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Abstract: Theoretical and experimental studies on loadbearing masonry walls have shown the signif-
icant influence of the axial load level (i.e., precompression) and wall aspect ratio on in-plane lateral
resistance. Nonetheless, the impact of the precompression and spatial variability of the material
properties needs to be further investigated at the scale of walls with openings. This study presents a
stochastic analysis of unreinforced (URM) pier-spandrel systems subjected to both axial loads on
piers and lateral loads, considering the spatial variation in material properties. A discontinuum-based
computational model was utilized to assess the force—displacement behavior of a benchmark pier—
spandrel structure under different vertical precompression levels on piers. A total of 750 simulations
were carried out to propagate material uncertainties in lateral load analysis. The proposed modeling
strategy, based on the discrete element method, explicitly represents joint openings, sliding, and crush-
ing phenomena at the contact points defined between the adjacent discrete rigid blocks. According
to the validated computational modeling strategy, meaningful inferences were made regarding the
effect of the precompression level on the maximum displacement and ultimate lateral load-carrying
capacity of the benchmark URM pier-spandrel system. The results showed that vertical pressure
on piers had considerable influence on the displacement ductility of the system while yielding less
variation in the displacement capacity. Furthermore, the appealing feature of the spatial probabilistic
analysis is noted in the variation in the lateral load-carrying capacity of the structural system.

Keywords: discrete element method; masonry; material uncertainty; pier-spandrel system; proba-
bilistic analysis; Monte Carlo simulation; spatial variability

1. Introduction

The vast majority of residential buildings and architectural heritage were built using
unreinforced masonry (URM), a composite material consisting of units (stone, clay brick,
earth blocks, etc.) and often a binding agent such as mortar. Each constituent of masonry
shows significant uncertainty in terms of its mechanical properties with a highly nonlinear
material behavior [1]. Therefore, a probabilistic approach considering predefined variations
in material properties varying spatially can effectively predict the behavior and capacity of
URM structures. Recently, the probabilistic analysis of masonry structures has been studied
by various researchers [2-11]. In most of the existing works on the probabilistic analysis of
masonry structures, the mechanical properties of masonry are assumed to be uniformly
distributed within the structure, while only very few papers consider the spatial variation
in those properties [3,9,11-14]. As evidenced by those studies, the spatial variation could
change the damage pattern and variation in response parameters. Thus, more research is
necessary to understand and quantify such effects.

A typical combination of masonry composite consists of strong units and weak mortar
joints, where mortar joints delineate weak planes prone to failure. This phenomenon yields
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localized cracks in the form of joint openings and sliding along the head and bed joints in
URM walls. Conversely, weak unit-strong joint action causes opposite behavior, in which
the cracks predominantly pass through the masonry units [15-17]. In each combination
of masonry constituents, progressive damage can be noticed in URM walls subjected
to lateral loading due to successive failures at the masonry units and mortar joints. As
witnessed in the past and recent earthquakes, URM buildings are vulnerable to seismic
loads (unless reinforced), particularly when no proper connection is implemented between
the structural elements and orthogonal walls, among many other factors [18-20]. The in-
and out-of-plane failure of masonry walls are the two common collapse modes that can
develop independently or interact with each other based on the construction quality, wall
configuration, and openings. However, when facades are properly connected to orthogonal
walls and floor systems are significantly stiffer than URM walls, in-plane mechanisms
become more likely to develop under earthquake forces that are distributed to the in-plane
walls as proportional to their own lateral stiffness.

Different computational modeling techniques are available to simulate the in-plane
behavior of URM walls [21]. The first approach considers the composite nature of masonry
as a continuum (denoted as macromodeling), where the entire URM structure is modeled
via an equivalent homogeneous medium with averaged material properties corresponding
to the main features of masonry (e.g., [22-27]). The main drawback of this technique is
that it may not accurately capture the damage-induced anisotropy and failure mechanism
governed by the morphological features of the masonry [28] unless a computational homog-
enization technique is adopted to capture failure localizations that stem from the mesoscale
damage as demonstrated in the literature (see, e.g., [29-31]). Thus, macromodeling is
commonly used for the large-scale analysis of masonry buildings. The second technique,
so-called micromodeling, is proposed to overcome these challenges by considering the ma-
sonry constituents (i.e., masonry units, mortar, and unit-mortar interfaces) in the mesoscale
(e.g., [32-35]). However, since this approach is computationally demanding with a large
number of input parameters, it is only applicable to small-scale problems; hence, it is im-
practical for real-life large-scale buildings. The alternative and the most common approach,
simplified micromodeling, is the midway between those techniques where the masonry
units are explicitly represented as expanding up to the half thickness of the mortar joints,
and mortar joints are indicated via zero-thickness interfaces (e.g., [36—44]). This approach
reduces the required number of input parameters and provides less computational demand
without compromising the detailed and explicit representation of essential failure modes in
the URM walls (i.e., sliding and joint opening). Specifically, cracking in masonry units, joint
opening and sliding at the unit mortar interfaces, and masonry crushing can be addressed
in the simplified micromodeling, which will be discussed in the next section in detail. The
well-known numerical modeling strategies used in micromodeling are the discrete element
method (DEM) and discontinuous finite element analysis. Throughout this research, the
DEM approach was utilized to simulate the in-plane behavior of a URM pier—spandrel
system.

The lateral load-carrying capacity and failure mechanism of URM walls are primarily
affected by material properties, boundary conditions, precompression stresses, geometrical
properties, and wall cross section morphologies [45-48]. In the case of URM pier-spandrel
systems, the coupling effect between the pier and spandrel provides additional complexity
to the problem along with the other parameters. Recently, pier—spandrel systems’ behavior
has been investigated experimentally and numerically to better understand the coupling
effect, load-carrying capacity, and the associated collapse mechanisms [9,10,49-54]. In this
context, this research aims to strengthen the existing knowledge in the literature, offering a
detailed look at the lateral load-bearing capacity of URM pier-spandrel structures under
different precompression forces, including material uncertainty and its spatial variation
throughout the structure. A simplified micromodeling approach, denoted as discrete
rigid block analysis (D-RBA), was utilized to analyze the reference URM pier—-spandrel
system. The validated modeling technique was further utilized to conduct a comprehensive
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parametric analysis to quantify the influence of vertical precompression forces on the lateral
load-bearing capacity and displacement behavior of the structural system. Three levels of
precompression stresses, i.e., low, medium, and high stress (approximately corresponding
to 0.2 MPa, 0.38 MPa, and 0.75 MPa, respectively), are considered. The variation in the
response was quantified, and the results were compared to highlight the effect of the
vertical precompression stress.

2. Computational Modeling: Discrete Rigid Block Analysis (D-RBA)

In this study, a DEM-based approach was utilized to simulate the structural behavior
of URM pier-spandrel systems. The adopted modeling strategy was first developed by
Cundall [55] to analyze rock mechanic problems and simulate the progressive collapse
mechanism of jointed rock masses. In the late 1990s, DEM was used to assess the seismic
behavior of unreinforced masonry arches and walls, where the stone skeleton of the struc-
tures was represented as a group of rigid blocks [56]. In the last several decades, DEM
has become a strong alternative to the conventional finite element models and has been
employed excessively in the structural assessment of masonry structures for static and
time-history analysis [48,57-66].

In DEM, the composite and discontinuous nature of masonry is represented by a
system of rigid blocks that can interact with each other along their contact surfaces. It is
worth noting that, within the DEM framework, the distinct block may be rigid and/or de-
formable depending on the desired outcomes from the computational model. Throughout
this study, we used rigid blocks; hence, deformations were lumped at the contact surfaces.
As mentioned earlier, the proposed DEM-based approach is denoted as a simplified mi-
cromodeling technique in the literature [67], in which the masonry units are expanded
up to half thickness of the mortar joints, and mortar joints are indicated as zero-thickness
interfaces as shown in Figure 1. The mechanical interaction between the discrete blocks
was predicted using the point contact hypothesis, where each contact point had three
orthogonal springs with limited tensile strength and cohesive shear behavior [68].

Mortar Masonrif unit Simplified Micro-Model

Figure 1. Illustration of the simplified micromodel of a regular masonry texture.

Overlapping is allowed among adjacent blocks that are controlled by the predefined
contact stiffness in the normal (k,) and shear (ks) directions at each contact point (see
Figure 2). Typically, the Coulomb-Slip joint model is utilized in the shear direction, which
requires a cohesion and friction angle (T = ¢ + tan¢ (o), where c is cohesion, ¢ is the friction
angle, and ¢ is normal stress), whereas tensile stress is limited by the predefined strength
value (f7). Throughout this study, fracture-energy-based contact constitutive models were
utilized to better capture the postpeak response of the material in tension, shear, and
compression. A linear softening behavior was adopted for all three cases, where tension—
shear damage was coupled using a single damage parameter, as explained in [69,70]. In
the adopted modeling strategy, each masonry unit is represented via two blocks (with a
potential crack surface in between) to capture tensile failure (cracking) in the units. The
readers are referred to the most recent study of the authors for a detailed explanation of the
proposed approach denoted as discrete rigid block analysis (D-RBA) [10].
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Point contact
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Figure 2. Representation of point contact hypothesis and spring-frictional element model.

In DEM, the rigid block movements are computed by integrating translational and
rotational equations of motion using the central difference method for each block to obtain
new translational (il§+) and rotational velocities (wf*), given in Equation (1) (velocities are
evaluated at midtime intervals, i.e., t* =t + At/2,t~ =t — At/2, At: time step):

t

s .
. :ui

i T4 A (ZPf — A|ZF!|sgn (ilt_))

)
Wi = @~ + 4 (M)~ A[zM|sgn(w')

where ZPit, ZM;, I, and m represent the unbalanced force vector (i.e., the sum of
the contact forces, self-weight, and external forces), the unbalanced moment vector (i.e.,
the sum of moments produced by contact and external forces), the moment of inertia,
and the block mass, respectively. The quasistatic solutions were obtained from the equa-
tions of motions using Cundall’s local damping formulation, using damping force (i.e.,

F; = A|ZF!|sgn (itt_)) and moment (i.e., My = A|ZM![sgn(w'™)). It is noted that the

damping force and moment were calculated based on the magnitude of ZFit and ZMf,
respectively, and applied as opposed to the motion (A: a nondimensional force-based damp-
ing constant (default value is 0.8)) [71]. After calculating the new velocities (itf+, wf+), the
block positions were updated, and the corresponding action/reaction forces were obtained
based on the relative block displacement increments in the normal (Au,) and shear (Au;) di-
rections. The elastic contact stress increments were computed (i.e., the elastic normal stress
increment Ao = k,Au, and elastic shear stress increment At = ksAug, with k, and ks being
the normal and shear stiffnesses, respectively) and added to the old stresses (obtained in the
previous step). If the new stress state at the contact point violated the implemented failure
criteria, it was corrected and utilized in the next step. Finally, the new contact stresses were
multiplied with the associated contact area to obtain the contact forces, later utilized in the
equations of motion (Equation (1)). The explained computational procedure was performed
in an explicit time-marching scheme until reaching the quasistatic equilibrium from the nu-
merical solution. All DEM-based simulations were run using a three-dimensional discrete
element code, 3DEC, developed by ITASCA Consulting Group, Minneapolis, CO, USA [72].
Numerical stability was ensured during the analysis by utilizing sufficiently small time
steps (At < Atcy). The critical time step (At.r) was automatically computed by 3DEC based
on the minimum mass and maximum contact stiffness defined in the numerical model

(Ater = 0.2/ My /kn,max)-

3. Brief Overview of Data Preparation and Material Uncertainty

This section presents the proposed data preparation strategy and the reference study
utilized as a benchmark. The authors already presented the validation of the computational
model (see [10]); hence, only an overview of the test setup and analysis model are discussed
in this paper.
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3.1. Benchmark Study and Validation

In the benchmark study, a URM pier-spandrel structure built with tuff stones and

lime mortar was subjected to in-plane pushover testing with 200 kN precompression loads
kept constant on each pier and displacement-controlled lateral loading until reaching
approximately 1% drift [73]. Each pier was 1.70 m long and 3.62 m high, whereas the
opening between them was 1.70 m long and 2.30 m high. The spandrel that connected
the piers to each other was 1.00 m high, with a timber lintel over the opening to support
the masonry above. Identical boundary conditions and geometrical features were used
in the numerical model where the lateral loads were applied to the cantilevered piers, as
shown in Figure 3a. Lateral loads were prescribed as constant velocity boundary conditions
to mimic the displacement control testing while the base shear was recorded during the
analysis. As shown in Figure 3b,c, according to the analysis results, a similar collapse

mechanism, including the rocking behavior of piers, flexural cracks at the pier—spandrel
connections, and diagonal tension cracks at the spandrel, was obtained that was in line
with the experimental findings. It is worth noting that the material and contact properties
were taken from the reference study without conducting any calibration procedure. The
readers are referred to the early publication of the authors for further details [10].

()

(b)

Figure 3. Illustration of the loading pattern and results obtained from D-RBA: (a) representation of
external loads, (b) collapse mechanism, and (c) failed contact points (tension combined with shear)

along the unit-mortar interfaces (shown in red).

3.2. Data Preparation
The adopted probabilistic analysis considered the variation in the joint and unit

properties for masonry as random and dependent parameters. The random parameters
were determined based on their effect on the strength and displacement capacity of the
pier—spandrel system. These parameters are the compressive strength of masonry (fc),
the joint (interface) tensile strength (f; ;), the tensile strength of units (), and the joint
friction angle (¢), as shown in Table 1. The experimental results [73-75] were used to obtain
the mean value and coefficient of variation (CoV) of the random parameters.
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Table 1. Variables, probability distributions, and statistical parameters.

Random Variable Probability Distribution Mean (u) Coefficient of Variation (CoV)

fem (MPa) Normal 3.96 0.125
ft,j(MPa) Lognormal 0.15 0.30
ft, u(MPa) Lognormal 0.23 0.22
¢ (°) Normal 16 0.20
Dependent Variable Relationship
C 15 ft,j
GJIf 0.029 ft,bond
Ge 3.2 fm

The dependent variables were presumed to be fully correlated with the random
variables, such that their mean and CoV were the multiples of the statistical parameters
of the random variables. As such, the cohesion of the units and joints was defined by
the following relations: ¢, = 1.5f; ynir and cpopg = 1.5f¢ pond, respectively. Similarly, the
fracture energies were determined following the suggested ductility index values in [76].
Additionally, it is noted that the elastic stiffness of the lintel was considered constant during
the analyses (adopted as Ejj;,; = 0.3 GPa). A normal distribution was used for compressive
strength and friction angle parameters, whereas a lognormal distribution was assigned to
the tensile strength of units and joints, complying with the earlier work of the authors and
the pertinent literature [5,7,16,77,78]. The variables and their statistical distributions are
presented in Table 1.

Once the statistical distributions and their parameters were defined, the Latin Hy-
percube Sampling (LHS) method [79] was used to obtain the sample values for Monte
Carlo simulations. For each vertical pressure level, 250 simulations were run, i.e., adding
up to 750 simulations in total. No correlation between the random variables was consid-
ered. The spatial variability of the parameters was set up in the following way: Each joint
(or contact plane) in the structural system was defined with an identification number to
assign the parameter values later. The identification numbers were defined separately
for 367 units/blocks and 1211 unit-mortar interfaces to assign the mechanical proper-
ties effectively. In each of the 250 simulations, 367 values of unit tensile strength and
1211 values of joint tensile strength, friction angle, and masonry compressive strength
were sampled using the statistical distributions and parameters given in Table 1. Once
the contact properties were determined for each contact surface, either between or within
the blocks, they were assigned to the associated contact points, providing homogeneous
material property distribution through the contact plane. It is underlined that no spatial
correlation was considered for the mechanical properties among the adjacent joints since
it did not necessarily improve the understanding/quality of the probabilistic analyses,
as discussed in [41]. The sampling process was repeated for 250 simulations. Once the
parameters were generated for 250 simulations, the same set was used for all three vertical
pressure levels. Three vertical stresses (or precompression loads), i.e., low, medium, and
high, were determined to correspond approximately to 0.2 MPa, 0.38 MPa, and 0.75 MPa,
respectively. Therefore, a total of 750 pushover analyses were performed.

4. Results and Discussion

The effect of the precompression stress on both the force and displacement capacities of
the URM pier-spandrel system was investigated using the stochastic discontinuum-based
model. The lateral force was applied up to a lateral displacement of 70 mm, corresponding
to a 2.4% drift ratio. However, the force-displacement curves were truncated at 80% of the
maximum lateral force once passing the ultimate load. The force—displacement behavior of
the pier—spandrel system is presented as the relationship of the normalized displacement
with the lateral load and with a seismic coefficient in the double vertical-axis plots. The
normalized displacement represents the drift value, the ultimate displacement normalized
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by the height of the application point of the lateral loading (2.91 m from the ground level).
On the other hand, the seismic coefficient is the lateral force normalized by the weight of
the pier—spandrel system plus the vertical forces applied to the piers.

As expected and depicted in Figure 4a—c, the increasing precompression stress level
increased the lateral load-carrying capacity. On the other hand, the seismic coefficient was
between 0.42-0.48 for the low pressure, whereas it decreased to 0.34-0.37 for the medium
pressure and 0.25-0.27 for the high pressure. The decrease stems from the increased vertical
forces on the piers. The increase in the load capacity brought about a decrease in the lateral
displacement capacity of the system, which is noted in Table 2.
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Figure 4. Force and seismic coefficient under varying drift for (a) low, (b) medium, and (c) high
vertical pressures.
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Table 2. Average maximum lateral force and drift for each precompression level.

Low Medium High
Pressure Pressure Pressure
(0.20 MPa) (0.38 MPa) (0.75 MPa)
H Mean (kN) 120.3 166.3 228.8
max CoV 0.02 0.01 0.01
Spatial
0 Mean (%) 1.23 0.73 0.51
max CoV 0.40 0.54 0.23
Mean (kN) 163.3
H, N/A N/A
Nonspatial " CoV 0.07
[10] Mean (%) 1.10
Omax CoV ’ N/A 0.43 N/A

The average maximum values of the peak lateral resisting force (Hy;y) and their
coefficient of variation are outlined in Table 2. It was observed that the variation in the
maximum lateral load was much lower than the variability of the ultimate drift (6x),
complying with the existing literature and the authors’ previous work on the same pier—
spandrel system. For all cases considered, the variation in the maximum lateral load was
less than 3%, indicating a highly reliable estimation of the load-carrying capacity. This
phenomenon can also be observed in Figure 5, where the force-drift curves are given for
both nonspatial and spatial analyses. Still, the ultimate drifts, considered at 0.8 Hy;;5x on
the postpeak descending branch of force—displacement curves, had significantly higher
CoV, ranging between 23% and 54%, which highlights the noticeable variation in the
displacement capacity. A different observation made in this study was the decrease in the
variation in the average maximum lateral load when the spatial variation in the material
properties was considered. This phenomenon is better observed in Figure 5a, where the
response was visually more dispersed than the one in Figure 5b.

200 T T T 200

150 ¢ 150
z : z
& <)

aé 100 F B8 § 100
2 <

50 50

0 ‘ - * 0

0 0.5 1 1.5 0 0.5 | 1.5
Drift (%) Drift (%)

(a) (b)

Figure 5. Force—drift curves obtained from (a) nonspatial analysis [10] and (b) spatial analysis of the
present study (vertical force above each pier is 200 kN).

Another observation was the significant change in the drift response with the changing
vertical precompression levels, see Table 2. The variability was much less for the high-
pressure level, where presumably a more uniform failure pattern and force—drift behavior
was observed, as seen in Figure 4c. On the contrary, the medium-level pressure results
incorporated a highly variable response, also manifested in the CoV of maximum drifts.
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Given that the failure modes were well separated, the statistical distributions of the
load and drift capacities might be investigated and later used in a reliability assessment.
As seen in Figure 6, for the high precompression loads where the behavior was more
uniform, these distributions resembled beta and lognormal distributions. Further research
is required to observe and quantify how the response parameters change together with
their relationship with the failure mechanisms.

. 50 T T

|
IS
S
:
|

o
S
T
L

[
S
T
I

# of Observations

B 1 10 f 1

220

L L 0 I L L I A I e —

225 230 235 03 04 05 06 07 08 09 1
H (kN) 0 (%)

(a) (b)

Figure 6. Ultimate force (Hyqx) and drift (6,4x) distributions for high precompression analyses,

illustrated in (a) and (b), respectively.

5. Conclusions

This study explored the lateral load-carrying capacity of URM pier-spandrel systems
subjected to different precompression loads. The adopted computational model, validated
earlier, explicitly represented the weak planes (i.e., unit-mortar interfaces) and masonry
units as a system of rigid blocks and considered the uncertainty in the material properties.
Moreover, the proposed modeling strategy offered a spatial variation in the strength
properties of the mortar joints and units embedded in the contact points. There were
250 simulations performed for each precompression pressure, denoted as low, medium,
and high. According to the analyses, the conclusions are summarized as follows.

Compared to the authors’ previous study, where a nonspatial probabilistic analysis
was performed, remarkably less variation in the average maximum lateral load was found
considering the spatial variation in the material properties. The adopted spatial probabilistic
D-RBA provided considerably less variation in the ultimate load (lower than 3%) as opposed
to the ultimate drifts, which had a coefficient of variation ranging from 23% to 54%.

Furthermore, the effect of higher vertical pressure on the variation in ultimate drift
(corresponding to 80% of the maximum lateral force) was noticed. Compared to medium
and low precompression loads, more consistent force—displacement (or force vs. drift)
responses were obtained with relatively less variation in the maximum displacement. This
observation suggests that there should be less variation in the collapse mechanism in
pier-spandrel systems when the vertical pressure gets higher. In future studies, the authors
will further investigate this phenomenon by implementing automatic damage classification
algorithms to exploit the type of collapse mechanism and the relationship between the
applied vertical pressure. Overall, these conclusions strengthen the probabilistic analysis
of URM structures and provide a detailed understanding of their structural behavior.
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