Influence of Mixing-Water Magnetization Method on the Performance of Silica Fume Concrete
Abstract
:1. Introduction
2. Experimental Plan
2.1. Materials
2.2. Mixes and Variables
2.3. Test Techniques and Procedures
2.3.1. Water Properties
2.3.2. Mechanical Properties
2.3.3. Non-Destructive Tests
2.3.4. Microstructural Analysis
3. Experimental Results and Analysis
3.1. Water Properties
3.2. Workability
3.3. Compressive Strength
3.4. Splitting Tensile Strength and Flexural Strength
3.5. Non-Destructive Tests
3.6. Microstructural Analyses
4. Conclusions
- The water properties changed after the magnetization in which the temperature, pH, TDS, and EC increased by averages of 15%, 11%, 12%, and 6%, respectively. The water density did not show significant change after magnetization; however, the water surface tension decreased by an average of 4%.
- Using MW with SF increased the compressive strength by up to 80%, the splitting tensile strength by up to 98%, the flexural strength by up to 22%, and did not significantly affect the concrete slump. The best results in the concrete mechanical properties were achieved when water was magnetized by passing it through magnetic fields of 1.6T then 1.4T intensities for 150 cycles.
- The UPV test resulted in good prediction of the concrete compressive strength with overall error ranged between −12.6% and +5.8%. The existence of MW positively affected the prediction of the strength using the UPV test. However, the Schmidt rebound hammer test failed to predict the concrete compressive strength accurately for the mixes in this study as it showed a prediction error of about 40%.
- The microstructural analyses revealed that employing MW instead of TW significantly improved the concrete microstructure and produced a denser structure in comparison to the control conventional concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Liu, R.; Liu, C.; Liu, P.; Sun, L. Effects of silica fume type and cementitious material content on the adiabatic temperature rise behavior of LHP cement concrete. Constr. Build. Mater. 2022, 351, 128976. [Google Scholar] [CrossRef]
- Youssf, O.; Hassanli, R.; Mills, J.E.; Elrahman, M.A. An experimental investigation of the mechanical performance and structural application of LECA-Rubcrete. Constr. Build. Mater. 2018, 175, 239–253. [Google Scholar] [CrossRef]
- Khedr, S.A.; Abou-Zeid, M.N. Characteristics of silica-fume concrete. J. Mater. Civ. Eng. 1994, 6, 357–375. [Google Scholar] [CrossRef]
- Youssf, O.; Elchalakani, M.; Hassanli, R.; Roychand, R.; Zhuge, Y.; Gravina, R.J.; Mills, J.E. Mechanical performance and durability of geopolymer lightweight rubber concrete. J. Build. Eng. 2021, 2, 103608. [Google Scholar] [CrossRef]
- Ghutke, V.S.; Bhandari, P.S. Influence of silica fume on concrete. IOSR J. Mech. Civ. Eng. IOSR-JMCE 2014, 1, 44–47. [Google Scholar]
- Jia, Q.; Zhuge, Y.; Duan, W.; Liu, Y.; Yang, J.; Youssf, O.; Lu, J. Valorisation of alum sludge to produce green and durable mortar. Waste Dispos. Sustain. Energy 2022, 1, 1–13. [Google Scholar] [CrossRef]
- Youssf, O.; ElGawady, M.A.; Mills, J.E.; Ma, X. An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes. Constr. Build. Mater. 2014, 53, 522–532. [Google Scholar] [CrossRef]
- Roychand, R.; Gravina, R.J.; Zhuge, Y.; Ma, X.; Youssf, O.; Mills, J.E. A comprehensive review on the mechanical properties of waste tire rubber concrete. Constr. Build. Mater. 2020, 237, 117651. [Google Scholar] [CrossRef]
- Eltayeb, E.; Ma, X.; Zhuge, Y.; Youssf, O.; Mills, J.; Xiao, J. Structural behaviour of composite panels made of profiled steel sheets and foam rubberised concrete under monotonic and cyclic shearing loads. Thin-Walled Struct. 2020, 151, 106726. [Google Scholar] [CrossRef]
- Abbass, W.; Khan, M.; Mourad, S. Experimentation and predictive models for properties of concrete added with active and inactive SiO2 fillers. Materials 2019, 12, 299. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Kumar, A.; Singh, A. Study of partial replacement of cement by silica fume. Int. J. Adv. Res. 2016, 4, 104–120. [Google Scholar] [CrossRef]
- Gholhaki, M.; Hajforoush, M.; Kazemi, M. An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials. Constr. Build. Mater. 2018, 158, 173–180. [Google Scholar] [CrossRef]
- Jalal, M.; Mansouri, E.; Sharifipour, M.; Pouladkhan, A.R. Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater. Des. 2012, 34, 389–400. [Google Scholar] [CrossRef]
- Sabet, F.A.; Libre, N.; Shekarchi, M. Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Constr. Build. Mater. 2013, 44, 175–184. [Google Scholar] [CrossRef]
- Keshta, M.M.; Libre, N.A.; Shekarchi, M. Utilizing of Magnetized Water in Enhancing of Volcanic Concrete Characteristics. J. Compos. Sci. 2022, 6, 320. [Google Scholar] [CrossRef]
- Narmatha, M.; Arulraj, P.; Bari, J. Effect of magnetic water treatment for mixing and curing on structural concrete. Mater. Today Proc. 2021, 37, 671–676. [Google Scholar] [CrossRef]
- Ghorbani, S.; Gholizadeh, M.; De Brito, J. Effect of magnetized water on the mechanical and durability properties of concrete block pavers. Materials 2018, 11, 1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledo, E.J.; Ramalho, T.; Magriotis, Z. Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. J. Mol. Struct. 2008, 888, 409–415. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Y.; Luo, J. Influence of magnetic water on early-age shrinkage cracking of concrete. Constr. Build. Mater. 2017, 147, 91–100. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Manar, D. Effect of static magnetic field treatment on fresh concrete and water reduction potential. Case Stud. Constr. Mater. 2021, 14, e00535. [Google Scholar] [CrossRef]
- Javahershenas, F.; Gilani, M.; Hajforoush, M. Effect of magnetic field exposure time on mechanical and microstructure properties of steel fiber-reinforced concrete (SFRC). J. Build. Eng. 2021, 35, 101975. [Google Scholar] [CrossRef]
- Malathy, R.; Narayanan, K.; Mayakrishnan, P. Performance of prestressed concrete beams using magnetic water for concrete mixing. J. Adhes. Sci. Technol. 2022, 36, 666–684. [Google Scholar] [CrossRef]
- Barham, W.S.; Albiss, B.; Latayfeh, O. Influence of magnetic field treated water on the compressive strength and bond strength of concrete containing silica fume. J. Build. Eng. 2021, 33, 101544. [Google Scholar] [CrossRef]
- Afshin, H.; Gholizadeh, M.; Khorshidi, N. Improving mechanical properties of high strength concrete by magnetic water technology. Sci. Iran. 2010, 1, 17. [Google Scholar]
- Abdel-Magid, T.I.M.; Wu, Y.-H.; Mar, C.-Y. Effect of magnetized water on workability and compressive strength of concrete. Procedia Eng. 2017, 193, 494–500. [Google Scholar] [CrossRef]
- Su, N.; Wu, Y.-H.; Mar, C.-Y. Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cem. Concr. Res. 2000, 30, 599–605. [Google Scholar] [CrossRef]
- Soto-Bernal, J.J.; Gonzalez-Mota, R.; Rosales-Candelas, I.; Ortiz-Lozano, J.A. Effects of static magnetic fields on the physical, mechanical, and microstructural properties of cement pastes. Adv. Mater. Sci. Eng. 2015, 2015, e01871. [Google Scholar] [CrossRef] [Green Version]
- Yousry, O.M.; Abdallah, M.A.; Ghazy, M.F.; Taman, M.H.; Kaloop, M.R. A study for improving compressive strength of cementitious mortar utilizing magnetic water. Materials 2020, 13, 1971. [Google Scholar] [CrossRef] [Green Version]
- ASTM, C 150; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM, C 1240-05; Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International: West Conshohocken, PA, USA, 2019.
- BS EN 12620:2002; Aggregate for Concrete. BSI, British Standards Institution: London, UK, 2002.
- Admixture, W.-R. ASTM C 494/C 494M. Type B.3; ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM, C 192; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM, D 1125-14; Standard Test Methods for Electrical Conductivity and Resistivity of Water. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM, D 1293-12; Standard Test Methods for pH of Water. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM, D 5907-10; Standard Test Methods for Filterable Matter (Total Dissolved Solids) and Nonfilterable Matter (Total Suspended Solids) in Water. ASTM International: West Conshohocken, PA, USA, 2010.
- ASTM, D 1590; Standard Test Method for Surface Tension of Water. ASTM International: West Conshohocken, PA, USA, 2010.
- BS EN 12390-3:2009; Testing Hardened Concrete—Part 3: Compressive Strength of test Specimens. BSI, British Standards Institution: London, UK, 2009.
- ASTM, C 496; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM, C 293M-16; Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading). ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM, C 597-16; Standard Test Method For Pulse Velocity Through Concrete. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM, C805/C805M; Standard Test Method for Rebound Number of Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2018.
- Karkush, M.O.; Ahmed, M.; Al-Ani, S. Magnetic field influence on the properties of water treated by reverse osmosis. Eng. Technol. Appl. Sci. Res. 2019, 9, 4433–4439. [Google Scholar] [CrossRef]
- Indrasari, W.; Budi, E.; Umiatin; Alayya, S.R.; Ramli, R. Measurement of water polluted quality based on turbidity, pH, magnetic property, and dissolved solid. J. Phys. Conf. Ser. 2019, 3, 2851. [Google Scholar]
- Niu, L. Experimental Research on the Influence of Magnetized Water on the Compressive Strength of Concrete. Int. Core J. Eng. 2022, 8, 176–180. [Google Scholar]
- ES 8411-2:2020; Testing Fresh Concrete—Part 2: Slump Test. EOS, Egyptian Organization for Standards & Quality: Cairo, Egypt, 2020.
- Ghorbani, S.; Ahmed, M.D.; Al-Ani, S.M.A. Effect of magnetized water on foam stability and compressive strength of foam concrete. Constr. Build. Mater. 2019, 197, 280–290. [Google Scholar] [CrossRef]
Element | CaO | Al2O3 | SiO2 | MgO | Fe2O3 | K2O | SO3 | Na2O | CL | TiO2 | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|
BPC | 63.43 | 4.62 | 20.61 | 1.56 | 3.58 | 0.24 | 2.48 | 0.43 | 0.07 | - | 2.47 |
SF | 0.013 | 0.91 | 96.2 | 0.38 | 1.44 | 0.272 | 0.00 | 0.25 | - | 0.01 | 1.04 |
Method | Description | Time Per Cycle (s) | Opened Valves | Closed Valves |
---|---|---|---|---|
MW 1.4 | Exposed to a 1.4T magnetic field only | 50.0 | 2 and 4 | 1, 3, 5, 6, 7, and 8 |
MW 1.6 | Exposed to a 1.6T magnetic field only | 55.6 | 1 and 3 | 2, 4, 5, 6, 7, and 8 |
MW 1.4 to 1.6 | Exposed in sequence to 1.4T then to 1.6T magnetic fields. | 54.1 | 2, 3, 5, and 8 | 1, 4, 6, and 7 |
MW 1.6 to 1.4 | Exposed in sequence to 1.6T then to 1.4T magnetic fields. | 50.0 | 1, 4, 6, and 7 | 2, 3, 5, and 8 |
MW 1.4 with 1.6 | Exposed to both 1.4T and 1.6T magnetic field at the same time. | 54.1 | 1, 2, 3, and 4 | 5, 6, 7,and 8 |
Group | Mix No. | Magnetization | Mix Composition (Kg/m3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Method | Cycles | Cement | Sand | Dolomite | TW | MW | SP | SF | ||
A | 1 | -- | -- | 500 | 457 | 1218 | 179 | -- | 2.6 | 0 |
2 | -- | -- | 450 | 457 | 1218 | 179 | -- | 2.6 | 50 | |
B | 3 | MW 1.4 | 150 | 450 | 457 | 1218 | -- | 179 | 2.6 | 50 |
4 | MW 1.6 | 150 | 450 | 457 | 1218 | -- | 179 | 2.6 | 50 | |
5 | MW 1.4 to 1.6 | 150 | 450 | 457 | 1218 | -- | 179 | 2.6 | 50 | |
6 | MW 1.6 to 1.4 | 150 | 450 | 457 | 1218 | -- | 179 | 2.6 | 50 | |
7 | MW 1.6 with 1.4 | 150 | 450 | 457 | 1218 | -- | 179 | 2.6 | 50 | |
C | 8 | MW 1.6 to 1.4 | 100 | 450 | 457 | 1218 | -- | 179 | 2.6 | 50 |
9 | MW 1.6 to 1.4 | 250 | 450 | 457 | 1218 | -- | 179 | 2.6 | 50 | |
TW | Tap water | SP | Superplasticizer | |||||||
MW | Magnetized water | SF | Silica fume |
Water Type | Magnetization | T (°C) | pH | TDS (ppm) | EC (µs) | D (gm/cm3) | ST (mN/m) | |
---|---|---|---|---|---|---|---|---|
Method | Cycles | |||||||
TW | TW | -- | 25.4 | 7.2 | 195 | 394 | 0.977 | 70.67 |
MW | MW 1.4 | 150 | 29.4 | 8.1 | 214 | 415 | 0.973 | 66.96 |
MW | MW 1.6 | 150 | 28.9 | 8.1 | 221 | 418 | 0.970 | 67.65 |
MW | MW 1.4 to 1.6 | 150 | 29.7 | 7.8 | 212 | 413 | 0.975 | 66.89 |
MW | MW 1.6 to 1.4 | 150 | 29.2 | 8.2 | 222 | 419 | 0.973 | 68.05 |
MW | MW 1.6 with 1.4 | 150 | 28.8 | 7.8 | 220 | 418 | 0.970 | 67.23 |
MW | MW 1.6 to 1.4 | 100 | 28.3 | 8.0 | 215 | 414 | 0.973 | 69.03 |
MW | MW 1.6 to 1.4 | 250 | 30.8 | 8.1 | 229 | 422 | 0.970 | 67.44 |
Group | Mix No. | Slump (mm) | Compressive Strength (MPa) | Splitting Tensile Strength (MPa) | Flexural Strength (MPa) | |||
---|---|---|---|---|---|---|---|---|
28 d | 120 d | 28 d | 56 d | 28 d | 56 d | |||
A | 1 | 140 | 45.8 | 55.6 | 2.17 | 3.26 | 7.65 | 8.18 |
2 | 130 | 58.7 | 66.7 | 3.35 | 4.18 | 7.99 | 8.81 | |
B | 3 | 135 | 79.3 | 79.8 | -- | -- | -- | -- |
4 | 135 | 80.2 | 81.3 | -- | -- | -- | -- | |
5 | 130 | 68.6 | 76.2 | -- | -- | -- | -- | |
6 | 140 | 82.4 | 86.9 | 4.30 | 5.26 | 8.55 | 10.01 | |
7 | 140 | 68.2 | 79.6 | -- | -- | -- | -- | |
C | 8 | 135 | 71.3 | 77.7 | -- | -- | -- | -- |
9 | 140 | 76.7 | 79.9 | -- | -- | -- | -- |
Group | Mix No. | Measured Compressive Strength (MPa) | UPV | Schmidt Hammer | ||
---|---|---|---|---|---|---|
Velocity (km/s) | Comp. Strength (MPa) * | Rebound Number (R) | Comp. Strength (MPa) * | |||
28 d | 28 d | 28 d | 28 d | 28 d | ||
A | 1 | 45.8 | 4.4 | 27.0 | 32.2 | 27.2 |
2 | 58.7 | 4.8 | 53.9 | 36.6 | 34.6 | |
B | 3 | 79.3 | 5.1 | 72.6 | 41.9 | 43.9 |
4 | 80.2 | 5.4 | 78.4 | 43.8 | 47.5 | |
5 | 68.6 | 5.1 | 72.6 | 38.7 | 38.2 | |
6 | 82.4 | 5.4 | 78.4 | 43.9 | 47.7 | |
7 | 68.2 | 5.0 | 68.6 | 41.5 | 43.3 | |
C | 8 | 71.3 | 5.3 | 75.5 | 41.6 | 43.4 |
9 | 76.7 | 5.2 | 73.5 | 42.5 | 45.1 |
Element | Mix 1 | Mix 2 | Mix 6 | |||
---|---|---|---|---|---|---|
Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | |
O | 37.47 | 62.21 | 45.67 | 68.38 | 47.31 | 50.96 |
Si | - | - | 0.65 | 0.23 | 3.57 | 2.96 |
Ca | 31.90 | 21.14 | 23.93 | 14.31 | 19.48 | 8.38 |
Mg | 11.39 | 12.44 | 13.59 | 13.80 | 6.74 | 4.78 |
Fe | - | - | 0.43 | 0.18 | 0.73 | 0.23 |
Sb | 19.25 | 4.2 | 15.37 | 3.10 | - | - |
C | - | - | - | - | 21.18 | 32.70 |
Al | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.S.; Elshikh, M.M.Y.; Elemam, W.E.; Youssf, O. Influence of Mixing-Water Magnetization Method on the Performance of Silica Fume Concrete. Buildings 2023, 13, 44. https://doi.org/10.3390/buildings13010044
Ahmed AS, Elshikh MMY, Elemam WE, Youssf O. Influence of Mixing-Water Magnetization Method on the Performance of Silica Fume Concrete. Buildings. 2023; 13(1):44. https://doi.org/10.3390/buildings13010044
Chicago/Turabian StyleAhmed, Ali S., Mohamed M. Yousry Elshikh, Walid E. Elemam, and Osama Youssf. 2023. "Influence of Mixing-Water Magnetization Method on the Performance of Silica Fume Concrete" Buildings 13, no. 1: 44. https://doi.org/10.3390/buildings13010044
APA StyleAhmed, A. S., Elshikh, M. M. Y., Elemam, W. E., & Youssf, O. (2023). Influence of Mixing-Water Magnetization Method on the Performance of Silica Fume Concrete. Buildings, 13(1), 44. https://doi.org/10.3390/buildings13010044