
Citation: Jurjevic, R.; Zakula, T.

Demand Response in Buildings: A

Comprehensive Overview of Current

Trends, Approaches, and Strategies.

Buildings 2023, 13, 2663. https://

doi.org/10.3390/buildings13102663

Academic Editor: Rafik Belarbi

Received: 24 September 2023

Revised: 19 October 2023

Accepted: 20 October 2023

Published: 23 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Review

Demand Response in Buildings: A Comprehensive Overview
of Current Trends, Approaches, and Strategies
Ruzica Jurjevic 1,* and Tea Zakula 2

1 Energy Institute Hrvoje Požar, 10000 Zagreb, Croatia
2 Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia;

tea.zakula@fsb.hr
* Correspondence: rjurjevic@eihp.hr

Abstract: Power grids in the 21st century face unprecedented challenges, including the urgent need to
combat pollution, mitigate climate change, manage dwindling fossil fuel reserves, integrate renewable
energy sources, and meet greater energy demand due to higher living standards. These challenges
create heightened uncertainty, driven by the intermittent nature of renewables and surges in energy
consumption, necessitating adaptable demand response (DR) strategies. This study addresses this
urgent situation based on a statistical analysis of recent scientific research papers. It evaluates the
current trends and DR practices in buildings, recognizing their pivotal role in achieving energy
supply–demand equilibrium. The study analysis provides insight into building types, sample sizes,
DR modeling approaches, and management strategies. The paper reveals specific research gaps,
particularly the need for more detailed investigations encompassing building types and leveraging
larger datasets. It underscores the potential benefits of adopting a multifaceted approach by com-
bining multiple DR management strategies to optimize demand-side management. The findings
presented in this paper can provide information to and guide future studies, policymaking, and
decision-making processes to assess the practical potential of demand response in buildings and
ultimately contribute to more resilient and sustainable energy systems.

Keywords: smart grid; smart buildings; demand response; demand response modeling; demand
response management strategies

1. Introduction

Some challenges the 21st century faces include pollution, climate change, and the
depletion of fossil fuel reserves. Consequently, suitable alternatives to fossil fuels should be
identified to mitigate further climate change and pollution. Renewable energy sources are
widely regarded as environmentally friendly. However, as the penetration of renewable
energy increases, electricity production shows greater uncertainty and variability due to
the intermittent nature of resources like solar and wind power [1]. Additionally, modern
power grids face other challenges, such as extreme weather conditions resulting from
climate change and growing global energy consumption, as living standards improve [2,3].
The difference between peak and low demand leads to higher network losses and shorter
equipment life [4]. To address these supply and demand challenges, future energy networks
will have to rely on storage, reserves, and demand-side resources. Among these solutions,
demand response (DR) is recognized as a key approach that provides flexibility in energy
usage [5,6]. Specifically, DR alters energy consumption patterns in response to price changes
or incentive programs aimed at reducing usage during periods of high market prices or
system reliability concerns [7]. In essence, DR focuses on adjusting the load flexibility [8].
Figure 1 presents a comprehensive schematic of the current challenges in power grid
management, the underlying circumstances that lead to these challenges, and the proposed
solution for future power grids.
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pant behavior toward energy [11]. Additionally, the flexible resources of a building can be 
categorized as demand-side and supply-side, where the demand-side includes thermo-
static loads (e.g., HVAC) and non-thermostatic loads (e.g., appliances, lighting), while 
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The increasing number of recent scientific papers on the subject at hand confirms the 
importance of demand response (DR) in buildings as an effective strategy to tackle the 
mentioned issues. A search conducted on ScienceDirect, a comprehensive scientific data-
base, reveals a noteworthy rise in research papers and literature reviews focusing on the 
subject of “demand response in buildings” during the last decade, as shown in Figure 2 
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Given that buildings in the EU account for 43% of the final consumption [9], they
have a role in solving the imbalance between supply and demand in energy networks.
The energy flexibility of buildings is the possibility of altering energy consumption and
the energy production of buildings [1] while also considering the preferences of the end
users [10]. The solution incorporates all flexible building resources: the building system
(HVAC, installed equipment, electric vehicles), the building itself (envelope), and occupant
behavior toward energy [11]. Additionally, the flexible resources of a building can be
categorized as demand-side and supply-side, where the demand-side includes thermostatic
loads (e.g., HVAC) and non-thermostatic loads (e.g., appliances, lighting), while supply-
side flexibility includes the power grid, renewable energy, energy storage, and the ability
to dissipate energy from storage systems [12].

The increasing number of recent scientific papers on the subject at hand confirms
the importance of demand response (DR) in buildings as an effective strategy to tackle
the mentioned issues. A search conducted on ScienceDirect, a comprehensive scientific
database, reveals a noteworthy rise in research papers and literature reviews focusing
on the subject of “demand response in buildings” during the last decade, as shown in
Figure 2 [13]. In the past ten years, there has been a significant increase in the number
of research papers on this subject, experiencing a growth of over fivefold. Similarly, the
number of literature review papers has seen an impressive increase of nearly sevenfold
during the same period. The increase signifies a substantial growth of scholarly interest
and research in this area.

Most research on the energy flexibility of grid-interactive buildings focuses on the
hybrid application of energy sources and the optimal DR strategy for energy supply
and demand [2]. It should be noted that previous research mostly quantifies the energy
flexibility for only one type of building [14]. For example, in a simulated medium-sized
commercial building located in Virginia, USA, ice storage was combined with DR and PV,
and the results show that this combination gives a peak load reduction of about 89.50% [15].
In ref. [16], adjusting room heat consumption in response to wholesale electricity prices
was proposed for a multi-room house in Denmark, where an economic model predictive
controller (EMPC) was designed, and the results show that EMPC reduced the cost of
electricity consumption by up to 37% per week. There are also numerous other studies, such
as the impact of different control schemes on the energy flexibility of residential buildings in
Canada [17], the development of an intelligent model for planning the operation of plug-in
hybrid electric vehicles, washing machines, and dishwashers in residential buildings [18],
and the establishment of a systematic approach to quantifying building electricity flexibility
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in office buildings, where the flexibility factors include building thermal mass, lights,
heating, ventilation, air conditioning systems, and occupant behavior [19]. A few papers
rely on a large-scale building model for estimating DR. Costanzo et al. [20] developed
a distributed MPC scheme with an RC building model and applied it to 100 buildings.
Ma et al. [21] proposed an energy management framework to achieve optimal operation
of smart building clusters and described the processes of information exchange between
smart building cluster operators and participating smart buildings. Gils [8] performed the
first assessment of the theoretical DR potential for all consumer sectors in Europe. The
Lawrence Berkley National Laboratory conducted a comprehensive study of California’s
demand response potential in three parts: Part 1 [22], Part 2 [23], and Part 3 [24]. The study
includes advanced metering, demographic data analysis, and technology to address the
challenges to meet the changing needs and future capacity of California’s electric grid.
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Previous review papers have employed a wide range of building models to analyze the
potential of demand response (DR) in buildings and have considered various management
strategies or focused solely on specific strategies or technologies. A notable review paper is
Ref. [2], which synthesized state-of-the-art research on energy demand flexibility. These
reviews encompassed various measures ranging from renewable energy sources to HVAC,
energy storage, building thermal mass, appliances, and customer behavior. Furthermore,
Ref. [1] shed light on the potential of buildings to provide demand flexibility, outlining
the challenges involved in harnessing this potential. Additionally, Ref. [25] systematically
reviewed methods and applications for quantifying the energy flexibility of residential
buildings. This comprehensive review categorized flexibility applications across building,
district, system, and sector levels, outlining peak power reductions of 1% to 65% and energy
savings of up to 60%. Studies often provide an overview of demand response strategies and
approaches to using specific technologies. For example, studies like [26] concentrated on the
utilization of pre-cooling and solar pre-cooling as a demand response strategy in buildings,
providing detailed steps for designing and implementing these technologies. Similarly,
Ref. [27] reviewed data-driven smart building-integrated photovoltaic (SBIPV) systems,
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emphasizing the challenges and objectives of utilizing data to optimize the performance
of SBIPV systems. These focused reviews significantly expanded the relevant knowledge
base by delving into specific technologies and strategies.

Though these studies have enriched an understanding of various aspects of demand
response in buildings, this paper provides details on solutions to DR building modeling
and DR management strategies and identifies correlations between the analyzed building
models and strategies based on the size of the building sample in a particular study.
Ensuring a relevant and up-to-date analysis requires incorporating the latest research
findings in this overview, and we offer a contemporary perspective on the subject. The
insights from this overview are valuable recommendations for future research endeavors
and the development of energy flexibility in buildings. Such advancements are crucial for
ensuring the reliability and resilience of power grids.

This paper follows a specific structure. Section 2 describes the fundamental terms
related to DR, including approaches to DR modeling and DR management strategies. The
section establishes a solid foundation for understanding the subsequent analysis. Section 3
conducts a correlation analysis by statistically examining the analyzed research papers. It
seeks to establish correlations between the characteristics of the buildings studied, on the
one hand, and adopted DR modeling and management strategies on the other. Section 4
presents the findings and a comprehensive discussion of the results obtained from the
correlation analysis. The significant trends, observations, and implications are highlighted,
providing a deeper understanding of the effectiveness of various DR approaches and
strategies for different types of buildings. Furthermore, Section 4 provides a brief conclusion
summarizing the key findings and contributions of the paper.

2. Fundamental Concepts Related to Demand Response (Dr)
2.1. DR Modeling Approaches

Different modeling approaches are used to estimate the potential of DR in buildings
and assess the capacity of buildings to adapt energy consumption patterns in response to
changing grid conditions [28]. DR modeling approaches can be broadly categorized into
three main types: (1) white box (physics-based), (2) black box (data-driven), and (3) gray
box (combination of physics-based and data-driven) [29].

As the initial approach, the white-box method views building energy models in
terms of heat and mass equations [30]. This approach, often implemented in commercial
software, such as TRNSYS [31], EnergyPlus [32], and Modelica [33], provides highly accurate
energy consumption models [34]. However, the white-box model often fails to accurately
capture the impact of household heterogeneity, occupant behavior, and usage patterns [11].
Additionally, it relies on abundant data, which can be challenging to obtain or not readily
available. Furthermore, the white-box model typically demands substantial resources for
modeling and simulation time, making it more suitable for individual building models
rather than neighborhood or city simulations.

On the other hand, the black-box model does not require specific physical information
but relies on calibrated functions and a specific dataset that describes the dynamic behavior
of a building [35]. Techniques such as multiple linear regression (MLR), genetic algorithms
(GA), artificial neural networks (ANN), and support vector machines (SVM) are commonly
used to establish black-box models [36]. Employing a black-box model allows quantify-
ing the flexibility of a building’s demand directly based on credible measured data and
occupant behavior, which otherwise is not captured by the white-box model. However, the
black-box model requires a lot of high-quality data and often lacks interpretability [37,38].

A hybrid model known as the gray-box model bridges the advantages of both ap-
proaches. The gray-box model incorporates components modeled using the white-box
approach, while other components are empirically fitted using measured data, essentially
employing a black-box model [39]. The gray-box and black-box models are well-suited to
assessing flexibility at aggregated levels, whereas the white-box model is best for individual
flexible load assessments and optimization schedules [11].
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In summary, the white-box model prioritizes a comprehensive understanding and
explicit depiction of the system; the gray-box model blends partial knowledge regarding
the building characteristics with data-driven methods; and the black-box model relies solely
on data to model intricate relationships. Selecting a type of model depends on the existing
knowledge of the building characteristics, the desired interpretability level, and the specific
needs of the modeling task. The following table (Table 1) compares the above-mentioned
approaches to modeling demand response (DR). It highlights an understanding of building
physics and technical systems, dependence on data, interpretability and explainability, as
well as computational requirements.

Table 1. Comparison of white-box, gray-box and black-box models.

Model Type White Box Gray Box Black Box

Knowledge of building physics and
technical systems

Detailed understanding and
explicit representation of the

whole system

Limited knowledge combined
with data-driven techniques

No knowledge, purely
data-driven

Data dependency Moderate Moderate High
Interpretability and explanability High Moderate Low

Computational requirements High Moderate Low to moderate

2.2. DR Management Strategies

DR management strategies play a crucial role in the energy flexibility of buildings,
enabling building owners and occupants to optimize energy consumption while also
contributing to grid stability. These strategies can be categorized into five types: efficiency,
load shedding, load shifting, modulation, and generation [40]. Extensively studied and
implemented in diverse circumstances, these strategies have demonstrated and promoted
efficient energy use and addressed the evolving requirements of buildings.

Efficiency means achieving a sustained reduction of energy consumption regardless
of the time of day while reflecting a long-term commitment to such outcomes [25]. For
example, enhancing the insulation and sealing of a building envelope leads to significant
improvements in energy efficiency, reducing the need for heating and cooling, resulting in
long-lasting energy savings.

Load shedding reduces power consumption temporarily to meet peak capacity de-
mands and supports the system during emergencies or contingency situations [1]. Examples
of load-shedding technologies include interruptible processes, advanced lighting controls,
and air-conditioning cycles [23].

Load shifting refers to flexibility in shifting building loads from peak to off-peak
hours, typically using dispatchable resources [3]. This can be achieved, for example, by
rescheduling high-load household appliances to off-hours [36] or adjusting the charging
schedule of electric vehicles [41].

Modulation is the dynamic adjustment of demand in response to received grid signals,
necessitating frequent adjustments in time intervals of seconds or even subseconds [25]. For
instance, in an advanced smart grid system, household appliances equipped with real-time
communication capabilities modulate energy consumption in response to instantaneous
price signals received from the grid while optimizing usage patterns for maximum efficiency.
Though the magnitude of demand changes is relatively small, participants in this type of
demand response should be capable of swiftly modulating loads on short timescales [42].

Generation, as a demand response service, is the on-site production of electricity for
local consumption or to be dispatched to the grid during periods of peak demand [25].
Table 2 gives a comprehensive overview of each strategy, showcasing the main charac-
teristics, key figures on effectiveness, timeframe for demand reduction, and a graphical
presentation of the load profile for each strategy.
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Table 2. Comparison of DR strategies for efficiency, load shift, load shed, load modulation, and
energy generation.

DR Strategies
in Building Characteristics Key Features Timeframe for

Demand Reduction Load Profile [43]

Efficiency

Improve energy
efficiency through

building upgrades and
retrofits

Reduced energy
consumption, lower

carbon emissions,
potential cost savings

Continuous and
long-term impact
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3. Literature Review

This analysis used a meticulously chosen sample of the most recently published
scientific research papers [44–93] that were published over the past three years. Figure 3
visually depicts the geographical distribution and the publication year of the scientific
papers. It clearly shows that the selected sample covers research from different continents
and climates around the globe.

Of the total of six research papers [45,46,50,51,57,66], the geographical location of the
analyzed buildings was not specified; however, in three research papers [52,53,63], the
geographical location is specified only in terms of climate zones, indicating a broader
coverage of geographical areas.
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3.1. Key Findings

The reviewed studies span diverse topics, including empirical evaluations, optimiza-
tion techniques, control strategies, and modeling approaches, as well as technical and
economic assessments of demand response (DR). This collective body of work is instrumen-
tal in fostering innovative solutions targeting energy efficiency, reducing carbon emissions,
and optimizing heating, cooling, and electricity systems within buildings. Importantly,
these studies were conducted across a spectrum of building types, DR modeling approaches,
DR management strategies, and research objectives.

Several studies have focused on empirical analyses of the demand response potential
for commercial buildings. For instance, based on daily adjustments for cooling set points,
the investigations have yielded significant reductions in cooling loads, resulting in potential
savings of 13% to 28% for office buildings and 3% to 4% for laboratory buildings [44]. These
findings underscore the tangible benefits of demand response in the commercial sector,
paving the way for more efficient energy management practices. Furthermore, advanced
techniques, such as deep reinforcement learning and planning guardrails, are giving
promising results, outperforming traditional time-of-use pricing strategies and delivering
substantial cost savings for building energy demand response [45]. These advancements
highlight the potential of intelligent algorithms for optimizing energy consumption and
curtailing energy costs.

With the focus on residential buildings, numerous studies have dedicated efforts to
optimize space heating systems. Coordinated heating strategies, as proposed in [46], have
showcased their capacity to trim system operational costs by nearly 14%, concurrently
facilitating peak savings of about 28% while ensuring thermal comfort. These strategies
leverage techniques like the economic model predictive control (E-MPC) to intelligently
manipulate the heating demand, resulting in improved energy efficiency and decreased
energy expenditures [46,55]. Additionally, dual-zone economic model predictive control
schemes have demonstrated considerable promise in demand response for residential
heating systems, leading to reduced energy consumption and costs when juxtaposed with
baseline scenarios [47].

Research has addressed integrating renewable energy sources to enhance demand re-
sponse and bolster the energy flexibility of buildings. Notably, photovoltaic systems [56,58,62]
and ocean energy [67] have been the subject of investigation. These studies have unearthed
the potential to satisfy a significant proportion of the electricity consumption of a building
through on-site photovoltaic installations. They have also illuminated methods for opti-
mizing the utilization of renewable energy through thermal storage capacity and precision
control strategies aimed at maximizing the utilization of rooftop PV electrical energy, all
while minimizing electricity expenses.

Furthermore, research endeavors have ventured into exploring the untapped potential
of various building components and technologies, including PCM-enhanced building
envelopes [63], hot water heat pumps [57], and energy storage systems [54,56,65,86]. These
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studies have yielded invaluable insight into the effectiveness of diverse strategies and their
repercussions on energy consumption, cost mitigation, and peak load management. For
example, Ref. [56] demonstrated the capability to offset up to 41% of electricity consumption
in a building equipped with a PV installation. Additionally, the authors have unveiled the
means to augment on-site PV electricity utilization using thermal storage capacity while
devising control strategies for optimizing rooftop PV electrical energy usage, ultimately
minimizing electricity costs. Furthermore, experimental validation of a model predictive
control approach for demand-side management with a hot water heat pump has yielded
notable results, including cost reductions (7–34%), energy savings (4–32%), and efficiency
improvements (5–22%) in realistic settings [57].

For effective demand response and energy management, accurate forecasting of elec-
tricity demand emerges as a critical component. Machine learning models, including LSTM
and SVM, are applicable in forecasting the electricity load within commercial buildings.
These models take into account variables such as historical data, climate conditions, and
occupancy patterns [51,60]. The outcome of these studies has underscored that LSTM-based
models achieve higher prediction accuracy when a sufficient volume of data is available,
while SVM-based models excel in scenarios with limited training data [60].

3.2. Distribution of Papers Based on Building Types and Sample Size

Based on the analysis of the selected research papers, most of the analyzed research
papers (74%) focus on buildings within a specific sector: residential, commercial, or industry.
Only 8% of the research papers analyzed buildings from both sectors (residential and
commercial), and 6% covered all the sectors (residential, commercial, and industry). The
remaining research papers did not provide explicit information on the specific type of
building investigated.

The largest percentage (54%) of the analyzed papers examined less than 10 buildings.
Notably, a significant proportion (78%) of these papers focused solely on one building.
This factor suggests that a substantial number of studies performed an in-depth analysis
of individual buildings rather than broader samples. The next most represented category
was scientific papers that analyzed a large number of buildings (over 1000), accounting for
22% of the total analyzed sample. This indicates a considerable interest in investigating
the implications and characteristics of large-scale building portfolios. Research papers
analyzing a range of 100–1000 buildings constituted 12% of the analyzed sample, while a
smaller portion (8%) of the analyzed sample focused on 10–100 buildings. These studies
have likely struck a balance between analyzing individual buildings and broader trends
observed on a larger scale (city or country). Figure 4 visually depicts the distribution of the
analyzed research papers by size of the building sample investigated.
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3.3. Distribution of Papers Based on DR Modeling Approaches

As previously mentioned, the estimation of demand response (DR) potential in build-
ings requires different modeling approaches, which are broadly categorized into three
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types: white box (physics-based), black box (data-driven), and gray box (combination of
physics-based and data-driven). Most of the analyzed sample (92%) applied only one of
the DR modeling approaches, while 8% of the research papers employed a combination
of two DR modeling approaches. For instance, in [82], a hybrid approach was utilized by
combining white-box and gray-box models. The authors employed a simulation model
(white-box approach) to analyze the energy flexibility potential of buildings while also
incorporating real-world weather conditions and building usage data (gray-box approach)
to validate their findings. Overall, the analysis of the research papers demonstrates the
prevalence of the gray-box approach, accounting for 50% of the sample; however, a notable
portion of the sample also employed white-box (24%) and black-box (26%) modeling tech-
niques, indicating the diverse methodologies used to estimate the DR potential in buildings.
Figure 5 depicts the distribution of the analyzed research papers based on the DR modeling
approaches used.
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An analysis of the dependency between an applied modeling approach and the size
of a building sample gives noteworthy insights. The gray-box approach emerged as the
most prevalent among the papers that analyzed less than ten buildings, accounting for
54% of the cases. In the case of research papers analyzing 10–100 buildings, the black-box
approach had precedence, attributing to 80% of the studies. For research papers analyzing
100–1000 buildings and more than 1000 buildings, the gray-box approach was predominant,
accounting for 57% of the cases in the 100–1000 building sample and 50% of the cases
in the over 1000 building sample. Figure 6 provides a visual presentation of the various
approaches employed in the analyzed papers based on the size of a building sample.
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The prominence of the gray-box approach in half of the analyzed papers suggests a
preference for using it in demand response modeling. This fact is attributed to its unique
ability to amalgamate the strengths of physics-based and data-driven methods. The gray-
box approach provides an in-depth understanding of building systems while incorporating
real-world data, making it a versatile choice.

The presence of the black-box approach in 26% of the papers indicates its effectiveness,
albeit at a slightly lower prevalence than the gray-box method. Notably, this approach
is favored in a substantial number of papers, particularly when dealing with datasets
incorporating 10 to 100 buildings. The preference for black-box modeling in such cases is
attributed to the ease of scalability, as it typically requires less detailed knowledge of the
building’s physical systems.

While the white-box approach is less common than the gray- and black-box approaches,
its presence in 24% of the papers signifies its importance. White-box modeling is often
chosen when a detailed understanding of a building’s physical systems is necessary. This
approach is particularly useful for smaller-scale building analyses, where detailed physical
models provide valuable insight.

3.4. Distribution of Papers Based on DR Management Strategies

In Section 2.2, five primary DR management strategies were presented. These strate-
gies covered efficiency, load shedding, load shifting, modulation, and generation. This
section investigates the distribution of papers based on DR management strategies and
the relation between the implemented DR management strategies and building sample
size. However, it is worth noting that energy efficiency possesses the potential to achieve a
permanent reduction in energy demand without necessitating significant changes in build-
ing operations. Furthermore, energy efficiency serves as a fundamental pillar for effective
design; however, it alone is insufficient to meet the requirements of future buildings [1].
Consequently, this analysis will focus on exploring the remaining four types of strategies
for demand-side management.

In the analyzed sample, 48% of the papers implemented only a single DR management
strategy. Additionally, 32% of the papers employed two DR management strategies, while
10% utilized a combination of three strategies. Only 6% of the papers applied all the
analyzed DR management strategies, including load shifting, load shedding, modulation,
and generation. For 4% of the papers, the specific DR management strategy was not
explicitly specified. Figure 7 shows the distribution of the analyzed research papers based
on the number of DR management strategies used.
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Figure 8 shows the dependency between DR management strategies and the size of a
building sample. The research papers that analyzed less than ten buildings in most cases
(56%) considered only one DR management strategy. Two DR management strategies
were used in 26% of cases, while applying three or more strategies accounted for 15%
of the cases. The remaining sample did not specify a specific DR management strategy.
This pattern suggests that researchers often favor a singular strategy when confronted
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with smaller building samples. This preference may stem from the need to focus on a
specific strategy, possibly due to limitations in data or resources, or to conduct an in-depth
analysis of a single strategy. For research papers analyzing 10–100 buildings, a single DR
management strategy was applied most often, constituting 50% of the cases. It suggests
that researchers found the focused approach effective even when using moderately sized
building samples. In research papers analyzing 100–1000 buildings, an equal representation
of 33% was observed for the implementation of one and two DR management strategies.
This equilibrium reflects the adaptability required to meet the diverse needs of moderately
sized building samples. Research papers analyzing more than 1000 buildings implemented
one DR management strategy in 36% of the sample. The percentage is significant, as it
implies that even in extensive studies, a substantial portion of researchers prefer to focus on
a single strategy. The utilization of two or more strategies was more prevalent, accounting
for 55% of the cases. In summary, when analyzing the majority of building samples with
less than ten buildings, the implementation of a single strategy prevails, suggesting that
researchers possibly concentrate on a specific strategy. As the building sample size expands,
the use of multiple DR management strategies becomes increasingly common, indicating a
greater inclination among researchers to explore a broader spectrum of strategies when
considering larger datasets.
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When considering the type of DR management strategy applied in the analyzed
sample, the load shift strategy exhibited the greatest representation, accounting for 45%,
followed by the load modulation strategy (27%) and the load shed strategy (20%). The
energy generation strategy accounted for 6% of the sample. Figure 9 shows the distribution
of papers based on employed DR management strategies.
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When considering the correlation between the type of DR management strategy and
the size of the investigated building sample, a consistent pattern emerges across various
building sample sizes. Regardless of the building sample size, the load-shifting strategy
remained the most prevalent DR management strategy. These findings conform to a
previous study [36] that ranked flexibility strategies by popularity: shift (60%), shed (19%),
generation (16%), and modulation (5%). However, this analysis also shows a significant
increase in the use of the load modulation strategy compared to the previous research [36].
The trend reflects the growing importance of dynamically adjusting energy consumption
in specific building systems or equipment, which reflects the future of smart buildings.
Figure 10 shows the analyzed research papers based on the type of applied DR strategy
and building sample size.
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4. Discussion and Conclusions

This paper presents a statistical analysis of a carefully selected sample of the most
recently published scientific research papers. The selected sample is crucial, as it ensures the
inclusion of up-to-date research findings, thus enhancing the credibility and relevance of the
study. The analyzed papers cover diverse research approaches, including the number and
type of buildings, different optimization techniques, DR strategies, modeling approaches,
and technical and economic assessments.

Notably, most of the analyzed papers (74%) focused on a specific type of building
(residential, commercial, or industrial), showing a preference for a detailed investigation
of individual buildings. This outcome suggests a particular research gap related to the
comprehensiveness of analysis in this field. A wide-ranging approach targeting multiple
building types and larger sample sizes would be highly beneficial because it provides
a holistic understanding of demand response strategies for adaptability, enhances sta-
tistical reliability with diverse data, and encourages interdisciplinary collaboration on
innovative solutions.

Concerning DR modeling approaches, the gray-box approach was the most prevalent,
featuring in 50% of the analyzed papers, followed by the black-box approach in 26% and the
white-box approach in 24% of the papers. The choice of the particular modeling approach
often aligns with the scale of the studied buildings, with smaller-scale buildings more
frequently being analyzed using the white-box and gray-box approaches. The substantial
prevalence of the gray-box approach in approximately half of the analyzed papers sig-
nals a strong inclination towards its adoption in demand response modeling. This fact is
attributed to its ability to combine the advantages of physics-based and data-driven method-
ologies. The gray-box approach provides a better understanding of building systems while
seamlessly integrating real-world data, making it a versatile and favored choice.
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Regarding DR management strategies, the load-shifting strategy was the most preva-
lent (45%), followed by load modulation (27%) and load shedding (20%). The energy
generation strategy was relatively less represented. The findings suggest a consistent
pattern across different building scopes, with load shifting widely implemented for de-
mand response purposes. The findings correspond to previous research, confirming the
popularity of certain types of flexibility. However, there is a notable increase in the load
modulation strategy (from 5% in [36] to 27% in this paper), which aligns with the future
vision of dynamically adjusting energy consumption in smart buildings.

The analysis also reveals that a significant portion of the sample applies a single
DR management strategy (48%). However, there are merits in combining strategies, as
is evident by the utilization of two or three management strategies in a portion of the
sample. This trend not only reflects past approaches but also foreshadows the future,
offering a glimpse into the ever-evolving landscape of building management. In the
coming years, as buildings continue to evolve in complexity, and their energy demands
become increasingly intricate, the versatility shown in the simultaneous use of multiple
DR management strategies will only grow in importance. This adaptability will be vital as
modern structures seek to meet the multifaceted challenges of sustainability, efficiency, and
dynamic energy management.

In conclusion, this research provides significant academic and technological contribu-
tions to the field of demand response (DR) in buildings. The predominant focus on specific
building types within the analyzed papers underscores an existing research gap in the
comprehensive analysis within this field. Addressing this gap is crucial, as future studies
should adopt a more encompassing approach that includes multiple building types and
larger sample sizes. Such an approach ensures a holistic understanding of demand response
strategies, enhances statistical reliability through diverse data integration, and fosters inter-
disciplinary collaboration for innovative solutions. In terms of social insights, the evolving
landscape of demand response emphasizes the importance of adaptable approaches to
building management, particularly in the realms of sustainability, efficiency, and dynamic
energy use. Furthermore, this research provides practical implications. It contributes to
understanding the current practices in DR research for buildings and provides valuable
insights into the factors influencing the choice of building sample sizes, DR modeling
approaches, and DR management strategies. These findings are a valuable resource for
future studies and decision-making processes related to the potential assessment of DR
in buildings. However, what is evident is that trends are changing. In terms of future
research, it would be beneficial to statistically track the ongoing development of the situa-
tion and establish a correlation with the geographical location, as the progress of countries
undoubtedly influences the implementation of DR. Accordingly, examining variables such
as technical readiness, economic readiness, legal preparedness, and social barriers provides
a more comprehensive understanding of the factors influencing the implementation of DR
in a particular country.
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