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Abstract: As a common engineering practice, the buildings are usually evaluated under the Typical
Meteorological Year (TMY), which represents the common weather situation. The warm and cool
conditions, however, can affect the building performance considerably, yet building performances
under such conditions cannot fully be given by the conventional TMY. This paper gives approaches to
constructing the weather data that represents several warm and cool conditions and compares their
differences by studying the cumulative cooling demands of a typical building in a hot and humid
climate. Apart from the Extreme Weather Year (EWY), the Near-Extreme Weather Year (NEWY) and
Common warm/cool Years (CY) data are proposed according to the occurrence distributions of the
weather over the long term. It was found that the cooling demands of NEWY and EWY differ by
4.8% from the cooling needs of TMY. The difference between the cooling demands of NEWY and
CY for most calendar months can be 20% and 15%, respectively. For the hot months, the cooling
demands under NEWY and CY take 7.4–11.6% and 2.3–5.6% differences from those under TMY. The
uncertainties of building performance due to the ever-changing weather conditions can be essential
to the robustness of building performance evaluations.

Keywords: simulation-based evaluations; untypical weather conditions; occurrence frequencies

1. Introduction

Buildings are consuming around 40% of society’s total energy [1,2] for the comfort and
well-being of their occupants in the ever-changing outdoor environment. Academia focuses
on buildings’ energy and thermal performance [3], operation strategies [4], and materials [5]
in specific climatic conditions. With advancing computer technology, experts often use
simulation tools [6] for building performance studies. Beyond the building’s design, the
outdoor climate significantly influences simulation outcomes [7,8]. Due to the comprehen-
sive influence of astronomical, geographical, and human activity factors, outdoor climate
conditions can vary year-by-year [9], imposing uncertainties in evaluating the expected
energy, indoor environment quality, and the performances of energy-saving strategies [7]
and renewable energy productions [10,11] by simulations. Previously, weather data were
chosen to represent typical long-term conditions. The approach saves computation costs
in evaluating the building performance using the so-called “most representative” climate
over a long period of 30 years or so [12]. This representative weather is either determined
by selecting one whole year as the ASHRAE Test Reference Year (TRY) [13] or by picking
12 months one by one and combining them as Hall’s Typical Meteorological Year (TMY) [14],
the Weather Year for Energy Calculations (WYEC) [15], and the Chinese Standard Weather
Data (CSWD) [16]. However, a building’s performance in “typical” weather might not
reflect its behavior in prolonged warm or cold scenarios [17]. With an increasing focus on
the safety of thermal environments [18], it is becoming increasingly important to study
building energy and thermal performances under various weather conditions that can be
different from normal conditions.
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Numerous studies have sought to identify data representing warm and cool conditions
over extended periods. Warm climate conditions, for example, are sometimes identified by
ranking the average or peak values of the summer dry-bulb temperature [19] or cooling
degree days (or hours) over a long-term period using the measured or generated weather
data. The Design Summer Year (DSR) [20], near-extreme Design Reference Year (DRY) [21],
and Hot Summer Year (HSY) [22] datasets are determined under this framework. Similarly,
the Summer Reference Year (SRY) [23] adopts the highest 5% recordings of the weather
variables only for ranking the years of interest from cold to warm; the features and regula-
tions of the variable values representing warm and typical conditions are studied further.
Later, the typical hot year (THY) [24] is developed by multiple aggregative or peak-value
indices, such as the total or maximum degree hours (or days) when the (daily maximum)
temperature is above a threshold and the maximum length of such events.

The cumulative or peak-value indices may be reasonable to identify the untypical
cases with higher/lower-than-usual temperatures. However, approaches identifying the
weather conditions by an average or cumulative value can be less comprehensive than
those by the occurrence frequency distributions of the weather variables (such as TMY),
especially when the energy of a whole month or year instead of a few extreme days is
considered. Yet, the previous occurrence-based study was limited to adjusting the weight
of the extreme values among various climatic indices [25], which can be more applicable
to the adaptive adjustments of the TMY for various purposes than identifying the various
climatic conditions. Recently, the occurrence-based approach has been used to identify
extreme weather by dry-bulb temperature from both historical weather records and future
expectations under the changing climate [26]. The importance of considering the extreme
years is illustrated later [27]. The approach was extended for humidity-related studies, with
relevant variables included [28]. Unlike typical years, this extreme year approach selects
the months that take the greatest differences from the long-term trend by the occurrence
distribution of the climatic variables. Although the extreme years can scale the potential
range of the building performances without excessive simulations over several decades, the
occurrence probability of the extreme cases that are far from the weather over the long term
is not considered. The extreme weather conditions, if turned out to be outliers, would have
few implications for the building performance studies that attempt either “representative”
warm or cool conditions for energy savings or relatively severe conditions for the system
designs. Extreme conditions are usually “not-guaranteed” [29] in the thermal designs of
buildings. It can thus be essential to identify the warm and cool conditions according to
their occurrence instead of the peak and bottom values. In this case, the uncertainties of the
current typical and extreme weather conditions and their impacts on building performance
should be studied.

Apart from the uncertainties of the various possible weather conditions in studying
the building performances, another uncertain issue in identifying the weather conditions
is the comprehensiveness of the accessible weather variables in depicting the weather
variations. Due to the difficulties in acquiring the solar radiation data in both the histor-
ical measurements and the simulation-based future expectations [30], several studies on
identifying the (near-)extreme weather conditions relied on the recorded or simulated
dry-bulb temperature only [26,31]. This brings benefits in saving the cost of data measure-
ments [32], yet uncertainties in missing the impact of a few weather data that affect the
building performance. Considering the different focuses in identifying the common and
extreme weather conditions, it may be sufficient to depict the extreme weather conditions
for building performance studies using fewer variables than TMY, while the uncertainties
should be quantified.

This paper intends to evaluate the uncertainties of the building performance studies
under various weather conditions and test the possibility of identifying the “representative”
warm and cool weather conditions for different purposes and using different available
climatic variables. The differences between the yearly and long-term weather data for each
calendar month are quantified by their cumulative frequency of occurrences, like the TMY
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and Nik’s [26–28] framework. The occurrence instead of the max or min values of the
differences determines the warm and cool weather conditions.

In this paper, the uncertainty of the weather condition and its consequences on build-
ing performance are exemplified by the well-recorded hourly weather data over the long
term and the well-developed representative building model of Hong Kong. The results
can be representative of places with similar climates and building types, such as the cities
in the Pearl Rivel Delta and subtropical regions. The representativeness is because of the
similar climate, cultural background, occupant operation schedules, and urban densities of
the cities in the region. The following sections are arranged as follows: Section 2 gives the
methodology for quantifying the differences between the yearly and long-term weather
conditions according to the distributions of their values over the corresponding periods.
Section 3 analyzes the distributions of these climatic differences for all calendar months
over decades using the data from Hong Kong; the various untypical weather conditions for
different engineering purposes and the cumulative cooling demands under these scenarios
are determined. Implications for the building performance studies are discussed.

2. Methodology
2.1. Differences between Yearly and Long-Term Weather Conditions

This study uses weather data from long-term ground measurements spanning several
decades to represent both typical and extreme weather conditions. The weather data is
analyzed monthly based on various rules and then aggregated into yearly data for specific
objectives. For each month, the cumulative distribution functions (CDF) of various variables
are determined by Equation (1) using either the data of the long-term over decades or the
data of each year.

S[x(1)] = 0

S[x(i)] = [k[x(i)]− 0.5]/n

S[x(n)] = 1

(1)

For the period under consideration, S[x(i)] means the occurrence rate of a weather
variable that is lower than its value x(i), and the index i ranges from 1 to the number of
the non-repeating values in the period n. In this case, for each of the 12 calendar months,
a series of S[x(i)] can be calculated every year, and the average of its differences from the
CDF using all data of the same month over decades is known as the Finkelstein-Schafer
statistics [33], which can be written as Equation (2a). While seeking the (near-)extreme years,
however, the gaps between the yearly and overall CDF values are calculated as the average
of the differences δi without taking absolute values instead, as given by Equation (2b). In
this case, the CDF values of the warm and cold years can usually be, respectively, lower and
higher than the CDF over the long term, indicating the differences in the climatic conditions.

FST =
1
n∑n

i=1|δi| for typical years (2a)

FS =
1
n∑n

i=1 δi for typical years (2b)

The weather conditions can be affected by more than one weather variable, and
their differences from the long-term climatic conditions (shown by the FS index) are not
necessarily the same. In this case, the FS of multiple climatic variables is studied together
as Equation (3) using their corresponding weights Wj. The scale of Wj indicates the relative
importance of the jth variable under consideration. Conventionally, variables such as
daily average dry-bulb temperature and daily total solar radiation are given high weights
for their importance in influencing building performances, though the radiation is not
readily accessible in many places around the world. The WS quantifies the similarities
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between the yearly and long-term weather, considering the occurrence and distribution of
multiple variables.

WST = ∑n
j=1 WjFST,j for typical years (3a)

WS = ∑n
j=1 WjFSj for (near-)extreme years (3b)

2.2. Identifying the Weather Conditions

For each of the 12 calendar months, the current works identify the typical and extreme
weather as the years taking the minimum and a high WS over a long period, respectively.
Without studying the occurrence of the WS values over the long-term period, however, the
effectiveness of the extreme months in representing warm and cold conditions remains
unclear. In this study, we set various occurrence-based rules to depict various weather
scenarios over the long term, which include:

a Extreme weather years (EWY) that take the highest positive or negative WS values.
b Near-extreme weather years (N-EWY) that take the highest positive or negative WS

values, excluding the outliers.
c Common warm and cold years (CY) with the absolute of their positive or negative WS

values that are (or closest to) the absolute WS values over the period under consideration.
d TMY takes the least absolute WST as a reference for various weather conditions.

Here, the CY stands for the warm and cold weather conditions that have the greatest
occurrence probability if the absolute WS follows the normal distribution over the long-
term period. The N-EWY excludes the extreme weather that drifts far away from the rest of
the period and takes a low occurrence chance. The outliers are determined by two criteria
based on either the interquartile range or the Standard Score (sometimes called the Z-score).
The interquartile range method determines the upper and lower thresholds of the WS
values using Equations (4a) and (4b). Here, Q1 and Q3 are, respectively, the 1st and 3rd
quartiles of the 42-year WS values of each calendar month. Meanwhile, the WS values are
converted to the Z-score by Equation (5) according to the average and standard deviation
of the WS values of the same calendar month for each of the 42 years. In this study, the
coefficient k takes one, and the limits of the Z-score take 2 and −2. The two criteria are
used in case the WS values over the 42 years of each calendar month are not showing
normal distribution features, though the criteria are equivalent to normal distributions.
Such settings remove around 4% of the data if they are normally distributed, suggesting
that one warm year and one cold year can be removed every 50 years.

Upper = Q3 + k(Q3 −Q1) (4a)

Lower = Q1 + k(Q3 −Q1) (4b)

Z =
(
WS−WS

)
/std(WS) (5)

To quantify the WS and WST in weather data development, we consider various
climatic variables, including horizontal global radiation (GSR), dry-bulb temperature (DBT),
dew point temperature (DPT), relative humidity (RHM), wind direction and speed (WSP),
and cloud coverage. Yet not all variables are available for any place in the world in either
historical records or future estimations. Thus, in this research, we tested the uncertainties
and validities of identifying the weather conditions by all or a part of the variables among
DBT, DPT, GSR, and WSP, according to their performances in studying the potential cooling
demands. The weights of the variables for identifying the typical, warm, and cool weather
scenarios are listed in Table 1. The GSR-only and DBT-only tests evaluate the validity of the
extreme conditions selected by GSR and DBT only, which either have good accessibility or
are important to the diurnal cooling load of the buildings. In other words, the performances
and opportunities of identifying warm and cool weather conditions by DBT and/or GSR
are tested.
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Table 1. Weights of the weather variables for identifying the typical and extreme conditions.

DBT DPT WS
GSR

Max Min Avg Max Min Avg Max Avg

All 5% 5% 30% 2.5% 2.5% 5% 5% 5% 40%
GSR-only - - - - - - - - 100%
DBT-only 12.5 12.5% 75% - - - - - -
GSR+DBT 6.25% 6.25% 37.5% - - - - - 50%

The data were acquired from ground meteorological measurements by the Hong Kong
Observatory, a governmental weather agency. The site of the weather observatory was on
a hill in the downtown of Hong Kong (King’s Park) that was relatively free of surrounding
obstructions. Only the global horizontal solar radiation was measured before 2008, and
the direct and diffuse components of the solar radiation were estimated by models as the
process of the current TMY. In August 2008, an observation site was established in the
suburb (Kau Sai Chau) of the administrative region that takes measurements of global,
direct, and diffuse solar radiation. The 42-year data from 1979 to 2020 is used.

2.3. The Typical Building for Weather Data Testing

The importance of various weather conditions, including the typical, (near-)extreme,
and common warm/cool ones, is further depicted by the cooling demands of a building.
Though Hong Kong is well-known for its compact urban development, it can be difficult
to determine a certain urban layout for the building under consideration. In this case, the
impacts of various design weather conditions are evaluated by a stand-alone 27-level build-
ing (gross area = 20,000 m2) that is representative of the local social and technical norms, as
shown in Figure 1. The light-colored squares on the envelope represent the windows of
the building. The typical building is determined by a local design guide from Hong Kong
SAR [34] and has been used in several previous building meteorological studies [35–37].
Without obstruction being considered, the potential impact of the uncertainty of solar radi-
ation on building performance can somehow be overestimated. However, it is reminded
that the uncertainties of the weather conditions are depicted by dry-bulb and dew point
temperatures, which show similar fluctuation trends to the radiation.
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There are air-conditioned commercial spaces on floors 1 to 3, car parts on floors 4 to
5 that are sized at 40 × 40 m2, and air-conditioned offices on rest floors that are sized at
20 × 30 m2. The internal load densities and fresh air amounts for various areas are specified
in Table 2, and their operation schedules can be found according to the design guidelines
of the local government [38]. The infiltration rates are set at 1.4, considering the results
of the opening-window activities of occupants in corridors. The 25 ◦C cooling setpoint
refers to a previous study of the same place [39]. Free cooling is not used because of the
considerably high outdoor humidity. Table 3 gives the thermal properties of the building
envelope. The 6 mm clear glass is used, according to the design guideline, because of the
high solar altitude angle at the summer noon. The hourly building cooling demands are
calculated by the well-acknowledged EnergyPlus simulation software (version 9.0.1) [40].
Since this study focuses on the comparison of the different weather conditions, an ideal
air-conditioning system was used for simplicity, in which case the system always satisfies
the cooling demand perfectly. No surrounding obstructions nor the urban heat island were
considered as well.

Table 2. The load densities of occupants, artificial lighting, equipment, and fresh air.

Area Type Floor Area per
Person (m2/Person)

Fresh Air
(L/s/Person)

Artificial Lighting
(W/m2)

Equipment
(W/m2)

Infiltration Rate (Air
Change per Hour)

Office 8 8 15 25 1.4
Mall 5 10 15 10 1.4

Table 3. Thermal property of the building envelope.

Material (A) Wall (B) Roof

Mosaic
Tile

Cement
Render

Concrete
Panel

Gypsum
Plaster

Concrete
Tiles Asphalt Cement

Screed
Expanded

Polystyrene Concrete Gypsum
Plaster

Thickness
(m) 0.005 0.01 0.1 0.01 0.025 0.02 0.05 0.05 0.15 0.01

Conductivity
(W/m K) 1.5 0.72 2.16 0.51 1.1 1.2 0.72 0.035 2.16 0.51

Specific heat
(J/kg K) 840 840 657 960 657 1700 840 1470 657 960

Density
(kg/m3) 2500 1860 2400 1120 2100 2300 1860 23 2400 1120

(C) Window

Thermal
properties

Thermal conductivity
(W/m K)

Transmittance Reflectance (both sides)

Solar Visible Solar Visible

Values 1 W/(m K) 0.834 0.899 0.075 0.083

3. Results
3.1. Differences between Yearly and Long-Term Weather Conditions

Figure 2 presents the distributions of WST values, determined using all climatic
variables listed in Table 1, in line with the conventional approach for TMY. For each
calendar month, the case with the least WST (around 0.05) is “assembled” for the TMY.
It was found that none of the lowest WST cases were regarded as outliers. However, for
most months except September, the highest WST values were identified as outliers. The
recurring outliers and the WST range highlight significant risks in estimating building
performance using only TMY without considering atypical conditions or WS distributions.
On the other hand, the boxes of all calendar months, as the ranges of WST between the
1st and the 3rd quartile, are relatively compact compared to their corresponding whiskers.
The compact ranges suggest that a number of years can take a moderate difference of WST
values around 0.1 from the long term, and such a difference is higher than the lowest value
of 0.05 of the conventional TMY. In this case, the warm or cold years with a WS close to the
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corresponding medium value may represent the “common” warm or cold cases that have
high occurrence probabilities and notable differences from the weather feature over the
long term.
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The red crosses stand for the extreme-weather months that are identified by the Z-score method.

Figure 3 displays the WS values for each month, as determined by Equation (3b),
without accounting for the absolute differences. The mid-values of WS are around zero,
indicating the occurrence probabilities of the warm and cold years are similar for all
calendar months. The results in Figure 3 without absolute values are useful in identifying
the year(s) with (near-)extreme weather conditions whose CDFs are usually shifted to
a single side of the long-term CDF curve. A part of the positive and negative δ cancels
out for cases with overlapping yearly and overall CDF curves, giving a low WS value that
indicates the monthly cooling or heating demands are similar to the long-term average.
According to Figure 3, the outliers are identified by the interquartile ranges in Jan, Mar,
May to Sep, Nov, and Dec for their considerable difference from the median values. In
addition, additional outliers are identified by the Z-score instead of the interquartile method,
especially for Feb, considering the extensive range of its WS values. There are consistencies
among the outliers in Figures 2 and 3, while their differences are mainly because of the
changes in the upper and lower whiskers and the canceling out of the differences with
different signs while comparing the yearly and long-term CDF.

Figures 4a and 4b give the WS that is quantified by the DBT only and GSR only,
respectively. The WS in Figure 4c is determined by GSR and DBT without other variables.
Comparing Figures 3 and 4 reveals that WS derived from multiple variables has shorter
whiskers and potentially fewer uncertainties than when determined by just one variable,
notably the DBT. Although consistent trends in the monthly WS distributions are found
in Figures 3 and 4a, the distributions of the latter are more scattered than the former. This
difference is probably because of the various climatic variables of a single year that cause
different up- or down-shifting disparities in the long term, corresponding to different
cooling or warming effects of the environment. A part of the outliers in the Mar of the “All”
case was not recognized by DBT because of the extensive WS distributions in Figure 4a.
Likewise, the WS determined by GSR only in Figure 4b were more scattered than that
determined by all climatic variables (shown in Figure 3), and their outliers are thus different,
especially for Mar and Jun. On the other hand, the WS distributions shown in Figures 3
and 4c are similar, and this is probably due to the high weights of GSR and DBT in the “All”
case. The comparison between Figures 3 and 4 suggests the uncertainties of identifying the
(near-)extreme weather by GSR and/or DBT, and this should be studied further by their
impacts on the representative local buildings.



Buildings 2023, 13, 2587 8 of 17

Though the warm and cool conditions can be identified by Figures 3 and 4 for each
calendar month, the expected temporal length of the untypical weather and their influences
on the buildings over a period longer than a month remain unclear. The auto-correlation
coefficients of the monthly WS are thus studied and plotted in Figure 5. Here, for each year,
the monthly WS from Jan to Dec is compared to the series with 1 (i.e., Feb to Mon) to 6
months delayed, and the process repeats for all 42 years under consideration. An ρ value
higher than 0 suggests that the warm or cool trend of a month is consistent with the trends
several months later. In other words, the auto-correlation tests whether the warm or cool
feature of a single month tends to be kept 1 to 6 months later. The values of ρ, as shown
in Figure 5, take a higher probability to be positive than negative when the gap between
the months of interest is no greater than one, and the ρ reduces when the gap increases
from 1 to 4 months. For cases with a 1-month gap, according to the occurrence distribution,
the peak occurrence of ρ is found around 0, indicating the two neighboring months have
low probabilities of being negatively correlated. For cases with gaps greater than 2 months,
on the other hand, a considerable occurrence can be found for ρ < 0. The results suggest
the warming or cooling tendencies usually last for no more than two months, and there is
some kind of “balance” between the warm and cool occurrences over a short period.

Buildings 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

Figure 3. The WS of the yearly weather data that are determined by all variables (DBT, DPT, WS, 

and GSR) are given as purple dots. The yellow bars represent the occurrence distribution. Differ-

ences in the yearly and long-term weather data are calculated without absolute values. The red 

crosses stand for the extreme-weather months that are identified by the Z-score method. 

Figures 4a and 4b give the WS that is quantified by the DBT only and GSR only, re-

spectively. The WS in Figure 4c is determined by GSR and DBT without other variables. 

Comparing Figures 3 and 4 reveals that WS derived from multiple variables has shorter 

whiskers and potentially fewer uncertainties than when determined by just one variable, 

notably the DBT. Although consistent trends in the monthly WS distributions are found 

in Figures 3 and 4a, the distributions of the latter are more scattered than the former. This 

difference is probably because of the various climatic variables of a single year that cause 

different up- or down-shifting disparities in the long term, corresponding to different 

cooling or warming effects of the environment. A part of the outliers in the Mar of the 

“All” case was not recognized by DBT because of the extensive WS distributions in Figure 

4a. Likewise, the WS determined by GSR only in Figure 4b were more scattered than that 

determined by all climatic variables (shown in Figure 3), and their outliers are thus differ-

ent, especially for Mar and Jun. On the other hand, the WS distributions shown in Figures 

3 and 4c are similar, and this is probably due to the high weights of GSR and DBT in the 

“All” case. The comparison between Figures 3 and 4 suggests the uncertainties of identi-

fying the (near-)extreme weather by GSR and/or DBT, and this should be studied further 

by their impacts on the representative local buildings. 

 
(a) 
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3.2. Building Cooling Demands in Various Weather Conditions

Figure 6a demonstrates the cooling demands of the typical local building that are
determined by the typical, warm, and cool weather conditions using “All” climatic variables
(All-row in Table 1) as the conventional TMY. This includes the warm and cool conditions
depicted by the EWY, NEWY, and CY weather datasets; the cooling demands under these
weather conditions are compared to TMY, and their absolute differences are plotted in
Figure 6b,c. The cooling demands of the TMY and its occurrence under weather conditions
over the past 42 years are plotted in Figure 6a for comparison and reference. It is not
surprising that the cooling demands being estimated by TMY lie in the center of the
potential range under all possible weather conditions for all calendar months. The cooling
demands estimated by the EWY, on the other hand, lie at the upper and lower ends for
most calendar months. For a few months like Nov and Apr, however, the cooling demands
of EWY may not exactly be the highest or lowest over the long period under consideration
since the building operates 1/3 of the day.
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Figure 6. (a) The monthly cooling demands of the typical building under the various warm and cool
weather conditions, according to “All” climatic variables in Table 1; The difference of the untypical
EWY, NEWY, and CY from the TMY in terms of cooling demands for (b) warm and (c) cool cases.
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The EWY, NEWY, and CY represent the weather conditions at different extreme levels
and occurrence probabilities, which determine various building cooling demands for
different engineering purposes. For most months, the average differences between the
monthly cooling demands of EWY and TMY are around 10 MJ/m2 for warm and cool cases,
according to Figure 6b,c. The NEWY, on the other hand, avoids the outlier cooling demands,
especially for May, Jun, July, and Sep months, which usually correspond to relatively high
needs for cooling throughout the year. For the warm case, the cooling demands of NEWY
and EWY can make a difference of around 3.5 MJ/m2/month for the summer and winter
periods from May to Jul and Jan to Feb; the difference is around 2 MJ/m2/month for
the entire year. The difference of 3.5 MJ/m2/month from Mar to Jul accounts for up to
4.8% of the cooling demands under TMY. The cooling demands under the CY, in addition,
take a 6 MJ/m2/month difference on average from the cooling demands under the TMY.
Interestingly, as shown in Figure 6a, the cooling demand of the warm NEWY and CY
are close to the TMY from Dec to Feb, which is a result of their right-skewed occurrence
distributions of the cooling demand over the 42 years. The results show NEWY and CY
can be important to supplement the TMY-based building performance studies, especially
for those requiring consideration of weather uncertainties.

Figures 7 and 8 give the building cooling demands of the NEWY, EWY, and CY that are
identified by DBT and/or GSR. Figures 7a and 8a show that it is not proper to identify the
NEWY warm nor the cool conditions using GSR only, since the cooling demand estimations
are not stable and are similar to those of TMY, especially for winter periods. In this case,
the CY determined by GSR only is not considered as well. To evaluate the validity of
the untypical weather conditions being identified by a part of climatic variables, their
corresponding building cooling demands are compared to the weather datasets being
identified by “All” variables. Such cooling demand differences (i.e., weather data identified
by DBT or DBT&GSR–weather data identified by “All” variables) for the (warm or cool)
NEWY and CY weather conditions are given in subplots (b) and (c) of Figures 7 and 8,
respectively.

The untypical years identified by DBT only or DBT&GSR (T&R), on the other hand,
give relatively low differences from the “All”-variable cases, which are less than±3 MW/m2

and ±4 MW/m2 for most warm cases (Figure 7) and cool years (Figure 8), respectively.
The differences between NEWY given by Figures 7b and 8b are somehow lower than the
difference between CY given by Figures 7c and 8c, suggesting that NEWY can be identi-
fied more “stably” than CY when comprehensive weather observations are not available.
Meanwhile, the differences between the R&T-based climatic identifications are slightly
lower than the DBT-based ones for most cases, especially for the cool NEWY and CY in
Figure 8b,c, yet the differences between the DBT and T&R are comparable for the warm
NEWY, according to Figure 7b. In this case, it can be preferable to identify the CY by
both DBT and GSR measurements, yet the NEWY identified by DBT without GSR can
be acceptable for identifying the warmer-than-TMY conditions, especially the NEWY as
shown in Figure 7b.

The relative differences in estimating the cooling demands under the “untypical”
weather and TMY for the 12 calendar months are given in Figure 9, which shows the
similarities of common or near-extreme weather conditions in various months and the
uncertainties of the TMY under various warm or cool weather conditions. If long-term
weather data is unavailable, the cooling demands for various CY and NEWY conditions
can be estimated using the relative difference from the easily accessible TMY. According to
the median of the distribution, the cooling needs of the NEWY take differences of around
20% from the TMY for most warm and cool cases, while such a difference is higher than
10% for the common years. As for the ranges of the box and whiskers in Figure 9, the
cooling demands of NEWY in various months can usually take a wider range than that of
CY. The box ranges of CY are around 15% for most cases, while this range can be higher
than 20% for many NEWY cases, especially for the cooler-than-TMY cases. The results
suggest the monthly cooling needs under CY may be estimated by the routine TMY data
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with lower uncertainties than the NEWY. Interestingly, the cooling demand differences tend
to cluster in a lower range for the warm conditions than the cool cases for the place under
study. Meanwhile, the NEWY and CY identified by DBT usually take slightly lower ranges
compared to those determined by DBT+GSR (R&T), suggesting the good performance of
DBY in identifying weather conditions when the “sophisticated” variables are not available.
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year, CY.
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Figure 8. (a) Cooling demands of the buildings under the cooler-than-TMY weather conditions that
are identified using DBT only, GSR only, or DBT and GSR (R&T); The difference between identifying
weather conditions by “All” and a part of the weather data (DBT only, and DBT+GSR), as the demands
of cooling for (b) the near-extreme warm weather year, NEWY and (c) the common warm year, CY.

The differences in the cooling demands from Jul to Aug under different weather condi-
tions are specified in detail as shown in Figure 10. The cooling needs of the two successive
summer months are compared as the warm or cool conditions extend for ≤two months,
as shown in Figure 5. Jul and Aug are selected for the highest building cooling needs
in these months, and the results suggest the potential “cumulative” impact of the warm
or cool weather on the building energy. The up-shifting cooling demands under TMY in
Figure 10 were due to the distribution that slightly shifted to the high-value side. According
to Figure 10, the difference in the building cooling needs between the EWY and NEWY can
be 3.2 MJ/m2 for the warm case, which accounts for around 2% of the cooling needs under
TMY. The difference in the cooling demands for the NEWY and TMY cases, meanwhile,
can be 12.3 MJ/m2 MJ for the most warm datasets and 17.7 MJ/m2 for the cool datasets,
accounting for 7.4% and 10.6% of the cooling needs under the TMY. For common untypical
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cases, such differences can be around 3.9 to 9.4 MJ/m2 (2.3% to 5.6%) for warm CYs and
6.3 to 9.4 MJ/m2 (3.8% to 5.6%) for cool CYs. The ranges show the notable uncertainties of
the cumulative building cooling demand estimations by TMY only.
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4. Conclusions

This paper studies the uncertainties of building performance evaluations using fully
typical or extreme weather conditions and proposes methods for determining the weather
data of the warm and cool scenarios according to the occurrence of various weather
conditions over four decades. Apart from the conventional Typical Meteorological Year and
the Extreme Weather Year (EWY), our research proposes the datasets of the Near Extreme
Weather Year (NEWY) and Common Year (CY) by the 42-year ground measurement of
Hong Kong. The NEWY excludes the outlying meteorological months of extreme and
“not-guaranteed” weather conditions, and the CY represents the “representative” untypical
weather conditions that are different from the TMY.

According to the typical building for the local society, accepting or declining the
outlying weather conditions can give a 3.5 MJ/m2/month difference in the cooling de-
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mands, accounting for 4.8% of the cooling demand under the TMY. In cases where the
“sophisticated” meteorological variables are not accessible, it can be acceptable to identify
the warm and cool conditions using the dry-bulb temperature with or without global
radiation. Meanwhile, it is found that the relative cooling demand differences between the
NEWY and CY and those of the TMY are roughly 20% and 15% for most cases, respectively.
Though such differences vary month by month, their ranges for CY can be lower than
those for NEWY. The warm and cool cases usually extend for less than two successive
months, and the cumulative cooling demands of the warm or cool cases over the hottest
two months (Jul and Aug) account for 7.4–11.6% and 2.3–5.6% of the TMY for the NEWY
and CY, respectively. Greater differences can be found in the relatively cool months.

According to the results, the buildings are likely to bear different weather conditions
that raise a wide range of energy demands, though TMY, in principle, depicts the most
probable case. The ranges of cooling demands show the weakness and risks of evaluating
the performance, energy demand, environment, and energy safety of buildings and even
the entire society using a single set of weather data. The probability of the various weather
conditions, with various differences from the mostly probable TMY, is well given for robust
energy and environmental studies for buildings and even society.

Major limitations of the current research include the insufficiencies of the types of
weather conditions, buildings, and city environments. In the future, it is expected to evalu-
ate the robustness of the current results by adopting various types of building functionality,
surrounding obstructions, and places with different weather conditions. The influences of
the weather uncertainty on the building performance can be different when the loads, solar
accessibility, and weather uncertainties are changed by the building types, urban densities,
and climates. These issues are worth investigating in future studies.
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