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Abstract: With an increasing concern for global warming, there have been many attempts to reduce
greenhouse gas emissions. About 30% of total energy has been consumed by buildings, and much
attention has been paid to reducing building energy consumption. There are many ways to reduce
building energy consumption. One of the most relevant methods is machine learning. While machine
learning methods provide accurate energy consumption predictions, they require huge datasets. The
present study developed an artificial neural network (ANN) model for building energy consumption
predictions with small datasets. As mechanical systems are the most energy-consuming components
in the building, the present study used the energy consumption data of a direct-fired absorption
chiller for the short term. For the optimization, the prediction results were investigated by varying
the number of inputs, neurons, and training data sizes. After optimizing the ANN model, it was
validated with the actual data collected through a building automation system. In sum, the outcome
of the present study can be used to predict the energy consumption of the chiller as well as improve
the efficiency of energy management. The outcome of the present study can be used to develop a
more accurate prediction model with a few datasets, which can improve the efficiency of building
energy management.

Keywords: ANN; energy consumption; optimization; direct-fired absorption chiller; validation

1. Introduction

According to energy consumption statistics, the building sector accounts for about 30%
of total energy consumption and 80% of greenhouse gas emissions [1]. Therefore, issues
regarding reducing building energy consumption have become one of the main agendas to
promote carbon neutrality [2,3].

To reduce building energy consumption, many attempts have been made to design
energy-efficient buildings by improving the thermal performance of building envelopes,
using energy-efficient mechanical systems, and installing renewable energy systems. In
addition, the optimized control and efficient operation of mechanical systems can make
buildings more energy efficient. Specifically, about half of the building energy was con-
sumed by heating, ventilation, and air conditioning (HVAC) to maintain thermal comfort
indoors [4]. Thus, it is necessary to manage the energy consumption of HVAC systems
more efficiently in building operations. Recently, building energy management systems
(BEMS) have been practically used to manage building energy consumption by providing
specific information on building energy usage. It is therefore required to predict accurate
building energy consumption for optimizing building energy performance from building
design to operation [5].

In 2014, the Korean government regulated the installation of an energy management
system (EMS) to strengthen building energy management. In addition, the Korean gov-
ernment has regulated the installation of BEMS in newly constructed public buildings or
extensions where the gross floor area is greater than 10,000 m2 since 2017 [6,7]. According to
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the new laws in 2019 in South Korea, the regulation for BEMS installation has become more
significant to strengthen building energy management. Regarding this law, it is required
for building energy management to predict building energy consumption by implementing
regression analyses or machine learning for hourly and daily energy usage and energy
sources [7].

Generally, data-driven models can provide a practical way of predicting building
energy consumption. The number of studies for building energy consumption predictions
using artificial intelligence techniques and machine learning methods has increased. Several
studies have been performed to provide more accurate predictions. For example, artificial
neural networks (ANNs) have been used to manage building energy consumption for
non-residential buildings [8].

By using ANN models to predict or manage energy consumption for non-residential
buildings, most studies have implemented data collected over long periods of time. R.
Mena et al. used 18 months of data for efficient building demand management [9]. The
result showed an accuracy of prediction in which the mean absolute percentage error
(MAPE) was in the range of 0.81–1.73%. Ferlito et al. have created a prediction model
by using three years of data for demand side management [10]. In addition, Yun et al.
have used six months of data generated by the EnergyPlus simulation for supply and
demand side management [11]. Similar studies have been conducted using a huge amount
of data [5,12].

To deal with the issues for applications of the data collected over long periods, the
study proposes improving the neural network models as well as using deep learning
methods. However, in the case of deep learning models, they show overfitting with small
datasets while being able to provide reliable prediction results for building energy loads
or electricity consumption when using large datasets [13]. Unfortunately, long training
times and low accuracy occur when large datasets are implemented [14]. Thus, the proper
number of datasets plays an important role in ensuring prediction accuracy [15]. While
many studies have reviewed the types of data and machine learning models for data-driven
energy consumption prediction, there were few studies varying the number of datasets or
data collection durations [16,17].

In South Korea, recent studies have been conducted to predict building energy
load [18,19], consumption [20,21], energy usage patterns [22,23], etc. by using machine
learning or artificial intelligence (AI). Moreover, they pointed out that much attention
should be paid to the accuracy of predictions made by these techniques. Most of those
techniques required a number of datasets to predict building energy consumption. If
buildings do not equip BEMS or building automation systems (BAS), data generated by
simulation tools are generally used.

However, the simulated data are different from the measured data. In addition, it is
even more difficult to collect the necessary number of measured data in a short period of
time. Thus, an effort needs to be made to improve the accuracy of the prediction with a few
datasets for a short period of time.

The purpose of the present study is to develop an energy consumption prediction
model for the short term based on the ANN technique. After optimizing the ANN model,
it is validated with the energy consumption data collected from the operation of a direct-
fired absorption chiller. The outcome of the present study can be used to develop a more
accurate prediction model with a few datasets, which can improve the efficiency of building
energy management.

2. Optimization and Validation of an ANN-Based Prediction Model

The present study used an ANN technique to predict energy consumption in the
short term. Since it requires a number of datasets to optimize the ANN model, the energy
simulation was performed to generate datasets. Considering the correlation among the
data, input variables were chosen and preprocessed. The number of inputs and neurons,
the size of the training data, and the learning parameters were determined to optimize the
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ANN model. After optimizing the model, it was validated with measured data. Figure 1
shows the study process for the present study.
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2.1. ANN Model

Among the ANN models, the present study implemented the NARX (Nonlinear Au-
toregressive Network with eXogenous) Feedforward Neural Networks model, which was
generally used to predict time-series data due to its high accuracy [5]. According to the
results of several studies, the NARX model can be used to model non-linear dynamic sys-
tems and time-series forecasting models [24,25]. For the ANN model, the Neural Networks
Toolbox of MATLAB (R2020a) was used to create a neural network. The NARX Feedfor-
ward Neural Networks model is a multi-layer perceptron ANN model that consists of an
input layer, a hidden layer, and an output layer [26]. In addition, the Levenberg-Marquardt
algorithm was used to find the minimum of a function over a space of parameters, which
is a popular trust algorithm. A similar structure of the ANN model used in the previous
studies was used for the present study, and the structure is shown in Figure 2 [26,27].
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2.2. Assessment of the Prediction Model

In general, the performance of prediction models can be validated with ASHRAE
(American Society of Heating, Refrigerating, and Air-Conditioning Engineers) Guideline
14, FEMP (US DOE Federal Energy Management Program), and IP-MVP’s (International
Performance Measurement and Verification Protocol) M&V (measurement and verification)
guideline [28–30]. These provide their M&V protocol and have performance evaluation
indicators (Table 1). Among those, the present study evaluated the performance of the
prediction model based on ASHRAE Guideline 14. CVRMSE refers to the degree of
scattering of estimated values in consideration of variance, and MBE is an error analysis
index that identifies errors by tracking how close estimates form clusters through data bias,
which are presented below as Equations (1) and (2). By using CVRMSE, the performance
evaluation indicators of the predictive model were validated.

MBE =
n
Σ
(yi − ŷi)/[(n − p)× y]·100 (1)

Cv(RMSE) = 100·[Σ(yi − ŷi)
2/(n − p)]

1/2
/y, (2)

where n is the number of data points, p is the number of parameters, yi is the utility data
used for calibration, ŷi is the simulation predicted data, and y is the arithmetic mean of the
sample of n observations. In addition, the suitability of the model was evaluated using R2.
After 10 times of learning, the average, maximum, minimum, and standard deviation were
used to evaluate the predictive performance of the ANN-based prediction model.

Table 1. Acceptable calibration tolerances in building energy consumption prediction.

Calibration Type Index ASHRAE
Guideline 14 [22] FEMP [23] IP-MVP [24]

Monthly
MBE_monthly ±5% ±5% ±20%

CvRMSE_monthly 15% 15% -

Hourly
MBE_hourly ±10% ±10% ±5%

CvRMSE_hourly 30% 30% 20%

3. The Optimization of the ANN-Based Model Using the Simulation Data

To improve the predictive performance of ANN models, it generally requires a large
amount of data [31]. For the present study, data generated by simulations were used.
The data generated by simulations provide the advantage of choosing the data for certain
periods when it is not possible to gather data from buildings over a long period of time.

3.1. Energy Simulation for Generating Data

In the present study, an office building was chosen. The reference building has
18 floors with a gross floor area of 41,005 m2. For heating and cooling, 2 direct-fired
absorption chillers were equipped, and one chiller was operated. Each chiller’s cooling
capacity was 600 USRT. For the energy simulation, EnergyPlus 9.3.0 was used. The reference
building in Figure 3a was modeled using Openstudio, as shown in Figure 3b. The inputs
for the energy simulation, such as the operation schedule, occupancy, etc., were the same
as the reference building. In addition, the climate data collected from the BAS installed at
the reference building were synthesized into TRY format. Table 2 shows the specific inputs
for the energy simulation.
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Table 2. Simulation conditions.

Component Features

Site Location Latitude: 37.27◦ N, Longitude: 126.99◦ E

Weather Data TRY Suwon

Load Convergence Tolerance Value Delta 0.04 W (default)

Temperature Convergence Tolerance Value Delta 0.4 ◦C (default)

Heat Balance Algorithm CTF (Conduction Transfer Function)

Simulated Hours 8760 [h]

Timestep Hourly

Internal Gain
Lighting 6 [W/m2]

People 20 [m2/person]
Plug and Process 8 [W/m2]

Envelope Summary Wall 0.36 [W/m2·K], Roof 0.20 [W/m2·K],
Window 2.40 [W/m2·K], SHGC 0.497

Operation Schedule 7:00~18:00

3.2. The Optimization Process for Improving the Predictive Performance of the ANN Model
3.2.1. Input Variables

In this stage, input variables were chosen among the data generated by the energy
simulation for training. Using the Spearman rank-order correlation coefficient, the corre-
lation between input and output was analyzed. The high-priority correlated value was
chosen as the input value. The input layer for a direct-fired absorption chiller consisted
of outside dry-bulb temperature, dew-point temperature, outside wet-bulb temperature,
supply chilled water temperature, supply chilled water flow rate, condenser water tem-
perature, and seasonal data. In the hidden layer, data were received as an input signal
from the input layer through the internal neurons. The output layer predicted the energy
consumption from the direct-fired absorption chillers based on the hidden layer calculation
result. Table 3 presents the calculation results and ranks from the correlation between
input variables (x(t)) and the predicted gas consumption of the direct-fired absorption
chiller (y(t)).

3.2.2. Input Parameters

The number of hidden layers was set at 3. As one of the learning parameters, the
number of epochs was 100. Since the number of neurons in the hidden layers mainly
influences the calculated prediction and time, the number of neurons was changed from 2
to 20 by 2. While the number of input variables was changed from 3 to 7, the size of the
datasets ranged from 50 to 90%. Detailed parameter conditions are summarized in Table 4.
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Table 3. Correlation between input variables and energy consumption.

Input
Variables

[x(t)]

Condenser
Water Temp.

(◦C)

Supply
Chilled

Water Flow
Rate (kg/s)

Outside
Dry-Bulb

Temp. (◦C)

Dew-Point
Temp. (◦C)

Supply
Chilled Water

Temp. (◦C)

Outside
Wet-Bulb

Temp. (◦C)
Hour

Rank 1 2 3 4 5 6 7

Spearman
correlation 0.72 0.65 0.54 0.44 −0.38 0.31 0.25

Table 4. Parameter conditions for the optimization of the ANN model.

Parameter Value

Fixed
Number of Hidden Layers 3

Epochs 500

Variable

Number of Inputs 3~7

Number of Neurons 2~20

Training Data Size 50~90%

3.3. The Result and Discussion
3.3.1. Predictive Performance by the Number of Input Variable Changes

Figure 4 shows the result of the predictive performance by changing the number of
input variables to find the optimized number of input variables. The number of neurons and
the data size of the training were set at 10% and 60%, respectively. As the number of input
variables increased, the average CVRMSE values of the prediction increased from 5.69% to
8.43% for the training periods, while they increased from 12.25% to 24.04% for the testing
periods. These were within the acceptable range of 30% by ASHRAE Guideline 14. When
the number of input variables was 4, the average value of CVRMSE was the lowest (5.69%)
for the training period. In the case of the testing period, the average value of CVRMSE was
the lowest (13.25%) when the number of input variables was 5. In addition, the average,
minimum, and maximum CVRMSE values were 12.25%, 8.56%, and 16.05%, respectively.
This showed the most accurate predictive performance. When the minimum number
of input variables of 3 was used, the average CVRMSE values decreased to 0.58% and
3.74% for the training and testing periods, respectively. The standard deviation was 2.44,
which showed constant predictive performance. When the number of input variables was
greater than 5, the average CVRMSE value increased, while the accuracy of the predictive
performance decreased. It can be seen that the predictive performance of the ANN model
is lower when the input variables are not correlated with the input layer. Therefore, the
predictive performance was most acceptable when the number of input variables was
5. According to the result, it is important to consider the correlation between the input layer
and input variables rather than increasing the number of input variables. Table 5 shows the
values of average, minimum, maximum, and standard deviation with an increase in the
number of input variables.

3.3.2. Predictive Performance by the Number of Neurons Changes

In this stage, the predictive performance of the model was analyzed by changing
the number of neurons (Figure 5). The number of input variables was 5, and the size
of the learning data was set at 60%. As the number of neurons increased, the average
values of CVRMSE were in the range of 5.61–22.44% and 12.25–27.14% for the training and
testing periods, respectively. These were within the acceptable range of 30% by ASHRAE
Guideline 14. When the number of neurons was 20, the average value of CVRMSE was
the lowest (5.61%) for the training period. In the case of the testing period, the average
value of CVRMSE was the lowest (12.25%) when the number of neurons was 10. Moreover,
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the most accurate predictive performance was obtained when the number of neurons
was 10, in which the values of average, minimum, and maximum CVRMSE were 12.25%,
8.56%, and 16.05%, respectively. When comparing the number of neurons between 10
and 2, the average values of CVRMSE for the training and testing periods decreased to
16.66% and 12.55%, respectively. When the number of neurons was 10, the predictive
performance was improved by decreasing the values of CVRMSE gradually, while it was
lowered by increasing the value of CVRMSE when the number of neurons was higher
than 12. This indicated that the weight increased with the increase in the number of
neurons, and overfitting was obtained. When the number of neurons was higher than
10, the standard deviation was in the range of 1.42–2.84, which showed more constant
predictive performance than when the number of neurons was below 10. It showed that the
most acceptable predictive performance was obtained when the number of neurons was
10. It can be seen that the increase in the number of neurons was not able to improve the
predictive performance of the ANN model. Thus, it is important to find a suitable number
of neurons by observing the model’s predictive performance. Table 6 shows the values
of average, maximum, minimum, and standard deviation when increasing the number
of neurons.
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Table 5. The predictive performance when changing the number of input variables (maximum,
minimum, average, and standard deviation).

Number of Input Period Average Maximum Minimum SD

3
Training 6.35 9.88 4.18 1.67

Testing 16.30 22.05 9.44 4.30

4
Training 5.69 9.37 4.34 1.49

Testing 14.23 17.84 9.99 2.60

5
Training 5.77 8.21 4.03 1.40

Testing 13.25 19.35 8.56 3.49

6
Training 7.38 11.92 4.46 1.94

Testing 16.74 21.43 12.05 3.21

7
Training 8.43 11.65 6.72 1.45

Testing 24.04 28.45 17.32 3.92

3.3.3. Predictive Performance by the Size Changes of the Training Data

Figure 6 presents the values of CVRMSE by changing the size of the training data.
Based on the previous results, the number of input variables and neurons was set at 5 and
10, respectively. The size of the training data was increased from 50% to 90% by increments
of 5%. The average values of CVRMSE were in the range of 5.36–7.74% and 8.93–17.69% for
the training and testing periods, respectively. These were all within the acceptable range of
ASHRAE Guideline 14. In addition, it showed a suitable predictive performance of 20%.
When the size of the training data was set at 65%, the average value of CVRMSE was the



Buildings 2023, 13, 2526 8 of 15

lowest (5.36%) for the training period, while it was 8.93% for the testing period when the
size of the training data was 85%. Moreover, the average, minimum, and maximum values
of CVRMSE were 8.93%, 6.69%, and 11.23%, respectively, when the size of the training
data was 85%. That showed the most accurate predictive performance. When the size of
the training data was increased to 85%, the predictive performance improved, while the
CVRMSE decreased gradually. However, the predictive performance degraded when the
training data size was 90%. The standard deviation ranged from 1.88 to 1.45 when the
size of the training data was set between 70 and 85%. Thus, the ANN model showed the
most acceptable predictive performance when the data size of training was set between
80 and 85%. Table 6 presents the predictive values of maximum, minimum, and standard
deviation when changing the size of the training data. Table 7 shows the values of average,
minimum, maximum, and standard deviation when increasing changing the size of the
training data.

Table 6. The predictive performance when changing the number of neurons (maximum, minimum,
average, and standard deviation).

Number of Neurons Period Average Maximum Minimum SD

2
Training 22.44 23.65 20.23 1.21

Testing 27.14 29.33 22.68 2.41

4
Training 12.47 18.43 6.22 3.36

Testing 19.77 25.01 12.15 3.79

6
Training 9.70 12.66 4.83 2.59

Testing 19.45 22.40 15.36 2.22

8
Training 8.28 12.76 5.00 2.36

Testing 16.80 20.50 10.37 3.73

10
Training 5.77 8.21 4.03 1.40

Testing 12.55 16.05 8.56 2.44

12
Training 7.70 13.95 4.58 3.10

Testing 12.66 16.14 8.20 2.84

14
Training 7.62 13.59 4.02 3.86

Testing 14.52 17.55 10.27 2.33

16
Training 6.22 9.81 3.98 1.94

Testing 14.59 16.82 12.05 1.42

18
Training 6.22 10.64 4.01 2.39

Testing 14.66 16.50 9.28 2.27

20
Training 5.61 11.33 3.96 2.19

Testing 14.74 17.72 9.57 2.84
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Table 7. The predictive performance when changing the size of the training data (maximum, mini-
mum, average, and standard deviation).

Training Data Size [%] Period Average Max Min SD

50
Training 7.74 11.25 4.82 1.93

Testing 17.69 24.88 8.80 5.78

55
Training 7.60 9.08 4.63 1.38

Testing 16.77 23.43 7.59 4.70

60
Training 5.77 8.21 4.03 1.40

Testing 12.55 16.05 8.56 2.44

65
Training 5.36 6.53 3.98 0.83

Testing 12.29 16.04 7.82 2.78

70
Training 5.45 8.24 4.11 1.33

Testing 12.26 16.42 10.23 1.88

75
Training 5.37 7.59 4.32 1.05

Testing 11.06 14.54 9.06 1.83

80
Training 6.04 8.84 4.28 1.53

Testing 9.08 11.85 7.14 1.81

85
Training 5.76 9.58 4.48 1.45

Testing 8.93 11.23 6.69 1.45

90
Training 5.87 9.30 4.65 1.46

Testing 9.79 12.20 6.17 2.10

4. The Validation of the ANN Model for a Short Term with Measured Data

Based on the obtained results, the predictive performance of the ANN model for a
direct-fired absorption chiller for a short-term period was validated with actual data. The
specific conditions were 5 and 10 for the input layer and neurons, respectively. The size
of the training data was set in the range of 70–85%. The actual data were collected from
the BAS installed in the reference building during the summer (1 July–8 August, 40 days),
which was about 952 h of datasets. The data were preprocessed using data transformation,
considering the unit of building energy consumption.

4.1. The Validation of the ANN Model with Measured Data

Figure 7 shows the comparison result of the predictive performance by changing the
size of the measured training data. By changing the size of the training data, the average
values of CVRMSE were in the range of 18.68–21.11% and 19.99–26.06% for the training
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and testing periods, respectively. These values were all within the acceptable range of
ASHRAE Guideline 14. As shown previously, the predictive performance was improved
by increasing the size of the training data. The most acceptable predictive performance
was obtained with 85% of the training data size. Specifically, the average, maximum,
and minimum values of CVRMSE for the testing period were 19.99%, 22.02%, and 17.5%,
respectively. However, the CVRMSE values obtained from the ANN model with the actual
data were higher than those obtained from the ANN model with data generated by the
simulation. This was caused by the decrease in the number of datasets from 8760 to 952.
In addition, it can also be a result of the quality difference between the simulated and
measured data. Even though the average values of CVRMSE obtained by the ANN model
with the actual data were higher than those obtained by the model with simulated data,
the standard deviation was constantly in the range of 1.36–1.62. Table 8 shows the average,
maximum, minimum, and standard deviation of predictive performance when changing
the size of the actual training data.
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Figure 7. The predictive performance when changing the size of the actual training data.

Table 8. The predictive performance when changing the size of the actual training data (maximum,
minimum, average, and standard deviation).

Training
Data Size Period Average Max Min SD

70
Training 22.11 27.52 18.41 2.48

Testing 26.06 27.85 23.68 1.53

75
Training 19.73 22.96 14.95 2.64

Testing 24.87 26.91 22.27 1.62

80
Training 19.34 21.81 17.65 1.46

Testing 22.77 25.34 20.41 1.57

85
Training 18.68 21.62 15.74 1.72

Testing 19.99 22.02 17.50 1.36

4.2. The Prediction Result of the Energy Consumption for a Short Term by Using Measured Data

Figure 8 shows the energy consumption comparison between the prediction obtained
by the ANN model and the reference building for 952 h. As shown previously, the standard
deviation difference between the prediction and measured data decreased as the size of the
training data increased.
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Figure 8. The energy consumption prediction when using the actual data.

Figure 9 shows the energy consumption comparison between the prediction and the
actual data when changing the size of the training data, including the error rate difference.
The total energy consumption of the direct-fired absorption chiller was 998.22 GJ. The error
rate difference was 2.16%, 1.82%, 1.44%, and 1.11% for the training data sizes of 70%, 75%,
80%, and 85%, respectively. This indicates that the predictive performance of the model
was improved by increasing the size of the training data. As shown above, the training
data size plays a significant role in the predictive performance of the model with the actual
data. Thus, it is important to find a suitable training data size for improving predictive
performance. The summarized predictive performance of the model with the actual data is
presented in Table 9.

Table 9. The energy consumption comparison and error rate when changing the size of the train-
ing data.

Training Data
Size Period Prediction [GJ] Actual [GJ] Error Rate [%]

70%

Training Period 678.83 639.39 5.81%

Testing Period 341.46 358.83 5.09%

Total Period 1020.29 998.22 2.16%

75%

Training Period 737.33 713.21 3.27%

Testing Period 279.42 285.01 2.00%

Total Period 1016.75 998.22 1.82%

80%

Training Period 754.86 772.42 2.33%

Testing Period 229.17 225.80 1.47%

Total Period 984.03 998.22 1.44%

85%

Training Period 812.06 799.14 1.59%

Testing Period 197.38 199.08 0.86%

Total Period 1009.44 998.22 1.11%
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ing data.

5. Conclusions

The present study developed the ANN model by using the collected data, and the
developed model was optimized. By using the energy consumption of the direct-fired
absorption chiller, the predictive performance of the ANN model was validated.

When the number of input variables and neurons was set at 5 and 10, respectively, and
the size of the training data was 85%, the average value of CVRMSE was the lowest and the
predictive performance was the most acceptable. By using the measured data, the ANN
model was validated. As a result, the average value of CVRMSE was 19.99%. Even though
the CVRMSE was somewhat increased, the error rate was less than 1%. This indicated that
the predictive performance of the ANN model was acceptable. In sum, the outcome of
the present study can be used to predict the energy consumption of the chiller as well as
improve the efficiency of energy management.

The main achievements are:

• The predictive performance was investigated by varying the number of input variables.
Based on the result, it is important to consider the correlation between the input layer
and input variables rather than increasing the number of input variables.

• The increase in the number of neurons was not effective in improving the predictive
performance of the ANN model. Thus, finding a suitable number of neurons is the
key to ensuring the accuracy of the predictive performance.

• The ANN model showed acceptable predictive performance when the data size of
training was set between 80 and 85%.

• The training data size plays a significant role in the predictive performance of the
ANN model.

The present study developed the ANN model to predict the energy consumption of
the chiller. However, an HVAC system consists of many components, such as air handling
units, fans, boilers, pumps, etc. Therefore, it is necessary to develop ANN models for these
components for further study. By applying the methodology used in this study, it can be
expected to improve the predictive performance of the model for the energy consumption
of these components. Furthermore, the outcome of the study can be used to develop more
efficient ANN models with a few datasets.
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