bearing plate area, the ratio of the duct diameter
to the section width, the yield strength of stirrups, and the volumetric ratio of stirrups, are
used to determine the output parameter, which is the ratio of axial compressive capacity to
the net area of bearing plate minus the duct area, in this article.
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Table 1. Definition of the variables in this research.

Variable Role Description Unit

X1 Input 1 The compressive strength of concrete MPa
X2 Input 2 The ratio of the gross supporting area to the bearing plate area -
X3 Input 3 The ratio of the area confined by stirrups to the bearing plate area -
X4 Input 4 The ratio of the duct diameter to the section width -
X5 Input 5 The yield strength of stirrups MPa
X6 Input 6 The volumetric ratio of stirrups %

Y Output The ratio of axial compressive capacity to the net area of the
bearing plate minus the duct area MPa

From the set of 180 collected data, 85% of the datasets (153 data) were randomly
selected and used for the model training process. The remaining 15 percent (including
27 data) has been used to evaluate the accuracy of the model. Table 2 and Figures 3–5 show
the details of training and testing data. Another one of the most important pre-processing
tasks performed on the data is normalization. By doing this, the range of data is kept in
a fixed and small range, which increases the accuracy of the model in prediction. In this
article, the range of 0.1 to 0.9 is used to normalize the data using Equation (1).

Xi,n = 0.8
Xi − Xi,min

Xi,max − Xi,min
+ 0.1 (1)

Buildings 2022, 12, x FOR PEER REVIEW 5 of 17 
 

Table 1. Definition of the variables in this research. 

Variable Role Description Unit 
X1 Input 1 The compressive strength of concrete MPa 
X2 Input 2 The ratio of the gross supporting area to the bearing plate area - 

X3 Input 3 The ratio of the area confined by stirrups to the bearing plate 
area 

- 

X4 Input 4 The ratio of the duct diameter to the section width - 
X5 Input 5 The yield strength of stirrups MPa 
X6 Input 6 The volumetric ratio of stirrups % 

Y Output 
The ratio of axial compressive capacity to the net area of the 

bearing plate minus the duct area MPa 

From the set of 180 collected data, 85% of the datasets (153 data) were randomly se-
lected and used for the model training process. The remaining 15 percent (including 27 
data) has been used to evaluate the accuracy of the model. Table 2 and Figures 3–5 show 
the details of training and testing data. Another one of the most important pre-processing 
tasks performed on the data is normalization. By doing this, the range of data is kept in a 
fixed and small range, which increases the accuracy of the model in prediction. In this 
article, the range of 0.1 to 0.9 is used to normalize the data using Equation (1). 𝑋, = 0.8 𝑋 − 𝑋,𝑋,௫ − 𝑋, + 0.1 (1)

 
Figure 3. The values of the variables for each dataset. 

  

Figure 3. The values of the variables for each dataset.



Buildings 2022, 12, 1386 6 of 17Buildings 2022, 12, x FOR PEER REVIEW 6 of 17 
 

 
Figure 4. The histogram of the database. 

 
Figure 5. The distribution of the training and testing datasets. 

Figure 4. The histogram of the database.

Buildings 2022, 12, x FOR PEER REVIEW 6 of 17 
 

 
Figure 4. The histogram of the database. 

 
Figure 5. The distribution of the training and testing datasets. Figure 5. The distribution of the training and testing datasets.



Buildings 2022, 12, 1386 7 of 17

Table 2. Statistical information of the considered database.

Train Data

Variable X1 X2 X3 X4 X5 X6 Y

Unit MPa - - - MPa % MPa

Minimum 15.60 1.36 0.18 0.00 233.00 0.33 30.67
Maximum 112.30 17.29 12.70 0.29 660.00 10.60 383.39

Median 29.45 4.00 2.27 0.00 399.00 1.99 86.98
St. Dev 14.68 2.64 1.77 0.10 131.07 2.05 60.53

Test Data

Variable X1 X2 X3 X4 X5 X6 Y

Unit MPa - - - MPa % MPa

Minimum 17.50 1.78 0.59 0.00 233.00 0.94 31.11
Maximum 67.90 11.11 6.30 0.26 618.00 7.10 266.88

Median 28.55 4.00 2.27 0.00 324.00 2.26 84.50
St. Dev 12.49 2.27 1.46 0.09 141.06 1.54 51.17

Whole Data

Variable X1 X2 X3 X4 X5 X6 Y

Unit MPa - - - MPa % MPa

Minimum 15.60 1.36 0.18 0.00 233.00 0.33 30.67
Maximum 112.30 17.29 12.70 0.29 660.00 10.60 383.39

Median 29.20 4.00 2.27 0.00 399.00 2.08 86.32
St. Dev 14.34 2.58 1.73 0.10 132.39 1.97 59.17

St. Dev is the standard deviation.

5. The Proposed ANFIS Model

Using the considered experimental database, the training process of the ANFIS model
was done. In order to create the proposed system, a fuzzy c-means algorithm has been
used. Based on this, it was determined that the model with eight rules had shown the
best performance (Figure 6). The details of the rules are shown in Table 3. In this table, for
example, MF3,4 means the third membership function of the X4.
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Table 3. The details of the rules.

Number The Rule

Rule 1 If X1 is MF1,1 and X2 is MF1,2 and X3 is MF1,3 and X4 is MF1,4 and X5 is MF1,5 and X6
is MF1,6, then Y is Y1

Rule 2 If X1 is MF2,1 and X2 is MF2,2 and X3 is MF2,3 and X4 is MF3,4 and X5 is MF2,5 and X6
is MF2,6, then Y is Y2

Rule 3 If X1 is MF3,1 and X2 is MF3,2 and X3 is MF3,3 and X4 is MF2,4 and X5 is MF3,5 and X6
is MF3,6, then Y is Y3

Rule 4 If X1 is MF4,1 and X2 is MF4,2 and X3 is MF4,3 and X4 is MF3,4 and X5 is MF4,5 and X6
is MF4,6, then Y is Y4

Rule 5 If X1 is MF5,1 and X2 is MF2,2 and X3 is MF5,3 and X4 is MF3,4 and X5 is MF1,5 and X6
is MF5,6, then Y is Y5

Rule 6 If X1 is MF6,1 and X2 is MF5,2 and X3 is MF6,3 and X4 is MF3,4 and X5 is MF3,5 and X6
is MF6,6, then Y is Y6

Rule 7 If X1 is MF7,1 and X2 is MF6,2 and X3 is MF7,3 and X4 is MF3,4 and X5 is MF5,5 and X6
is MF6,6, then Y is Y7

Rule 8 If X1 is MF8,1 and X2 is MF2,2 and X3 is MF8,3 and X4 is MF4,4 and X5 is MF6,5 and X6
is MF4,6, then Y is Y8

The proposed model uses the sigmoid membership function for each input variable.
Additionally, for each of the inputs X1 to X6, a number of 8, 6, 8, 4, 6, and 6 Gaussian
membership functions have been used, respectively. These functions can be found in
Figure 7. The details of the parameters (mean and variance) of these functions determined
from the learning process of the ANFIS model based on 153 datasets are also shown
in Table 4.
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Table 4. The parameters of the membership functions.

Variable Parameter MF 1 MF 2 MF 3 MF 4 MF 5 MF 6 MF 7 MF 8

X1 Variance 0.043 0.042 0.043 0.048 0.047 0.048 0.053 0.035
Mean 0.197 0.223 0.177 0.341 0.257 0.160 0.336 0.256

X2 Variance 0.037 0.032 0.121 0.029 0.050 0.034 - -
Mean 0.199 0.234 0.581 0.230 0.229 0.244 - -

X3 Variance 0.035 0.039 0.090 0.027 0.034 0.045 0.030 0.033
Mean 0.256 0.202 0.489 0.247 0.231 0.225 0.250 0.206

X4 Variance 0.174 0.064 0.070 0.171 - - - -
Mean 0.728 0.102 0.109 0.702 - - - -

X5 Variance 0.108 0.100 0.099 0.165 0.101 0.091 - -
Mean 0.577 0.160 0.131 0.812 0.538 0.270 - -

X6 Variance 0.054 0.059 0.077 0.055 0.059 0.074 - -
Mean 0.164 0.252 0.405 0.222 0.184 0.435 - -

The first step in determining the target variable by the proposed model is to calculate
the weight of each rule using Equation (2). The parameters nMF,i, m, v, Wr in this equation
represents the number of membership functions for the ith input, mean, and variance of
the membership function, and the weight of the rth rule.

Wr =
6

∏
j=1

exp

(
−
(
Xj − mj,i

)
2
(
vj,i
)2

)
i = 1, . . . , nMF,i (2)

Based on the mentioned equation, the weights of each rule can be found by Equations (3)–(10)
for rules 1 to 8, respectively.

W1 = MF1,1 MF1,2 MF1,3 MF1,4 MF1,5 MF1,6 (3)

W2 = MF2,1 MF2,2 MF2,3 MF3,4 MF2,5 MF2,6 (4)

W3 = MF3,1 MF3,2 MF3,3 MF2,4 MF3,5 MF3,6 (5)

W4 = MF4,1 MF4,2 MF4,3 MF3,4 MF4,5 MF4,6 (6)

W5 = MF5,1 MF2,2 MF5,3 MF3,4 MF1,5 MF5,6 (7)

W6 = MF6,1 MF5,2 MF6,3 MF3,4 MF3,5 MF6,6 (8)

W7 = MF7,1 MF6,2 MF7,3 MF3,4 MF5,5 MF6,6 (9)

W8 = MF8,1 MF2,2 MF8,3 MF4,4 MF6,5 MF4,6 (10)



Buildings 2022, 12, 1386 10 of 17

After calculating the weight of each of the eight fuzzy rules of the ANFIS model, it
is necessary to determine the amount of linear functions in the ANFIS structure. In the
model presented in this article, for the output part of each rule, there is a linear polynomial
(Yr) in the form of Equation (11). In addition to the mean and variance of the membership
functions, the coefficients of linear polynomials are also determined in the training process
of the ANFIS. These coefficients are presented in Table 5.

Yr = c1,rX1 + · · ·+ c6,rX6 + c0,r r = 1, . . . , 8 (11)

Table 5. The parameters of linear functions.

Linear Polynomial C1 C2 C3 C4 C5 C6 C0

Y1 0.091 −0.686 1.183 0.007 −0.009 0.537 −0.075
Y2 0.606 0.344 0.757 −0.035 −0.130 0.112 −0.166
Y3 0.910 0.152 0.372 −0.015 −0.327 0.570 −0.152
Y4 0.340 −1.496 −0.754 0.056 0.025 0.480 0.560
Y5 0.623 −0.383 0.199 0.004 0.027 0.374 0.039
Y6 0.516 0.422 0.615 −0.070 −0.704 −0.092 0.040
Y7 0.346 0.980 0.413 0.004 −0.191 0.490 −0.208
Y8 12.348 0.147 0.331 −0.109 2.446 0.049 −3.589

Using the values obtained for the weights and polynomials, the final output value of
ANFIS, Yn, is determined by Equation (12).

0.1 ≤ (Yn =
∑8

r=1 WrYr

∑8
r=1 Wr

) ≤ 0.9 (12)

Since the data values are normalized before modeling, the obtained output value is
also normalized (between 0.1 and 0.9). Therefore, it is necessary to calculate the final value
of the ANFIS model by inverting Equation (1). This is done by Equation (13).

Y (MPa) = 440.9 Yn − 13.42 (13)

6. Performance of the Model

In this section, the performance of the obtained model is evaluated. As mentioned
earlier, the first data series is used in the training phase of the model. In the training phase,
these data, which are the results related to 153 column laboratory tests, have been used
to estimate the error in each iteration and improve the performance in the subsequent
iterations. The results of the training phase can be seen in Figure 8 for the whole training
dataset. As seen in Figure 8, the training phase was done well, and the final model had
a very high accuracy in estimating the output values, so there is a very small difference
between the values predicted by ANFIS and the laboratory. The Root Mean Squared Error
(RMSE) value for the results of this part of modeling for the normalized training dataset is
reported to equal 0.0143.
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Despite the success of the training process, it is necessary to evaluate the model’s
performance for new data that have not been used in training and to validate the model’s
accuracy. This task has been done using the test data sets (27 data). By applying this data
series to the trained model, the model’s calculated error values and ability to estimate the
target output value have been checked. The results are depicted in Figure 9.

The RMSE value for the normalized test data sets at this stage was 0.021, which is
acceptable. Additionally, compared to the results obtained from the laboratory, the values
determined by ANFIS have very little difference. Therefore, it can be concluded that
the proposed model and the formulation extracted from it have sufficient reliability and
accuracy. The regression plots for the two mentioned phases (train and test) can be seen in
Figure 10 for the normalized database. It is clear from the figure that the ANFIS has good
agreement with the experimental tests.

As stated in the previous section, the values obtained from ANFIS are normalized
(between 0.1 and 0.9), and converting them into real values is necessary. To this end,
Equation (13) was presented. Using this equation, the values obtained from the extracted
formulation of the ANFIS model were converted into real values, the results of which are
depicted in Figure 11. Based on this figure, the average error of the model is equal to 0.283.
To determine this value, the difference between the amounts of the laboratory and the
ANFIS has been determined and used as an error. The RMSE value of the model for the
entire database is 6.834. The histogram of errors also indicates that in most of the data, the
errors are close to zero. According to the findings of this section, it can be concluded that
the proposed model has a high ability to estimate the target parameter (the ratio of axial
compressive capacity to the net area of the bearing plate minus the duct area).
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7. Sensitivity Analysis

In this section, the sensitivity of the proposed model to the changes in each of the
six input variables is examined and evaluated. To do this, six databases containing 20 data
were created. In each of the six databases, five input variables have a fixed value (the
median value presented in Table 2), and only one of the variables is changed between its
minimum and maximum (see Table 2). The output value has been calculated by applying
these data to the ANFIS model. The results can be seen in Figure 12.

In Figure 12, the output of the model is shown vs. the variable whose value has been
changed. According to the results obtained from the above analysis, it is clear that by
increasing the X1 (the compressive strength of concrete), X3 (the ratio of the area confined
by stirrups to the bearing plate area), and X6 (the volumetric ratio of stirrups), the output
parameter of the model also increases so that there is an almost linear and direct relationship
between the input and output variables. In the case of the variable X4 (the ratio of the duct
diameter to the section width), the situation is different, so its increase leads to a decrease
in the ANFIS results. Regarding the two variables, X5 (the yield strength of stirrups) and
X2 (the ratio of the gross supporting area to the bearing plate area), the results show that
their changes can decrease or increase the output (the ratio of axial compressive capacity to
the net area of bearing plate minus the duct area) of the model, depends on the amount of
the input. For example, when the compressive strength of the column increases, the ratio
of axial compressive capacity to the net area of the bearing plate minus the duct area also
increases. The same results can be seen for the ratio of the area confined by stirrups to the
bearing plate area and the volumetric ratio of stirrups, in most cases. The results of the
sensitivity analysis also indicated that when the ratio of the duct diameter to the section
width increases, the output of the model decreases.
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8. Comparison Study

In this section, the performance of the relationships proposed in this research, which
is also shown for the entire data in Figure 13, is compared with the existing models GB/T
50010-2010 [30], Breen et al. [25], Bonetti [27], and Li et al. [20]. For this purpose, three
statistics parameters, including Error mean (Er), determination coefficient (R2), and RMSE,
have been used. The results are presented in Table 6.
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Table 6. The comparison results.

Parameter Li et al. [20] Bonetti [27] GB/T 50010-2010 [30] Breen et al. [25] ANFIS

Er 1.077 0.866 0.979 0.891 0.283
R2 0.864 0.749 0.816 0.802 0.987

RMSE 21.91 29.72 25.40 26.38 6.83

The minimum of the average error value Er for the other models is equal to 0.866.
However, the ANFIS average error was obtained as 0.283, much lower than the error of
the other models. For the ANFIS value of 0.99331 for the correlation coefficient (R), the
determination coefficient (R2) is 0.987, which shows the closeness of the laboratory values to
the predicted results; the highest value was related to the formulation of this article, which
is very close to 1. Regarding the RMSE error, the best value is observed in the ANFIS model.
According to the results obtained in this section, it can be seen that the best performance
among all models is for ANFIS. Therefore, it can be used as a suitable tool to estimate the
target variable, which is the axial compressive capacity ratio to the bearing plate’s net area
minus the duct area.

9. Conclusions

Most of the analytical and laboratory studies have been conducted based on calculation
methods in the literature framework of statistical and regression techniques. However,
when the system has non-linear behavior and many influential parameters, using classical
approaches cannot be a suitable solution. Although the use of machine learning methods
has been previously used to determine the performance of structural elements as an
alternative method, presenting the computational relations derived from such models has
been neglected in many cases. The main reason for this is the structural complexities of the
machine learning models. This article presented a neuro-fuzzy model, namely ANFIS, to
predict the target variable. The proposed model has been adjusted and evaluated based on
laboratory data. The results showed that the model has a high accuracy for estimating the
target parameter. To increase the efficiency of the ANFIS, its formulation was also extracted
from the computational structure of the model. The results obtained from the sensitivity
analysis show that as the compressive strength of the column increases, the output value
also increases. Increasing the ratio of the area confined by stirrups to the bearing plate area
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and the volumetric ratio of stirrups can also increase the output parameter. In contrast, with
the increase in the value of the ratio of the duct diameter to the section width, a decreasing
trend is observed in the target variable. Based on the sensitivity analysis results, the yield
strength of stirrups and the ratio of the gross supporting area to the bearing plate area do
not constantly affect the changes in the output, and it can increase or decrease depending
on the input variable value. In the end, the accuracy of the extracted equations of the
ANFIS and the existing techniques was compared, and the errors were examined. The
results indicated that the proposed model has the least error among all equations and has
the most accuracy. Therefore, it can be used as a predictive model to determine the target
variable, which is the axial compressive capacity ratio to the bearing plate’s net area minus
the duct area.
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