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Abstract: We present a finite element model updating technique for soil-structure system identifica-
tion of the Millikan Library building using the seismic data recorded during the 2002 Yorba Linda
earthquake. A detailed finite element (FE) model of the Millikan Library building is developed in
OpenSees and updated using a sequential Bayesian estimation approach for joint parameter and
input identification. A two-step system identification approach is devised. First, the fixed-base
structural model is updated to estimate the structural model parameters (including effective elastic
modulus of structural components, distributed floor mass, and Rayleigh damping parameters) and
some uncertain components of the foundation-level motion. Then, the identified structural model is
used for soil-structure model updating wherein the Rayleigh damping parameters, the stiffness and
viscosity of the soil subsystem (modeled using a substructure approach), and the foundation input
motions (FIMs) are estimated. The identified model parameters are compared with state-of-practice
recommendations. While a specific application is made for the Millikan Library, the present work
offers a framework for integrating large-scale FE models with measurement data for model inversion.
By utilizing this framework for different civil structures and earthquake records, key structural model
parameters can be estimated from the real-world recorded data, which can subsequently be used
for assessing and improving, as necessary, state-of-the-art seismic analysis and structural modeling
techniques. This paper presents an effort towards using real-world measurements for large-scale FE
model updating in the soil and structure, uniform soil time domain for joint parameter and input
estimation, and thus paves the way for future applications in system identification, health monitoring,
and diagnosis of civil structures.

Keywords: finite element model updating; soil-structure interaction; system identification; joint
system and input identification; Bayesian estimation; Millikan Library

1. Introduction

The dynamic response of a building structure to an earthquake excitation is occasion-
ally the result of a complex interaction between the structural system and the underlying
and surrounding geology. Since modeling the physics of a coupled soil-structure system
in detail is an intricate undertaking, the state of practice has adopted simplified modeling
and analysis procedures, such as the substructure approach (e.g., [1,2]). In this approach,
the soil flexibility and energy dissipation are modeled using distributed spring and dash-
pot elements to which the foundation input motions (FIMs) are applied as uniform base
excitations [3]. The stiffness and viscosity of these elements are derived using simplified
analytical methods, which are nonetheless based on idealized and restrictive assumptions—
e.g., linear elastic response behavior of soil and structure, uniform soil half-space (or soil
profiles with stiffness gradually varying with depth [4]), etc. These simplifying assumptions
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and the empirical nature of the mechanical analogs (e.g., soil springs and dashpots) could
potentially lead to unquantified errors in predicting the seismic responses of real-world
building structures, even though the simplified models have demonstrated acceptable accu-
racy in idealized case studies (e.g., [5]). Furthermore, integrating the substructure method
with the Rayleigh damping model—which itself has a highly empirical nature—introduces
another source of uncertainty in the seismic analysis of building structures. Clearly, there is
an inconsistency between the relatively sophisticated mechanics-based techniques available
for structural system modeling and the crude simplicity of the underlying assumptions
that guide the damping and soil-structure interaction (SSI) models. It appears clear that
the efforts on damping and SSI characterization should be guided by observations distilled
from real-life data.

Soil-structure interaction (SSI) analysis has been an active research subject for more
than 40 years (e.g., [6]). SSI effects can be classified into two categories: kinematic and
inertial interaction effects [7]. Referred to as the FIMs, the earthquake excitations experi-
enced by a structure-foundation system are affected by the stiffness contrast between the
foundation stiffness and the surrounding geology. Therefore, FIMs are generally different
from the Free-Field Motions (FFMs) that would have been recorded in the absence of the
foundation system. The effects of foundation stiffness and geometry, which result in dis-
crepancies between FIMs and FFMs, are collectively referred to as the kinematic interaction
effects. Inertial interaction effects are a result of the foundation-superstructure mass, which
imparts inertial forces onto the surrounding soil and causes the foundation to experience
a response different from the FIMs. Due to the inertial interaction effects, the vibrating
structure operates as a wave source and alters the wave field around the foundation system.
In the substructure modeling approach, these two effects are treated separately (e.g., [8]).
That is, FIMs are analytically or numerically calculated based on the soil and founda-
tion properties (e.g., [9]). Then, inertial effects are represented by frequency-dependent
impedance functions that are estimated through analytical, numerical, or experimental
studies (e.g., [10]). Finally, the superstructure on top of the impedance functions is analyzed
under the estimated FIMs.

In this study, we develop a model inversion framework that can be used to back-
calculate the soil-structure model parameters from the seismic responses of real-world
buildings. By repeating this effort for different buildings and earthquake records, the
estimation results can be summarized and compared with the state-of-practice recommen-
dations to improve the present seismic analysis capabilities and predictive models for
building structures. We apply the model inversion framework that is devised in the present
study to the data recorded from the Millikan Library building during the 2002 Yorba Linda
earthquake, which was a low-amplitude seismic event. The response of the building during
this small event was nearly linear elastic. As such, it provides an opportunity to compare
the estimation results with linear elastic seismic analysis practices.

The utilized model inversion framework is based on a finite element (FE) model
updating approach formulated in the time domain, using a sequential Bayesian estimation
method [11]. The FE model updating approach has been developed and verified previously
using numerically simulated data (e.g., [12,13]). This paper presents an effort towards
using real-world measurements for large-scale FE model updating in the time domain,
and thus paves the way for future applications. Although the presented model updating
approach is used along with a linear FE model in this study, the approach can be readily
extended to nonlinear FE models of civil structures.

In what follows, the Bayesian FE model updating approach and its algorithmic details
are briefly discussed in Section 2. Section 3 provides the modeling details of the Millikan
Library building. A two-step system identification approach is introduced in Section 4,
which is applied to the Millikan Library data in Sections 5 and 6. An identifiability analysis
accompanies each system identification step to select the estimation parameters. Finally,
the key estimation results are summarized and compared with available literature and the
state of practice in Section 7.
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2. Data Assimilation through FE Model Updating in the Time Domain

The finite element model of a building structure depends on various “model param-
eters”. Model parameters include, but are not limited to, inertial properties, damping
parameters, parameters that characterize the stiffness properties of the structural and
nonstructural components, and the time histories of the unmeasured components of base
excitation. If the soil-structure interaction effects are included in the FE model, then the
parameters used to model the soil subsystem and the time history of FIMs are also un-
measurable and unknown. Using the recorded acceleration response time histories of the
building during an earthquake, our objective is to identify the best estimates of the un-
known model parameters along with the input excitation time history, in order to minimize
the discrepancy between the FE-predicted and measured structural responses.

The estimation problem is tackled by updating iteratively and sequentially the joint
probability distribution function (PDF) of the unknown model parameters and the discrete
values of the input motion time histories using a Bayesian inference method. The basics
of the sequential FE model updating method for joint system and input identification are
presented in [11]. Here, we briefly review the technical background of this method and
highlight the new improvements introduced for this study.

2.1. Bayesian FE Model Updating in Time Domain for Joint System and Input Identification

The predicted response of a FE model at time step i to an earthquake excitation time
history can be expressed as [14]

yi = hi(0,uf,) M

where ;11- € R™*1 denotes the vector of structural response quantities predicted by the
FE model at time stepi (i=1,2,...,k), 0 € R"6*1 denotes the FE model parameter
vector, u‘lg € R"i*! denotes the vector of unknown or unmeasured input ground motion
at time step i, n;, denotes the number of unknown or unmeasured input ground motion

1 2

unmeasured input ground motion time history. h;(...) is the response function of the FE
model at time step 7, which, in general, is a nonlinear function of © and ii‘%i. The measured

g AT T Tl
components, and uj,; = (u ) (u ) . (ui ) is the vector of the unknown or

response vector of the structure, y;, is related to the FE-predicted response, ;11-, as ([12-14])
Vi (9' ﬁf:i) =Yi~Yi 2

where v; € R"*! is the simulation error vector, which accounts for the misfit between the
measured and FE-predicted responses. This misfit stems from the output measurement
noise, parameter uncertainties, and model errors. Model errors stem from simplifying
idealizations adopted when devising the model as well as deviations in its geometry
and configuration from the real-life structure it represents, which result in an inherent
discrepancy between the FE model prediction and the measured structural responses [15].

Given an unbiased estimate of © and i.i‘(i:k, it is assumed here that the simulation
error can be modeled as a stationary, zero-mean, and independent Gaussian white noise
process [16]. Therefore, the likelihood function can be derived as

1 e—lv.TR’lvl-
(2m)" /2 |R[/2

L mmie) R (i h(0,i)
(2m)" 2 |R[/2

p(vileif,) =p(vi) =
r 3)

where |R| denotes the determinant of the diagonal matrix R € R"*", which is the time-
invariant covariance matrix of the simulation error vector, i.e., R = E(ViviT),Vi. The
unknown model parameter vector and time histories of the unknown input ground motion



Buildings 2023, 13, 28

4 0f29

log(p(tpm | Yt]’”:t;")) =ko - %(Yt"’ Sy ht’” 24 (ll)m,uf g — 1)) R (Ytg":tg’ —hygp (‘l’m/{iélg:tq’A))

T
can be stacked into an extended unknown parameter vector defined as { = {BT (1"11 k) }

In a stochastic model inversion, the uncertainty in the unknown parameter vector is
characterized by a joint probability distribution function (PDF). The objective in FE model
updating is to find an estimate of the unknown parameters such that their joint posterior
PDF given the measured output response of the structure is maximized. This is referred to
as the maximum a posteriori (MAP) estimate. Using Bayes’ rule, it can be observed that

(w) — argmax p(W | y1) = argmax (¥ | ) X p(ib) @
MAP ¥ ¥

where p(y, | W) = [T, p(v;), and p(1p) is the joint prior PDF of the extended unknown param-
eters.

2.2. Sequential Finite Element Model Updating Using Model Linearization

Solving the MAP estimation problem shown in Equation (4) using a batch optimiza-
tion algorithm can be computationally demanding [11]. Therefore, a sequential estimation
approach is introduced in [11] to improve the computational efficiency and convergence
rate. In this approach, the estimation time domain is divided into successive overlapping
time windows, referred to as the estimation windows. The estimation problem is solved
iteratively at each estimation window to estimate the posterior mean vector and covari-
ance matrix of the unknown parameters. At each iteration, the FE model is linearized to
propagate the uncertainties in the prior PDF into the FE model response. The posterior
mean vector and covariance matrix of the unknown parameter vector are then derived
using Equation (4), and used as prior information for the next iteration. Once the iterations
converge for an estimation window, the estimated mean vector and covariance matrix are
transferred to the next estimation window and are used as prior information. In what follows,
the mathematical process of the sequential Bayesian estimation approach is outlined.

Assume that the m*™ estimation window with length ; spans from time step #?" to time
lJ’Vl

1l’m) = H,-Z:t;n p(v;), and assuming

a Gaussian distribution for the joint prior PDF, the natural logarithm of the posterior joint

step t5', where t; = t;! — t]". Considering that p <Yf§"3f£”

T
PDF of the extended unknown parameter vector, i.e., P, = [GT, (ﬁtg;n:tg,) } , can be
derived as [11]

T._1

®)
i(‘bm_d’m ) (Plbm ) (q’m_lbm_)

AT AT
where k is a constant, and ¥,,, and P, ,,, are the prior mean vector and the covariance matrix

of the extended parameter vector at the m™ estimation window. R € R(1Xm)* (<) jg o
block diagonal matrix, in which the diagonals denote the simulation error covariance matrix

R, and ﬁit?z,l is the estimated input motion time history from the previous estimation
windows, which is treated as a known vector. To determine the MAP estimate of y,,,, we

dlog Ij) | ym.m
solve ( ( SRS )) = 0, which results in a nonlinear algebraic equation in \,,, as

shown in [11]. Th1s equation can be solved using an iterative first-order approximation of
ne

the FE response function at 1,,, which requires the computation of FE response sensitivities

with respect to the extended unknown parameter vector, evaluated at the prior mean values.
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The FE response sensitivity matrix is denoted by C hereafter. As a result, the following
(first-order approximate) equation for the MAP estimate of 1, can be obtained [11] as

At A~ A~
~8
Py j =y +K (Yﬂlﬂzt;ﬂ —hygn (ll’m,jrulzt;"—1> ) (6)
At A A
where 1, is the updated (or the posterior) mean estimate of {,,,. The term K = Py, (Pyy) -1

is referred to as the Kalman gain matrix [17]. The matrix Py, = Pxp,mCT is the cross-
covariance matrix of the unknown parameter vector and measured data, and

A A ~
Py, = CPll,,mCT + R is the covariance matrix of the measured data (the reader is re-

ferred to [11,18] for further derivation details). The subscript j is appended to the estimated
At

mean vector and covariance matrix to denote the iteration number. The updated 1, ; from
Equation (6) is iteratively used as the new point for the linearization of the nonlinear FE
model to improve the estimation. This iterative prediction—correction procedure at each
estimation window is equivalent to an iterative extended Kalman filtering (EKF) method for
parameter-only estimation [17]. Following the EKF procedure, the prior covariance matrix

AT A
Py, m,j is updated to the posterior covariance matrix Py, ,, i at each prediction—correction

iteration as in At e . _
Py mj = (I- KC)Plp,m,j(I —KC)' +KRK". 7)

Furthermore, to improve the convergence characteristics of the iterative prediction—

correction procedure, a disturbance matrix is added to the posterior covariance matrix at each it-
AT At
eration to provide the prior covariance matrix for the next iteration, i.e., Py, ;i1 1 = Py, 1 j +Q,

in which Q is a diagonal matrix with small positive diagonal entries (relative to the diagonal
At

entries of the matrix Py, ,, ;). The matrix Q is referred to as the process noise covariance
matrix in the Kalman filtering world [17].

Accurately computing the FE response sensitivities is an integral part of the presented
sequential FE model updating. In previous studies (e.g., [11,12]), the response sensitivities
have been computed using a direct differentiation method (DDM) (e.g., [19]), which re-
quires extending the FE numerical scheme and implementing new codes in the FE software
to calculate the response sensitivities. Although available in OpenSees [20], this imple-
mentation is not readily available as part of other FE simulation platforms. Therefore,
to extend the applicability of the sequential FE model updating procedure to other FE
simulation platforms, here we use the finite difference method (FDM) to compute the
response sensitivities. The FDM method is implemented by perturbing the estimation
parameters one at a time based on a central difference method with unequal spacing. We
use parallel computing to enhance the computational efficiency of the FDM implementation.
The Bayesian FE model updating algorithms are implemented in MATLAB [21], which
calls several instances of OpenSees in parallel for FE response and response sensitivity
computations at each prediction—correction iteration. Table 1 summarizes the sequential FE
model updating algorithm for the joint estimation of model parameters and input motion
time histories that is described above. It should be noted that the presented Bayesian FE
model updating framework is applicable to both linear and nonlinear FE models. In case
the FE model is linear, the model response function will still be a nonlinear function of the
model parameters and input motion; however, the model updating process will become
more computationally efficient.
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Table 1. Sequential FE model updating algorithm for joint estimation of model parameters and input

motion time histories.

1.

4.2.

4.3.

Determine the start and end points of the estimation windows—i.e., t{", t7', where m = 1, 2,

..., Nand N is the number of estimation windows.
A A

Set the initial mean vector and covariance matrix of the model parameter vector (8¢, Pg,)
and input ground motion time history vector across the first estimation window

~ A
(iigrt%:t%, P 1"1*3)' The initial mean values of the ground motion time history are usually set as
. ~8
zero, i.e., Uy 1. = 0.
Use the inverse of the initial values of the model parameters as the scaling factors, i.e.,

A

ATt T At T

1 " o APe A 0
a; - Setup oo = {Aeo “g,t}:t;} and Py, 0o = 0 ,

8

o

an =

For the mth estimation window: N
A

Setup the initial mean vector and covariance matrix of the unknown parameters (i.e., P, o
At
and Py, ,,, o) based on the posterior mean vector and covariance matrix obtained from the
AT AT
last estimation window (i.e., P,,,_1 and Py, ,,_1) (refer to [11] for details).

Define the process noise covariance matrix Q and the simulation error covariance matrix R.

Set up R.
Iterate j=1,2,... ):
AT I\+ AT A+

4.3.1. Set ll)m,j = 1]"11‘1,]’—1/ Pll),m,j = Pl]),m,j—l + Q

A A

4.3.2. Obtain the FE responses using ¥, j, i.., yym.pm = hyp.pn (Wi, jr ﬁfzt{"—l ). Obtain the FE

response sensitivities using a finite difference method. Set up the sensitivity matrix with
respect to the scaled model parameters, C°.

4.3.3. Compute the Kalman gain matrix: K = (Pll,,m,]-(Cs)T) (CSPIP,m,j(CS)T + f{) -1

4.3.4. Find the corrected estimates of the mean vector and covariance matrix of the extended

4.3.5. Correct for constraints.

A + AT A
~8
parameter vector: ¥, ; =, ; + K (yt;u:trzn — hypy (1]),11,]-, u1;t1'171> ) AR
At A— -
Py ;= (1—KC)P,, , (I- KC)" + KRK'.

AT At

4.3.6. Update the model parameter scaling factors using Equation (8). Update ¥, ; and Py, ,, ;

based on the new model parameter scale factors.
At At At

4.3.7. Check for convergence: if |1])m,]- — me/]-_1| < 0.01 x |1])m,]-_1| or j > 15, then move to the

next estimation window (m = m + 1, go to step 4); otherwise, iterate again at the current
estimation window (j = j + 1, go to step 4.3).

2.3. Correction for Constraints

The estimation process described earlier is not constrained and may result in the

estimation of non-physical values for the model parameters. This issue is resolved by
correcting the posterior estimation results for a set of predefined lower- and upper-bound
constraints. Once any of the posterior mean values exceed their designated lower or
upper limit, the posterior Gaussian PDF (characterized by the updated mean vector and
covariance matrix) is truncated at the constraint edges. The mean vector and the covariance
matrix of the truncated PDF are then calculated. The constraint correction approach is
borrowed from [17,22]. The algorithmic details are provided in [23] and are not repeated
here for brevity.
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2.4. Adaptive Scaling of the Unknown Model Parameters

In order to improve the performance of the estimation algorithm, the FE model param-
eters are scaled adaptively at each iteration. The scaling allows the FE model responses to
have relatively similar sensitivities with respect to different estimation parameters at each
estimation point. The scaled FE model parameter vector is defined as 6° = A6, in which A
is an ng x ng diagonal scaling matrix. It should be noted that only the FE model parameters
are scaled, and the vector of unknown input ground motion remains unscaled. The param-
eter scaling factors (i.e., the diagonal entries of matrix A denoted by a,, n =1,2, ..., np)
are calculated to result in equal corresponding diagonal entries in the Fisher Information
Matrix of the scaled parameters, which is approximated as I° = (C%)T(Cse) [14], wherein
Cj denotes the FE response sensitivity matrix with respect to the scaled FE model param-

eter vector. The n' diagonal entry of I° is I}, = an% ( g;:’ ) ( gg‘ ) The scaling factor aj, is

calculated so that I} is equal to the mean of diagonal entries of the Fisher Information
Matrix corresponding to the vector of unknown input ground motion, i.e., for the m
estimation window:

T
1(811)T<8h> =mean |dia 78h 78h =a
al’l2 8971 agn g aﬁi":t’z” al.:l(tg;ln:tgn "
( oh ) (8)
a0, a

mean | dia
g <autm fm ) (autm . >
3. The Millikan Library Building

The Millikan Library is a reinforced concrete shear wall building, with a basement and
nine stories above the ground, located on the California Institute of Technology (Caltech)
campus (Figure 1). The Millikan Library has been the subject of many studies, especially
in the fields of soil-structure system identification, due to its unique structural and soil
properties, and its relatively old and dense instrumentation, which recorded its seismic
responses during numerous earthquakes [24-30]. The Millikan Library building is 43.9 m
tall above ground, including the roof level. It has a 4.3 m deep basement below the ground
level. The basement is encased by surrounding shear walls. Precast concrete claddings
are installed on the north and south faces of the building from the second floor up to the
roof. The lateral force-resisting system comprises shear walls in the north-south direction
on the east and west sides of the building and core walls around the elevator shaft in the
north—south and east-west directions. The floor system consists of concrete slabs supported
by reinforced concrete beams. Lightweight aggregate concrete is used for slabs and beams
at all floors, while regular aggregate concrete is used for foundations, columns, and walls.
The foundation system consists of a 1.2 m deep central pad, 6.0 m below the ground level,
and two foundation strips on the north and south sides of the building 5.0 m below the
ground level. Four stepped beams at the four corners of the foundation connect the central
foundation pad to the north and south foundation strips.

The building is instrumented using a total of 36 uniaxial accelerometers, measuring six
acceleration responses at the foundation (or basement floor) level, and three translational
acceleration responses on each floor. The instrumentation details are obtained from [31] and
are provided in Figure Al and Table Al in Appendix A. Multiple earthquake records are
available for the Millikan Library; a relatively recent survey of earthquake data recorded at
the building can be found in [28]. For the purpose of this study, we use the 2002 Yorba Linda
earthquake record, which is a low-amplitude earthquake (PGA of ~0.6% g). Two notes
should be made about this earthquake record of the Millikan Library. First, the location of
sensors on the foundation (or basement floor) could not be determined precisely. Second,
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recordings of the east sensor on the second and eighth floors (measuring NS direction) were
not available during the 2002 Yorba Linda Earthquake. Therefore, only 34 measurement
channels are available for this record. Since the level of considered earthquakes is low, the
effects of material and geometric nonlinearities in the dynamic response of the structure
are expected to be minor, and therefore, the use of a linear model is justified.

Figure 1. Millikan Library building.
FE Model Development

Using the available structural drawings, a detailed FE model of the structural sys-
tem was developed. We used the graphical user interface of SAP2000 software [32] to
develop the initial geometry of the model. The SAP2000 model was then transferred to
OpenSees [20] using a custom-developed MATLAB script based on the SAP2000 Applica-
tion Programming Interface (API). For the purpose of this study, we prepared a linear FE
model of the Millikan Library building. The model comprises linear elastic beam—column
elements for the buildings’ beams and columns, and quadrilateral shell (DKGQ) elements
with linear elastic (elastic membrane plate) sections are used for shear walls and slabs. The
kinematic interaction of precast claddings (installed on the north and south faces of the
building) with the structural system is modeled using diagonal brace elements, which are
included in the north and south frame bays from the second story to the roof. The brace
elements are assumed to be linear elastic with square cross-sections of 0.1 m x 0.1 m. By
adjusting the elastic modulus of the diagonal braces, the stiffness and force contributions
of the precast panels to the lateral response of the structure can be characterized. The kine-
matic interaction between the structure and other nonstructural components and systems
(e.g., partition walls and stairs) are not modeled explicitly; they are expected to be lumped
into the stiffness properties of the structural members and precast claddings.

The inertial effects of nonstructural components (i.e., stairs, precast panels, and eleva-
tors) are accounted for by modeling their corresponding mass and weight contributions.
The weight of each precast panel is estimated to be about 50 kN, which conforms with [24].
A uniformly distributed load is applied on the floor slabs to account for live loads and
weight of partition walls, later treated as an unknown parameter to be estimated. A uni-
formly distributed load of 2.5 kN/m? is applied on the foundation to account for the live
load of library shelves in the basement. Moreover, the mass of soil filling between the
foundation surface and basement floor is accounted for by applying the corresponding
mass on the central foundation pad and the two foundation strips. The mass of structural
components is calculated based on the nominal concrete densities specified in the structural

drawings: p._1w = 1760% for lightweight aggregate concrete material, prc—1w = 1900%

for lightweight aggregate reinforced concrete, and prc = 2500% for regular aggregate
reinforced concrete. Figure 2 shows the geometry of the model. Different colors in this
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figure present different material property groups used to define the shell (shear wall and
slab) and beam—column elements. More details on material parameters are provided in
Section 5. A sensitivity analysis is performed to ensure convergence of analysis results with
respect to the mesh size. The model in the presented configuration consists of 1885 frame
elements and 4043 shell elements, corresponding to a total of 27,526 degrees of freedom.

Roof

Story 9 @
Story 8
Story 7
Story 6

_ 3, Floor 6

) y Floor 5
Story 4 il ‘
Floor 4
Story 3 ) «‘V‘
AN Eloor 3

Floor 2

Basement jg> Foundation

Figure 2. Developed FE model of the Millikan Library structure.

A gravity analysis was performed before dynamic time history analyses by applying
constant g acceleration in the vertical direction. The damping energy dissipation for the
time history analysis is defined using mass- and stiffness-proportional Rayleigh damping.
The Rayleigh damping parameters are treated as unknowns to be estimated. For the
purpose of time history analyses, Newmark’s constant average acceleration method is used
for time-stepping with increments of At = 0.03 s. The time step size is selected following a
convergence study to ensure a large time step size that provides adequate accuracy. All of
the measured acceleration response time histories are also resampled at At = 0.03 s for the
model updating phase.

4. A Two-Step System Identification Approach

A two-step FE model updating approach is used for model and input identification
of the soil-structure system. In the first step, the measured acceleration responses at the
foundation level are used to calculate six components of the foundation-level motions.
The foundation-level motions are then used as uniform base input excitations, and the
measured responses of the structure are used as output measurements to update the FE
model of the “fixed-base” structure. The objective is to estimate the model parameters
characterizing the structural model, regardless of the soil subsystem. During this process,
we discovered inconsistencies in the recordings obtained from two of the foundation
sensors, as is discussed further in the next section. These sensors are installed inside a
utility tunnel—referred to as the steam tunnel—next to the foundation slab. Therefore, the
acceleration response time histories of these two sensors are assumed as unknown input
motions and are estimated jointly with the structural model parameters. This step results
in FE model updating with partially unknown inputs.

The second step is an output-only FE model updating procedure, wherein the identi-
fied structural model parameters are fixed at their mean estimates obtained from the first
step, and the three translational components of FIM and other parameters characterizing
the soil-structure model are estimated jointly. Since the Millikan Library foundation is not
deep and does not have large dimensions (comparable with the lengths of incident waves),
the rotational components of FIM are not considered in this study.

To decide about and select the estimation parameters, an identifiability analysis is
performed, as is outlined in the next section for each identification step. Before proceeding
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with the real-life data, we verified the two-step FE model updating procedure using numer-
ically simulated data to examine the effectiveness of the proposed estimation algorithm
and the accuracy of its results. The verification studies are documented in [33] and are not
included here for brevity.

5. Step 1 System Identification: FE Model Updating of the Structural System with
Partially Unknown Inputs

5.1. Model Identifiability and Parameter Selection

The identifiability of model parameters is investigated using an information-theoretic
approach based on [34]. In this approach, a set of candidate parameters are selected first,
and then, the entropy gain of each parameter is calculated. The entropy gain is used as a
quantitative metric to measure the information each model parameter receives from the
measurement data. The entropy gain is compared between the estimation parameters to
assess their relative identifiability. Moreover, the mutual entropy gain (or mutual gain)
between parameter pairs is used to investigate the dependence between each pair of
model parameters. The entropy gain and mutual gain are then used to determine the
most identifiable parameter set. This is an alternative procedure to prior methods that,
for example, adaptively group updating parameters based on the sensitivities of a model
updating objective function with respect to the parameters (e.g., see [35,36]).

Fifteen (15) structural model parameters characterizing the material, inertial, and
damping properties were initially selected as the estimation parameters for identifiability
assessment at this step. These parameters were selected initially based on our judgment
on their potential contribution in the structural response. For a given input motion, the
entropy gain for each parameter is a function of the parameter values, which are unknown
in advance. Without the knowledge of correct parameter values, their nominal values are
used for prior identifiability assessment, following the recommendation in [34]. These
parameters and their nominal values are listed in Table 2. The logic based on which the
nominal values are estimated is further described below.

The material parameters consist of the effective elastic modulus of the floor system
(beams and slabs) and the vertical/lateral system (walls and columns). The material
parameters are grouped at the story level and along the height of the building. With the
exception of the first three stories, the effective elastic modulus of structural components
is grouped together at the upper stories. The first three stories are considered separately
because previous studies have suggested minor structural damage in the first stories of
the building after the 1971 San Fernando earthquake (e.g., [26,37,38]). The effective elastic
modulus for floor slabs and beams is calculated by applying a 35% reduction factor on the
nominal elastic modulus of lightweight aggregate concrete, which is derived based on ACI
318-14 [39] as E. = 0.043(pc—rw) "> /F - Where f’_ = 27.5 MPa is the nominal compressive
strength. The effective elastic modulus for columns and walls is calculated by applying a
70% reduction factor on the nominal elastic modulus calculated as E. = 4700 \/]TC, where
f'. = 27.5 MPa. For foundation, a 35% reduction factor is applied on the elastic modulus,
which is calculated considering f’. = 20.7 MPa, to account for flexural cracking.

To estimate the elastic modulus of diagonal brace elements representing the precast
claddings, the results concluded from modal analysis performed during the construction
period are used. According to [6,26], the installation of precast panels resulted in a 25%
increase in the lateral stiffness of the building structure in the EW direction. The initial
values for the elastic modulus of the diagonal brace elements in the model are tuned
iteratively and manually to yield a similar increase in the stiffness of the first mode in the
EW direction. Consequently, the estimated elastic modulus of diagonal braces is found to be
20 GPa. The initial value of the distributed floor mass (to account for live load and mass of
nonstructural elements) is estimated to be about 250 kg/m?. Estimating the accurate weight
and mass contribution of mechanical equipment on the roof was not possible; therefore,
the equivalent distributed roof mass is approximately estimated as 300 kg/m?. Finally,
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the initial values of the Rayleigh damping parameters are estimated by assuming a 5%
damping ratio for the first and second modes.

Table 2. Fifteen model parameters used for prior model identifiability assessment.

Parameter ID

Description Value

Elastic modulus of brace elements representing

! precast claddings 20GPa

5 Effective elastic modulus of beam and slab 58 GPa
concrete at 1st floor

3 Effective elastic modulus of beam and slab 58 GPa
concrete at 2nd floor

4 Effective elastic modulus of beam and slab 58 GPa
concrete at 3rd floors

5 Effective elastic modulus of beam and slab 58GP

concrete at 4th, 5th, and 6th floors ’ a
6 Effective elastic modulus of beam and slab 58 GPa
concrete at 7th, 8th, 9th, and roof floors ’

- Effective elastic modulus of column and wall 17.3 GPa
concrete at basement

8 Effective elastic modulus of column and wall 17.3 GPa
concrete at 1st story

9 Effective elastic modulus of column and wall 17.3 GPa
concrete at 2nd story

Effective elastic modulus of column and wall
10 concrete at 3rd, 4th, and 5th stories 17.3 GPa
Effective elastic modulus of column and wall

1 concrete at 6th, 7th, 8th, 9th, and roof stories 173 GPa

12 Mass-proportional Rayleigh damping coefficient 0.4

13 Stlffness—pr(.)portlonél.Raylelgh 53 % 10-3
damping coefficient

14 Distributed floor mass on 1st to 9th floors 250 kg/ m?

15 Distributed floor mass on roof 300 kg/m?

The identifiability of model parameters is assessed using the measured foundation-
level motion, including all translational and rotational components. As mentioned earlier,
the recordings of two acceleration channels on the foundation are later treated as unknowns
and estimated through the model updating process. Nevertheless, these measured record-
ings are used for the identifiability analysis as approximate inputs. This approximation is
expected to have negligible effects on the overall identifiability results. As described in [34],
evaluating the entropy gain and mutual gain also requires the prior covariance matrix of
the unknown parameter vector (or the prior variance of parameters). A 10% coefficient of
variation is assumed for all parameters to derive the a priori covariance matrix.

Figure 3 displays the relative entropy gain of the fifteen candidate estimation parame-
ters. The presented entropy gains are relative, which means that the entropy gain values
are scaled with respect to the largest value. This plot presents the relative information
that the model responses (which represent the measurements) carry about each model
parameter. Those parameters that receive small information from the measurement data
(e.g., parameters #2 to #6) are likely to be unidentifiable. Furthermore, Figure 4 shows the
relative mutual entropy gain between the parameter pairs. This figure is used to investigate
the dependence between each two parameters. The diagonal components in this figure
represent the entropy gain of each parameter. The dark off-diagonal colors in this figure
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indicate strong relative dependence between parameter pairs. For example, Figure 4 sug-
gests that there is a mutual dependence between parameters #7 and #8, and some mutual
dependence between parameters #7, #8, and #10. Moreover, there are some competing
effects between these parameters and parameter #14. These observations are physically
meaningful since parameters #7, #8, and #10 characterize the stiffness of the building, and
parameter #14 contributes to the building mass. Figure 3 along with Figure 4 can be used
to guide the selection of the estimation parameters. The parameters that gain relatively
small amounts of information from the measurement data or have strong dependencies on
other estimation parameters can be put aside (i.e., fixed) or merged with other parameters,
if physically meaningful, to enhance the identifiability. Indeed, the process is not definitive
and requires some engineering judgment in selecting the final estimation parameter set.
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Figure 3. Relative entropy gain of the fifteen model parameters (see Table 2 for parameter IDs).
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Figure 4. Relative mutual entropy gain between the parameter pairs (see Table 2 for parameter IDs).

The strong mutual gain between parameters #7 and #8 suggests merging these two
parameters into a single unknown parameter. This is justifiable as these parameters char-
acterize the effective elastic modulus of columns and walls at the basement level and the
first story, which are expected to be close. The mutual gains between other stiffness-related
parameters are not significant; nevertheless, their small entropy gains in Figure 3 suggest
merging them together. Furthermore, since the initial estimate of mass-related parameters
(#14 and #15) are close and their individual entropy gains are small, they are also merged
together to improve their identifiability. Finally, while the entropy gains of parameters #1
and #12 are small, we still consider them as unknown parameters to be estimated; however,
the resulting estimates are expected to be inaccurate and include large uncertainties. As
a result of the outlined identifiability assessment process, we end up with six estimation
parameters, as listed in Table 3.
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Table 3. Final selected model parameters for Step 1 system identification.

Parameter ID Description Value
1 Elastic modulus of brace 'elements representing precast 20 GPa
claddings (Ecjaq)
2 Effective elastic modulus of column and wall concrete at 173 GPa
basement and 1st story (Ewec1)
Effective elastic modulus of column and wall concrete at
3 2nd story to roof (Ewsc2) 17.3 GPa
4 Mass-proportional Rayleigh damping coefficient («) 04
5 Stiffness-proportional Rayleigh damping coefficient (8) 53 x 1073
6 Distributed floor mass on 1st to roof floors (1) 250 kg/ m?

5.2. Joint System and Partial Input Identification Using Yorba Linda Earthquake Data

The seismic data recorded at the Millikan Library building during the 2002 Yorba Linda
earthquake are utilized for the FE model updating. Here, we present two model updating
cases. In Case 1, the recordings of the six accelerometers installed on the foundation
are averaged to find the time histories of translational and rotational components of the
foundation-level motion. These input excitations along with the measured structural
responses obtained from all the channels are used for an “input-output” FE model updating
to estimate the six model parameters listed in Table 3. In Case 2, we assume that the
recordings of the two sensors located in the steam tunnel, i.e., Channels #4 and #5, are
unknown. This resulted in FE model updating with partially unknown inputs to jointly
estimate the six model parameters and the acceleration response time history at two
sensor locations.

Figure 5 presents the relative root mean square error (RRMSE) between the measured
and FE predicted acceleration responses for both Case 1 and Case 2. The figure also shows
the RRMSE values obtained from the initial FE model (i.e., based on the initial parameter
values). As can be seen in this figure, the RRMSE is consistently reduced from the initial to
the updated FE model in both cases. However, Case 2 shows more reduction in RRMSE
for all measurement channels compared to Case 1 except for Channels #4 and #5, in which
RRMSEs are increased. This suggests that these two sensor measurements do not comply
with the other measurements on the foundation level. Hence, the updated FE model
in Case 2 is most likely a better representation of the real-world building. As shown in
Appendix A, these two channels correspond to the sensors installed in the steam tunnel—
Channel #4 measures the acceleration response in the NS-direction and Channel #5 in the
Up-Down or Z-direction. The steam tunnel is a rectangular reinforced concrete utility access
tunnel built next to the foundation level and is not part of the basement structure. After the
1971 San Fernando Earthquake, a 0.5 mm crack around the steam tunnel, at the point where
the tunnel connects to the basement wall, was reported [37]. Based on these observations,
it is concluded that the tunnel is most likely not fully connected to the structural system,
and thus, the readings of the accelerometers located in there may not correctly represent
the foundation level motions. Figure 6 compares the measured and estimated acceleration
response time histories at Channels #4 and #5. The differences between the measured and
estimated acceleration time histories are minor and more prominent for Channel #5, which
is the Z-direction measurement.

The initial and final estimates of the six model parameters, along with their final
estimated coefficients of variation (COVs), are listed in Table 4. The coefficient of variation
quantifies the estimation uncertainty. In an unbiased estimation, the COV should merge to
zero. The non-zero values for the COV mean that the estimation might be uncertain. The
larger the COV, the more uncertainty there is in the estimated model parameter values.
As can be seen in Table 4, the COV of the two parameters with the highest COV in case 1,
i.e., Ecjyg and m, is significantly reduced in Case 2. It is also seen that the estimate of these
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parameters is unrealistically low in Case 1, while their estimates in Case 2 seem to be more
realistic. These results, along with the RRMSE results shown in Figure 5, indicate that
Case 2 is likely to be more reliable than Case 1, and hence, the parameter estimates from
this case will be used for the next step.
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Figure 5. Relative root mean square error (RRMSE) between the measured and the FE predicted
structural responses using the initial and final FE models.
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Figure 6. Comparison of the measured and estimated acceleration response time histories at Channels #4
and #5. The right-hand-side plots magnify the response time history between 1 and 7 s. Each figure’s
title shows the sensor location and recording direction, e.g., “Basement, North West Corner-Z” means
acceleration response time history in the Z-direction, recorded by the sensor located on the north-west

corner of the basement.
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Table 4. Initial and final estimates of the model parameters, along with their final estimated coefficient
of variation (COV). Parameters are defined in Table 3.

Parameter Eclad Ewsgc1 Ewec2 « B m
Initial Estimate 20 GPa 17.3 GPa 17.3 GPa 0.40 53 x 1073 250 kg/m?
Case 1—Final 0.25 GPa 16.2 GPa 29.7 GPa 0.24 2.6 x 1073 2.8 kg/m?
Estimate (COV) (9.87%) (0.41%) (0.68%) (2.64%) (1.4%) (8.97%)
Case 2—Final 6.17 GPa 19.6 GPa 26.1 GPa 0.29 1.7 x 1073 161 kg/m?
Estimate (COV) (2.87%) (0.66%) (0.84%) (2.61%) (2%) (2.44%)

Figure 7 shows how well the updated model predictions match the measurement
records for both model updating cases, wherein selected measured acceleration response
time histories are shown together with those estimated using the initial and final updated
FE models. The figure shows that while the initial FE model response predictions have
remarkable discrepancies with the measured responses, the updated model predictions
have good agreement with the measurements. It also shows that the updated model
predictions in Case 2 have better agreement with the measurements than Case 1, which
further proves the reliability of Case 2 over Case 1. In the next paragraph, we describe the
details of the estimation algorithm setup.
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Figure 7. Comparison of the measured structural responses with the structural responses predicted
using the initial and final-updated FE models for both Case 1 and Case 2. The right-hand-side plots
magnify the response time history between 1 and 7 s. Each figure’s title shows the sensor location
and recording direction, e.g., “9th floor, East-N” means acceleration response time history in the NS
direction, recorded by the sensor located on the east side of the 9th floor.
A

The initial values of model parameters (8y) are listed in Table 3, and their initial co-

efficient of variation is selected as 10%. The estimation constraints for model parameters
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are selected as 0.10) < 0 < 50(. The initial estimate of the discrete values of the unknown
ground motion time history is selected to be zero, and their initial standard deviation is
selected as O.OSRS%d. A variable estimation window configuration (length and overlap) is
considered. During the first 6 s of the earthquake (which corresponds to the strong motion
part), a small window length (60 time steps = 1.8 s) with 50% overlap is used. As we
march through the time history, the estimation window length is gradually increased to
100 time steps (3 s) with 20% overlap. Selecting smaller lengths and larger overlaps for the
estimation windows at the beginning of the earthquake ensures the incremental absorption
of the information when the model has large uncertainties and the measurements have
large information content (due to strong motion). The window length is subsequently in-
creased and the overlap is reduced to improve the computational efficiency. The estimation
window configuration can affect the computation demand and the estimation accuracy and
should be selected based on experience and adjusted by observing the performance of the
estimation algorithm.

The process noise covariance matrix Q (see Table 1) is selected as a diagonal matrix.

The diagonal entry corresponding to the i model parameter is selected as (q@i)z, where
g = 0.001 and §; is the mean estimate of the " model parameter. This means that the
RMS of the process noise corresponding to the model parameters is taken as 0.1% of the
mean estimate of the associated model parameter. Thus, this part of the matrix Q would be
time-varying. The diagonal entries corresponding to the unknown ground motion time
histories are constant, and are taken as (0.001g)?. This means that the root mean square
(RMS) of the process noise corresponding to the input excitation is time-invariant and is
equal to 0.1% g. This selection is performed based on our previous experience with the
estimation algorithm to ensure stability and proper convergence rate (more discussions
are provided in [11]). Finally, the simulation error covariance matrix R is also selected as a
time-invariant diagonal matrix, whose diagonal entries are selected as (0.001g)?. In other
words, the simulation error is modeled as a 0.1% g RMS Gaussian white noise process.

6. Step 2 System Identification: FE Model Updating of the Soil-Structure System with
Unknown Inputs

At this stage, we use the updated model of the superstructure (Case 2) for soil-
structure system identification. The objective is to estimate the FIMs and the parameter
characterizing the soil-structure system, including the stiffness and viscosity of the soil
springs and dashpots used for modeling the inertial soil-structure interaction effects. For
this purpose, and similar to the previous step, we start with an identifiability analysis
by evaluating the information contained in the model responses. Then, we use the real
measurement data to estimate the soil-structure model parameters.

6.1. Model Identifiability and Parameter Selection

Distributed linear soil springs and dashpots are included underneath the foundation
slab of the updated FE model, obtained from the previous step. Three linear springs and
three linear viscous dashpots are modeled independently in the x-, y-, and z-direction
(corresponding to EW, NS, and Up-Down directions, respectively) at each nodal point of
the foundation slab. The stiffness of soil springs and viscosity of dashpots are computed
using the subgrade modulus (i.e., soil stiffness per unit area) and viscosity modulus (i.e.,
soil viscosity per unit area), respectively. The spring stiffness and dashpot viscosity at
each nodal point are calculated by multiplying the tributary area of the nodal point by the
corresponding subgrade modulus and viscosity modulus, respectively.

The Millikan Library has a two-level foundation system consisting of a central pad
and two north and south foundation strips, as shown in Figure 8. Six unknown subgrade
moduli—namely ky, ky1, k2, k.1, k;2, and k,3—are defined for different foundation regions,
where, for example, the parameter k2 characterizes the vertical subgrade modulus for the
interior area of the central pad. Two strips along the east and west edges of the central pad,
which are underneath the two box shear walls at the east and west sides of the building,
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are assigned a different vertical subgrade modulus (k,3) based on the recommendation
provided in [3] to account for the rotational stiffness of the soil subsystem. Similarly, a
different vertical subgrade modulus (k,1) is assigned to the two north and south foundation
strips. Likewise, six (unknown) parameters—namely cy, ¢y1, ¢y2, c;1, ¢;2, and c;3—are used
to define the viscosity modulus. Different foundation regions and their corresponding
subgrade and viscosity modulus are shown in Figure 9. The twelve unknown subgrade and
viscosity moduli along with the Rayleigh damping parameters (« and ) and the effective
elastic modulus of foundation slabs (Er,,;,4) are selected as parameters for the identifiability
analysis. Although estimated in the previous step, the Rayleigh damping parameters are
included for the soil-structure system identification since the damping model behavior of
the fixed-based structure is expected to be different from the flexible-base structure.

Figure 8. Structural configuration of the Millikan Library basement showing the structural walls and
two-level foundation details, including the central pad (at EL.—6 m from the ground surface), and
the two north and south foundation beams (at EL.—5 m from the ground surface).
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Figure 9. (a) Six unknown subgrade modulus parameters, and (b) six unknown viscosity modulus

parameters defined for different foundation regions. The figures show the foundation plan of the
Millikan library, including the central pads, and the two foundation beams (dimensions are in meters).

To assess the identifiability of these fifteen (15) unknown parameters, we pursue the
same identifiability analysis approach presented before. Initial estimates of soil model
parameters are assigned using the NIST standard guidelines [3]. The FIMs are unknown at
this stage and will be estimated through the model updating process. In the absence of the
correct FIMs, the three translational components of the foundation-level motion, estimated
from the previous step, are used as the FIMs for identifiability assessment. The parameters
used for identifiability analysis and their corresponding initial values are listed in Table 5.
The initial values of the Rayleigh damping parameters are selected based on the estimation
results obtained in the previous step. Moreover, a 20% coefficient of variation is assumed
for all parameters to derive the a priori covariance matrix.

Figure 10 displays the relative entropy gain of the fifteen estimation parameter candi-
dates. Figure 11 displays the mutual entropy gain between parameter pairs. In Figure 11,
the diagonal terms (i.e., entropy gain of estimation parameters) are found to be much larger
than the off-diagonal terms (i.e., mutual entropy gain between parameter pairs); hence,
including both of them in the figure would underrepresent the off-diagonal terms since they
would appear with a hard-to-see, light color. Therefore, the diagonal terms are excluded
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from this figure. These two figures can be used together for selecting the estimation param-
eters. Figure 10 shows that some of the parameters (e.g., parameters #2, #8, #11, and #12)
receive little information from the measurements. These parameters are, therefore, unlikely
to be identifiable. Based on this figure, parameters #2 and #3, which represent the subgrade
modulus in the north direction for the foundation beams and central pad, respectively, are
merged together. This is due to the small relative entropy gain of parameter #2. Similarly,
parameters #8 and #9, and #10 to #12 are merged together to improve their identifiability.
Moreover, Figure 11 shows mutual dependence between parameter #15 and parameters #4
to #6. This implies that the estimation of the effective elastic modulus of foundation slabs
will likely affect the estimation accuracy of the vertical and rocking soil stiffnesses. Hence,
parameter #15 is fixed at its nominal value given the relatively large thickness of foundation
slab, which is expected to result in linear elastic behavior. Based on this identifiability
study, the estimation parameters characterizing the soil-structure model are reduced to ten,
which are ky, ky, k;1, k22, k23, cx, ¢y, ¢z, &, and B.

Table 5. Fifteen model parameters used for prior model identifiability assessment.

Parameter ID 1 2 3 4 5 6 7 8
Parameter kx ky1 ky2 k1 k,2 k.3 Cx eyl
Value 65 100 150 20 22.5 375 700 700
MN/m? MN/m? MN/m? MN/m?3 MN/m? MN/m®  kNs/m®  kN.s/m3
Parameter ID 9 10 11 12 13 14 15
Parameter cy2 c;1 2 cz3 o B Eround
Value U et Namd wNemd 02 17x107 G

1 2 3 4 5 6 7

8 9
Parameter ID

10 11 12 13 14 15

Figure 10. Relative entropy gain of the fifteen model parameters (see Table 5 for parameter IDs).
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Figure 11. Relative mutual entropy gains between the parameter pairs (see Table 5 for parameter IDs).

6.2. Joint System and Input Identification Using the Recorded Yorba Linda Earthquake Data

The seismic data recorded at the Millikan Library building during the 2002 Yorba Linda
earthquake are now utilized in an output-only FE model updating procedure to estimate
the eight soil parameters, two Rayleigh damping parameters, and the three components
of the FIM in EW, NS, and Up-Down directions (no rotational component is considered
for the FIM). The model parameters characterizing the superstructure (except the Rayleigh
damping parameters) are kept constant based on the estimated results obtained from the
previous system identification step. Except the initial coefficient of variation of estimation

parameters, which is selected as 20%, and the estimation constraints for model parameters,
A A

which are selected as 0.18g < 6 < 500, the setup of the estimation algorithm and its
parameters are similar to the previous step (see Section 5.2).

Figure 12 shows the time history of the posterior mean and standard deviation (SD) of
the three components of the FIM. The initial and final estimates of the ten soil-structure
model parameters along with the estimated coefficient of variation (COV) are listed in
Table 6. The estimated parameter values with larger COV include larger estimation un-
certainties. Figure 13 compares the measured acceleration response time histories at the
selected measurement channels with those estimated using the final estimates of the model
parameters and FIMs. This figure indicates that there is a remarkable agreement between
the estimated and measured acceleration responses. Furthermore, Figure 14 presents the
RRMSE of the updated FE model responses at different measurement channels. Comparing
Figure 14 with Figure 5, the discrepancies between the FE predictions and measurements in
the NS direction are generally less than those in the EW direction. This is predictable since
the soil-structure interaction effects are more dominant in the NS direction of the Millikan
Library [28], and hence, the flexible-base model uncertainty is expected to be less in the NS
direction than in the EW direction.

Table 6. Initial and final estimates of the soil-structure model parameters along with their final
estimated coefficient of variation (COV).

Parameter ky ky k.1 k2 k.3
Initial Estimate 200 MN/m?3 200 MN/m? 225 MN/m?3 225 MN/m? 225 MN/m?
Final Estimate 47.9 MN/m3 418.2 MN/m? 386.8 MN/m?> 614.4 MN/m?3 310.5 MN/m?
(CovV) (2.7%) (4.9%) (0.9%) (3.4%) (3.4%)
Parameter Cy cy Cz o B
Initial Estimate 700 kN.s/m3 700 kN.s/m3 1000 kN.s/m?3 0.29 1.7 x 1073
Final Estimate 313.7 kN.s/m3 1187 kN.s/m? 4 kN.s/m3 0.15 23 x 1073

(COV)

(13.1%) (10.7%) (906.5%) (3.1%) (2%)
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Figure 12. (a) Estimated foundation input motion (FIM) time histories and (b) their standard deviation

(SD) values.
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Figure 13. Comparison of the measured structural responses with the structural responses predicted
using the final estimates of the soil-structure model parameters and FIMs. The left-hand-side plots
compare the responses in frequency domain, the middle plots compare the time histories, and the
right-hand-side plots magnify the response time history between 1 and 7 s.
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Figure 14. Relative root mean square error (RRMSE) of the FE predicted structural responses using
the final estimates of the soil-structure model parameters.

7. Summary and Discussion
7.1. Effective Structural Stiffness Parameters

The estimated effective elastic moduli of columns and walls (Ewgcl = 19.6 GPa,
Ewec2 =26.1 GPa) are larger than the nominal value that is based on code recommendations,
which is 17.3 GPa. Several factors can collectively account for this difference. (i) The effects
of lateral stiffness of the backfill soil at the basement level are not modeled in the FE model.
This is likely the reason behind the larger estimated value for Eygc1. It can also be a source
of modeling error because the columns and walls at the first-story and basement level are
parameterized with the same effective elastic modulus. (ii) Concrete aging, which will
increase the stiffness of concrete material, is not accounted for in the nominal estimations.
(iii) The lateral stiffness of nonstructural components and systems (i.e., partition walls
and stairs) are not accounted for in the FE model. This can result in estimating larger
values for the effective elastic moduli of the columns and walls, which characterize the
lateral stiffness of the building. (iv) Finally, the nominal elastic modulus is calculated for
the concrete material without accounting for the effects of steel reinforcement, which can
partially explain the larger estimated effective elastic moduli.

7.2. Soil Subsystem Stiffness and Viscosity

Table 7 compares the estimated lumped stiffness and viscosity of the soil subsystem
with the NIST recommendations [3] based on [40]. The lumped soil stiffness and viscos-
ity should be evaluated at the fundamental frequency of soil-structure system using the
flexible-base dimensionless frequency a9 = @/v;, where w is the flexible-base fundamen-
tal circular frequency, b = 11.5 m is the foundation half-width, and V; is the shear wave
velocity, which is averaged over an effective soil profile depth based on the recommenda-
tions provided in [3]. Using the shear wave velocity profile of the Millikan Library site
presented in [41], the average shear wave velocity is calculated as 398.1 m/s for translation,
392.1 m/s for rocking in the NS direction, 407.7 m/s for rocking in the EW direction,
and 422.3 m/s for torsion. The flexible-base frequency is a function of the soil stiffness
coefficients as follows [3].

T, ke | keh?

2= 1+ 24
Ty Ke ' Ky

)

Equation (9) presents the flexible-base to fixed-base fundamental period ratio (i.e.,
period elongation) in the x-direction, where T, is the flexible-base fundamental period,
Ty is the fixed-base fundamental period, ky is the fixed-base structural stiffness, & is the
effective fundamental modal height, Ky is the soil horizontal stiffness, and K,y is the soil
rocking stiffness. ky is calculated as 411.4 MN/m given the effective fundamental modal
mass (m, = 5252.9 ton) and Ty = 0.71 s. Likewise, ky is calculated as 1129.9 MN/m given
my = 5541.2 ton and Ty, = 0.44 s. The effective fundamental modal height is taken as 0.7 times
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the building height [1] (1 = 0.7 x 43.9 = 30.73 m). The process to calculate T is iterative [42].
T is intially utilized to evaluate the soil stiffnesses. Then, T is calculated using Equa-
tion (9), and the soil stiffnesses are reevaluated using T. Then, T and the soil stiffnesses
are iteratively updated until no considerable change in T is observed. This procedure is
used for calculating the soil parameters corresponding to the two translational vibration
modes in the NS and EW directions. For the torsional mode, the fixed-base torsional period
(Tzz = 0.33 s) is used for evaluating the torsional soil parameters.

Table 7. Comparison of the normalized estimated lumped stiffness and viscosity of the soil-
foundation subsystem with the recommended values in [3]. The translational components are
normalized by GL and the rotational components by GL3, where G = 268 MPa and 2L = 27.4 m.

Foundation Vibration Mode = Trans.-EW Trans.-NS Trans.-Up Rock.-EW Rock.-NS Torsion
Estimated Stiffness 5.8 50.65 59.08 2.15 1.38 2.14
NIST-based Stiffness 5.14 5.27 6.08 6.16 3.98 7.08
Estimated Viscosity 0.04 0.14 0.0005 0.00002 0.00001 0.007
NIST-based Viscosity 0.13 0.13 0.23 0.005 0.004 0.038

The estimated values in Table 7 are the integrated stiffness and viscosity of the soil
subsystem with respect to the center of the foundation pad using the mean estimates
of subgrade and viscosity moduli obtained in Section 6.2. To maintain compatibility
with previous studies [28], we normalize the sway stiffness and viscosity by GL, where
G =268 MPa and 2L = 27.4 m are the soil shear modulus and a reference foundation length,
respectively. For rocking and torsional components, the normalizing factor is GL3.

Table 7 indicates that the estimated stiffness and viscosity coefficients have a non-
negligible difference with the NIST-based recommended values. One potential reason
for the observed difference is the assumption of rigid foundation used in deriving the
approximate formulas of the impedance function reported in [3], which was shown to
be violated in the Millikan Library, especially in the EW direction [26]. In contrast, the
foundation flexibility is explicitly modeled in this study. Furthermore, the estimated
impedance function in this study is obtained using the building’s seismic response that
contains effective high-frequency components, as shown in the recording of Channel #16
presented in Figure 13, which is typical for the response of mid-level and lower-level
floors. Since the impedance function is frequency-dependent, the presence of multiple
frequencies in the response will likely make it difficult to exclusively tune the estimated
impedance function to the flexible-base fundamental frequency. Therefore, some deviation
of the estimated impedance function using multiple-frequency responses from the NIST
recommendations, in which the impedance function is evaluated at a single frequency,
is expected.

Comparing the stiffness coefficients, an especially significant discrepancy can be
observed between the estimated and NIST-based recommended values of the translational
stiffness in the NS direction and Up-Down direction. A similarly significant discrepancy
between the theoretical and experimental estimates of soil translational stiffness in the NS
direction was reported in [41], and it was attributed to either an error in the measured
foundation translational motion or the crude simplification of the foundation model. To our
knowledge, no studies have reported the soil stiffness in the Up—Down direction; therefore,
we could not compare our estimated values to other reference values.

Comparing the viscosity coefficients, almost all estimated viscosity coefficients deviate
considerably from the corresponding NIST-based values, which is possibly a manifestation
of the high uncertainty with which these parameters are estimated, as shown in Table 6.
Estimating damping experimentally has always been a key problem in system identification
of building structures [43]. This is likely the case with the Millikan Library since there
were challenges with accurately determining the phase of the response (with respect to the
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applied force) in forced vibration tests [41]. Moreover, the estimated viscosities are almost
always less than their NIST-based counterparts. This can be explained by examining the
soil shear wave velocity profile of the Millikan Library site reported in [41]. Looking at
this profile, the shear wave velocity increases almost linearly with depth until it reaches
944.8 m/s at 118.57 m depth. This rapid increase in the shear wave velocity with depth
most likely causes multiple wave reflections at the different soil layer interfaces, hence the
reduction in soil radiation damping. We can also observe that the reduction in radiation
damping due to the nonuniform soil profile is more significant in rocking than in horizontal
translation, which is reported in [3]. Thus, we can state that although using an average
shear wave velocity can fairly simulate the nonuniform soil stiffness, it cannot simulate the
nonuniform soil radiation damping at the same level of accuracy.

The lumped stiffnesses of the soil subsystem for the Millikan Library have also been
estimated using other system identification methods in the literature. Table 8 presents the
estimated stiffness coefficients in six different previous studies compared to those identified
in this study.

Table 8. Comparison of the normalized lumped stiffness of soil-foundation subsystem between
different studies. The translational components are normalized by GL and the rotational components
by GL3, where G = 268 MPa and 2L = 27.4 m.

Foundation Vibration Mode

Study
Trans.-EW Trans.-NS Rock.-EW Rock.-NS Torsional
[6] 31.1 8.7 207.2 145.9 9.9-10.5
[44] 6.9 4.6 10.0 54 —
[41] 7.2 6.7 10.2 59 —
[26] 5.5 5.2 74 5.6 11.1
[45] 2.7 2.7 1.8 1.8 —
[28] — 6.2 2.5 3.9 0.98
Current 5.14 50.65 215 1.38 2.14
Study

As can be seen, the translational stiffness in the EW direction is close to the value iden-
tified by Luco et al. [26]; the NS translational stiffness is not comparable to any other study;
the EW and NS rocking stiffnesses are close to the static values used by Chen et al. [45] and
adopted from Balendra et al. [46]; and the torsional stiffness is close to the value estimated
by Ghahari et al. [28]. The observed discrepancy between the identified model parameters
and the corresponding parameters identified in previous studies highlights the challenging
nature of the problem at hand. It also draws attention to the importance of widening
the application of structural sensing to real-life structures to develop accurate numerical
models for structural health monitoring, condition assessment, and damage prognosis,
especially in high-seismicity areas [47].

7.3. Period Elongation

Table 9 compares the period of the first five structural modes between the updated
flexible-base and fixed-base models. The table, moreover, reports the period elongations.
The estimated modal periods of the flexible-base structure have good agreement with the
results reported in [28].
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Table 9. Comparison of the flexible-based and fixed-base modal periods of the updated FE models.

Structural Vibration Mode 1st Trans.-EW 1st Trans.-NS 1st Torsional 2nd Trans.-EW 2nd Trans.-NS
Flexible-base Period (s) 0.95 0.6 0.42 0.22 0.16
Fixed-base Period (s) 0.88 0.5 0.37 0.2 0.16
Period Elongation 1.08 1.2 1.14 11 1.0

7.4. Rayleigh Damping

Figure 15 compares the Rayleigh damping ratio as a function of frequency between
the initial, updated fixed-base, and updated flexible-base FE models. Table 6 shows that the
estimated mass-proportional Rayleigh damping coefficient for the flexible-base structure is
relatively small, which results in a nearly stiffness-proportional linear Rayleigh damping
curve for the updated flexible-base model. This is a well-known effect of SSI on effective
modal damping [48].
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Figure 15. The Rayleigh damping ratio as a function of frequency in the initial, updated fixed-base,
and updated flexible-base FE models.

7.5. Possible Sources of Estimation Uncertainty

The estimated model parameters include uncertainties, which are quantified relatively
using the estimated coefficient of variations (COVs). Aside from parameter identifiability
issues, which are discussed earlier in the paper, modeling errors are most likely the most
important source of estimation uncertainties. Modeling errors result from the inherent
imperfections, approximations, and idealizations in the mathematical FE model. As a result,
the selected class of FE models does not contain the real-world structure, and the estimated
parameters characterize the closest possible model, in the model class, to the real struc-
ture [49]. Geometric approximations, material nonlinearities (even during low-amplitude
earthquake excitations), effects of nonstructural components and systems, and modeling
of damping energy dissipation mechanisms are some examples of imperfections in the
numerical FE model. Model parameterization (i.e., selecting the estimation parameters in
the model) is another source of modeling error. Modeling errors lead to biased estimation
results. This means that by changing the earthquake event, the estimation result may vary,
preferably slightly. Addressing the effects of modeling error requires repeating this study
using more refined FE models and/or different earthquake data, which is beyond the scope
of the present paper and can be the subject of future studies.

8. Conclusions

In this study, we developed a finite element (FE) model updating framework using a
sequential Bayesian estimation approach to identify the soil and structural model parame-
ters as well as the input motions from recorded seismic response of the Millikan Library
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building during the 2002 Yorba Linda earthquake. The newly developed Bayesian FE
model updating procedure was used in a two-step system identification approach. In the
first step, a fixed-base structural model was identified using partially unknown inputs. The
structural model parameters included the effective stiffness of columns and shear walls
(grouped along the height of the structure), the Rayleigh damping parameters, and the
distributed floor mass. In the second step, the parameters characterizing the soil-structure
model and the time histories of the Foundation Input Motions (FIMs) were estimated.
The soil-structure model parameters included the soil subgrade and viscosity moduli at
different foundation regions and the Rayleigh damping parameters. For each step, an
identifiability analysis based on an information theoretic approach was performed to study
the dependencies between model parameters and select the most identifiable parameter sets
to be estimated. In Section 7 of the paper, the estimated model parameters were compared
with the state-of-practice recommendations and other previous studies on the Millikan
Library, and the differences were highlighted.

Minor differences were observed between the measured and FE-predicted response
time histories obtained from the updated FE models. Considering the various sources of
modeling error in this identification problem, the agreement between the updated FE model
responses and the measurements was remarkable. Future studies are suggested to extend
this process with more refined FE models (e.g., including material nonlinearities) and differ-
ent earthquake data to further quantify the effects of modeling error. Applying this process
to nonlinear SSI models using the recorded structural responses to strong ground motions
may introduce additional complications due to the damage in nonstructural components,
the nonlinear kinematic interaction between the structural and nonstructural systems, and
the nonlinearities in the soil response. As a result, the identification of the nonlinear struc-
tural model parameters and the Raleigh damping model parameters is expected to include
uncertainties and estimation biases. Furthermore, the identified soil-foundation subsystem
model parameters, i.e., the impedance function, are expected to deviate more considerably
from the state-of-practice recommendations. Despite these difficulties, undertaking such a
research effort is crucial for developing a better understanding of the nonlinear interaction
between the non-structure, structure, and soil subsystems. By utilizing the presented model
inversion framework for different civil structures and earthquake records, key structural
model parameters can be estimated from real-world seismic data. These are valuable
information that can guide—along with theoretical results—the selection of engineering
analysis and design parameters to improve state-of-the-art seismic analysis and design
procedures.
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Appendix A. Instrumentation Plan for the Millikan Library

Table A1. Sensors’ locations and measurement directions.

Channel # Sensor Location Mea'sure.m ent
Direction

1 Basement, North East Corner N
2 Basement, North East Corner Up
3 Basement, North East Corner E
4 Basement, North West Corner

5 Basement, North West Corner Up
6 Basement, South East Corner Up
7 1st Floor, East N
8 1st Floor, West E
9 1st Floor, West N
10 2nd Floor, West E
11 2nd Floor, West N
12 3rd Floor, East N
13 3rd Floor, West E
14 3rd Floor, West N
15 4th Floor, East N
16 4th Floor, West E
17 4th Floor, West N
18 5th Floor, East N
19 5th Floor, West E
20 5th Floor, West N
21 6th Floor, East N
22 6th Floor, West E
23 6th Floor, West N
24 7th Floor, East N
25 7th Floor, West E
26 7th Floor, West N
27 8th Floor, West E
28 8th Floor, West N
29 9th Floor, East N
30 9th Floor, West E
31 9th Floor, West N
32 Roof, East N
33 Roof, West E
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Figure A1. Floor plans showing the different sensors’ locations and measurement directions.
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