Effects of Building Height on the Sound Transmission in Cross-Laminated Timber Buildings—Vibration Reduction Index
Abstract
:1. Introduction
2. Vibration Reduction Index and Measurement Method
3. Results
3.1. Evaluation of Structural Reverberation Time
3.2. Vibration Reduction Index Measurements
4. Discussion
4.1. Measurements Correlated with the Load
4.2. Measurements Correlated with the Number of Stories
4.3. In-Depth Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Project and Wall Type | Stories | Thickness | Static E-Modulus | Dynamic E-Modulus |
---|---|---|---|---|
Project A, int. wall 1 | 5–6 | 6 mm | 1.64 N/mm2 (1) | 3.63 N/mm2 (1) |
Project A, int. wall 1 | 9–10 | 6 mm | 0.453 N/mm2 (1) | 1.06 N/mm2 (1) |
Project A, int. wall 2 | 5–6 | 6 mm | 8.16 N/mm2 (1) | 21.5 N/mm2 (1) |
Project A, int. wall 2 | 9–10 | 6 mm | 0.931 N/mm2 (1) | 2.27 N/mm2 (1) |
Project A, facade | 5–6 | 6 mm | 4.57 N/mm2 (1) | 10.4 N/mm2 (1) |
Project A, facade | 9–10 | 6 mm | 0.861 N/mm2 (1) | 1.86 N/mm2 (1) |
Project B, int. wall | 2–3 | 25 mm | 7.23 N/mm2 (2) | 11.08 N/mm2 (1) |
Project B, int. wall | 5–6 | 25 mm | 0.83 N/mm2 (2) | 1.52 N/mm2 (1) |
Project C, facade | 1–2 | 12 mm | 3.36 N/mm2 (2) | 5.42 N/mm2 (1) |
Project C, facade | 3–4 | 12 mm | 0.83 N/mm2 (2) | 1.52 N/mm2 (1) |
Project D, int. wall | 2–3 | - (3) | - (3) | - (3) |
Project D, int. wall | 5–6 | - (3) | - (3) | - (3) |
References
- FPInnovations. Canadian CLT Handbook; Karacabeyli, E., Gagnon, S., Eds.; FPInnovations: Pointe-Claire, QC, Canada, 2019; Volume 1. [Google Scholar]
- Barber, D. Fire Safety of Mass timber Buildings with CLT in USA. Wood Fiber Sci. 2018, 50, 83–95. [Google Scholar] [CrossRef]
- Barber, D. Tall Timber Buildings: What’s Next in Fire Safety? Fire Technol. 2015, 51, 1279–1284. [Google Scholar] [CrossRef]
- Barber, D.; Rackauskaite, E.; Christensen, E.; Schulz, J. Exposed Mass Timber in High-Rise Structures: A Practical Discussion of a Complex Fire Problem. CTBUH J. 2022, 1, 32–39. [Google Scholar]
- Gernay, T.; Ni, S. Timber High Rise Buildings and Fire Safety; World Steel Association: Brussels, Belgium, 2020; p. 119. [Google Scholar]
- Gorska, C.; Hidalgo, J.P.; Torero, J.L. Fire dynamics in mass timber compartments. Fire Saf. J. 2021, 120, 103098. [Google Scholar] [CrossRef]
- Hayajneh, S.M.; Naser, J. Fire Spread in Multi-Storey Timber Building, a CFD Study. Fluids 2023, 8, 140. [Google Scholar] [CrossRef]
- Lazzarini, E.; Frison, G.; Trutalli, D.; Marchi, L.; Scotta, R. Comfort assessment of high-rise timber buildings exposed to wind-induced vibrations. Struct. Des. Tall Spéc. Build. 2021, 30, e1882. [Google Scholar] [CrossRef]
- Li, Z.; Tsavdaridis, K.D. Design for Seismic Resilient Cross Laminated Timber (CLT) Structures: A Review of Research, Novel Connections, Challenges and Opportunities. Buildings 2023, 13, 505. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, Y.; Zhang, J.; Ma, H. Comparative study on fire resistance and zero strength layer thickness of CLT floor under natural fire and standard fire. Constr. Build. Mater. 2021, 302, 124368. [Google Scholar] [CrossRef]
- Pan, Y.; Tannert, T.; Kaushik, K.; Xiong, H.; Ventura, C.E. Seismic performance of a proposed wood-concrete hybrid system for high-rise buildings. Eng. Struct. 2021, 238, 112194. [Google Scholar] [CrossRef]
- Loss, C.; Pacchioli, S.; Polastri, A.; Casagrande, D.; Pozza, L.; Smith, I. Numerical Study of Alternative Seismic-Resisting Systems for CLT Buildings. Buildings 2018, 8, 162. [Google Scholar] [CrossRef]
- Sun, X.; Li, Z.; He, M. Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures. Int. J. High Rise Build. 2020, 9, 175–185. [Google Scholar] [CrossRef]
- Teweldebrhan, B.T.; Tesfamariam, S. Seismic Design of CLT Shear-Wall and Glulam Moment-Resisting Frame Coupled Structure. J. Struct. Eng. 2023, 149, 04023169. [Google Scholar] [CrossRef]
- Hong, H.P.; Yang, S.C. Reliability and fragility assessment of the mid- and high-rise wood buildings subjected to bidirectional seismic excitation. Eng. Struct. 2019, 201, 109734. [Google Scholar] [CrossRef]
- Dernayka, S.; Ahmed, D.; Asiz, A.; Ayadat, T.; Ajmal, M.; Holschemacher, K.; Quapp, U.; Singh, A.; Yazdani, S. Comparison of Wind Induced Response of High-Rise Buildings with Reinforced Concrete and Cross Laminated Timber. Proc. Int. Struct. Eng. Constr. 2022, 9, 21. [Google Scholar] [CrossRef]
- Hajjaj, R.; Alhimeidi, A.; Sabbagh, M.; Alatallah, A.; Ahmed, D.; Asiz, A.; Ayadat, T.; Salman, A.; Ouda, O.K.M. Structural design and analysis of high-rise building using ultra-lightweight floor system. In Proceedings of the International Structural Engineering and Construction, Valencia, Spain, 24–29 July 2017. [Google Scholar] [CrossRef]
- Byrick, W. Laboratory data examining impact and airborne sound attenuation in cross-laminated timber panel construction. In Proceedings of the InterNoise 2015, San Francisco, CA, USA, 9–12 August 2015. [Google Scholar]
- Golden, M.; Byrick, W. Laboratory Data Examining Impact and Airborne Sound Attenuation in Cross- Laminated Timber Panel Construction—Part 2. In Proceedings of the InterNoise 2016, Hamburg, Germany, 21–24 August 2016. [Google Scholar]
- Byrick, W. Laboratory impact and airborne sound attenuation in cross-laminated timber construction using resiliently mounted ceilings and poured concrete toppings. In Proceedings of the Acoustics Week in Canada, Vancouver, BC, Canada, 21–23 September 2016. [Google Scholar]
- Ljunggren, F. Innovative solutions to improved sound insulation of CLT floors. Dev. Built Environ. 2023, 13, 100117. [Google Scholar] [CrossRef]
- Hindman, D.P.; Golden, M.V. Acoustical Properties of Southern Pine Cross-Laminated Timber Panels. J. Archit. Eng. 2020, 26, 05020004. [Google Scholar] [CrossRef]
- Ferk, H.; Leh, C.; Mosing, M.; Kasim, J.; Vavrik-Kirchsteiger, S.; Nusser, B. Sound.Wood.Austria—Selected measurement results of building components for multi-storey timber construction in Austria. In Proceedings of the InterNoise 2022, Glasgow, UK, 21–24 August 2022. [Google Scholar]
- Beresford, T.; Chen, J. Floor airborne and impact sound insulation performance of cross laminated timber vs. timber joist and concrete systems. In Proceedings of the HEAR TO LISTEN—Acoustics Adelaide, Adelaide, Australia, 6–9 November 2018. [Google Scholar]
- Hoeller, C.; Mahn, J.; Quirt, D.; Schoenwald, S.; Zeitler, B. RR-335 Apparent Sound Insulation in Cross-Laminated Timber Buildings; National Research Council Canada: Vancouver, BC, Canada, 2017. [Google Scholar]
- Vardaxis, N.-G.; Bard Hagberg, D.; Dahlström, J. Evaluating Laboratory Measurements for Sound Insulation of Cross-Laminated Timber (CLT) Floors: Configurations in Lightweight Buildings. Appl. Sci. 2022, 12, 7642. [Google Scholar] [CrossRef]
- Sabourin, I.; McCartney, C. Measurement of Airborne Sound Insulation of 8 Wall Assemblies; Measurement of Airborne and Impact Sound Insulation of 29 Floor Assemblies; Report No. A1-006070.10; National Research Council of Canada: Ottawa, ON, Canada, 2015. [Google Scholar]
- Loriggiola, F.; Dall’Acqua d’Industria, L.; Granzotto, N.; Di Bella, A. Acoustics behaviour of CLT structure: Transmission loss, impact noise insulation and flanking transmission evaluations. In Proceedings of the Acoustics 2019, Cape Schanck, VIC, Australia, 10–13 November 2019. [Google Scholar]
- Hongisto, V.; Alakoivu, R.; Virtanen, J.; Hakala, J.; Saarinen, P.; Laukka, J.; Linderholt, A.; Olsson, J.; Jarnero, K.; Keranen, J. Sound insulation dataset of 30 wooden and 8 concrete floors tested in laboratory conditions. Data Brief 2023, 49, 109393. [Google Scholar] [CrossRef]
- Ljunggren, F. Sound insulation prediction of single and double CLT panels. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany, 9–13 September 2019. [Google Scholar]
- Krajči, L.; Hopkins, C.; Davy, J.L.; Tröbs, H.-M. Airborne sound transmission of a cross-laminated timber plate with orthotropic stiffness. In Proceedings of the Euronoise, Prague, Czech Republic, 10–13 June 2012. [Google Scholar]
- Fenemore, C.; Kingan, M.J.; Mace, B.R. Application of the wave and finite element method to predict the acoustic performance of double-leaf cross-laminated timber panels. Build. Acoust. 2023, 30, 203–225. [Google Scholar] [CrossRef]
- Dolezal, F.; Kumer, N. Simplified model for sound insulation of cross laminated timber walls with external thermal insulation composite systems. In Proceedings of the InterNoise 2019, Madrid, Spain, 16–19 June 2019. [Google Scholar]
- Simmons, C. A systematic comparison between EN ISO 12354 calculations of CLT floors with a large set of laboratory and field measurements. In Proceedings of the EuroNoise 2021, Madeira, Portugal, 25–27 October 2021. [Google Scholar]
- Hagberg, K.; Thorsson, P.; Golger, A.; Bard, D. SEAP—Acoustic design tool for Stora Enso Building Solutions. In Proceedings of the 22nd International Congress on Acoustics, Buenos Aires, Argentina, 5–9 September 2016. [Google Scholar]
- Di Bella, A.; Granzotto, N.; Quartaruolo, G.; Speranza, A.; Morandi, F. Analysis of airborne sound reduction index of bare CLT walls. In Proceedings of the WCTE 2018, Seoul, Republic of Korea, 20–23 August 2018. [Google Scholar]
- Lin, J.Y.; Yang, C.T.; Tsay, Y.S. A Study on the Sound Insulation Performance of Cross-laminated Timber. Materials 2021, 14, 4144. [Google Scholar] [CrossRef]
- Bader Eddin, M.; Ménard, S.; Bard Hagberg, D.; Kouyoumji, J.-L.; Vardaxis, N.-G. Prediction of Sound Insulation Using Artificial Neural Networks—Part I: Lightweight Wooden Floor Structures. Acoustics 2022, 4, 203–226. [Google Scholar] [CrossRef]
- Santoni, A.; Schoenwald, S.; Van Damme, B.; Tröbs, H.-M.; Fausti, P. Average Sound Radiation Model for Orthotropic Cross Laminated Timber Plates. In Proceedings of the EuroRegio 2016, Porto, Portugal, 13–15 June 2016. [Google Scholar]
- Santoni, A.; Schoenwald, S.; Fausti, P.; Tröbs, H.-M. Modelling the radiation efficiency of orthotropic cross-laminated timber plates with simply-supported boundaries. Appl. Acoust. 2019, 143, 112–124. [Google Scholar] [CrossRef]
- Santoni, A. Sound Radiation and Sound Transmission in Building Structures: Numerical Modelling and Experimental Validation. Ph.D. Thesis, University of Ferrara, Ferrara, Italy, 2016. [Google Scholar]
- Santoni, A.; Bonfiglio, P.; Fausti, P.; Schoenwald, S. Predicting sound radiation efficiency and sound transmission loss of orthotropic cross-laminated timber panels. In Proceedings of the 173rd Meeting of Acoustical Society of America and 8th Forum Acusticum, Boston, MA, USA, 25–29 June 2017. [Google Scholar] [CrossRef]
- Yang, Y.; Fenemore, C.; Kingan, M.J.; Mace, B.R. Analysis of the vibroacoustic characteristics of cross laminated timber panels using a wave and finite element method. J. Sound Vib. 2021, 494, 115842. [Google Scholar] [CrossRef]
- Rabold, A.; Châteauvieux-Hellwig, C.; Mecking, S.; Schramm, M. Flanking transmission of solid wood elements in multi-storey timber buildings—input data and prediction models for airborne and impact sound excitation. In Proceedings of the InterNoise 2019, Madrid, Spain, 16–19 June 2019. [Google Scholar]
- Neusser, M.; Bednar, T. Construction details affecting flanking transmission in cross laminated timber structures for multi-story housing. In Proceedings of the InterNoise 2022, Glasgow, UK, 21–24 August 2022. [Google Scholar] [CrossRef]
- Speranza, A.; Barbaresi, L.; Morandi, F. Experimental analysis of flanking transmission of different connection systems for CLT panels. In Proceedings of the WCTE 2016, Vienna, Austria, 22–25 August 2016. [Google Scholar]
- Schoenwald, S.; Zeitler, B.; Sabourin, I. Analysis on Structure-borne Sound Transmission at Junctions of Solid Wood Double Walls with Continuous Floors. In Proceedings of the Forum Acusticum, Kraków, Poland, 7–12 September 2014. [Google Scholar]
- Schoenwald, S.; Kumer, N.; Wiederin, S.; Bleicher, N.; Furrer, B. Application of elastic interlayers at junctions in massive timber buildings. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germay, 9–13 September 2019. [Google Scholar]
- Di Bella, A.; Dall’Acqua d’Industria, L.; Valluzzi, M.R.; Pengo, A.; Barbaresi, L.; Di Nocco, F.; Morandi, F. Flanking transmission in CLT buildings: Comparison between vibration reduction index measurements for different mounting conditions. In Proceedings of the InterNoise 2019, Marid, Spain, 16–19 June 2019. [Google Scholar]
- Schoenwald, S.; Zeitler, B.; Sabourin, I.; King, F. Sound insulation performance of Cross Laminated Timber Building Systems. In Proceedings of the InterNoise 2013, Innsbruck, Austria, 15–18 September 2013. [Google Scholar]
- Pérez, M.; Fuente, M. Acoustic design through predictive methods in Cross Laminated Timber (CLT) panel structures for buildings. In Proceedings of the InterNoise 2013, Innsbruck, Austria, 15–18 September 2013. [Google Scholar]
- Guigou Carter, C.; Balanant, N.; Kouyoumji, J.-L. Acoustic Performance Investigation of a CLT-Based Three-Floor Building. Buildings 2023, 13, 213–222. [Google Scholar] [CrossRef]
- Morandi, F.; De Cesaris, S.; Garai, M.; Barbaresi, L. Measurement of flanking transmission for the characterisation and classification of cross laminated timber junctions. Appl. Acoust. 2018, 141, 213–222. [Google Scholar] [CrossRef]
- Mecking, S.; Kruse, T.; Schanda, U. Measurement and calculation of sound transmission across junctions of solid timber building elements. In Proceedings of the 10th European Congress and Exposition on Noise Control Engineering (EuroNoise), Maastricht, The Netherlands, 1–3 June 2015. [Google Scholar]
- Crispin, C.; Ingelaere, B.; Van Damme, M.; Wuyts, D. The Vibration Reduction Index Kij: Laboratory Measurements for Rigid Junctions and for Junctions with Flexible Interlayers. Build. Acoust. 2006, 13, 99–111. [Google Scholar] [CrossRef]
- Öqvist, R.; Ljunggren, F.; Ågren, A. Variations in Sound Insulation in Nominally Identical Prefabricated Lightweight Timber Constructions. Build. Acoust. 2010, 17, 91–103. [Google Scholar] [CrossRef]
- Bard, D.; Davidsson, P.; Wernberg, P.-A. Sound and Vibrations investigations in a multi-family wooden frame building. In Proceedings of the 20th International Congress on Acoustics, Sydney, Australia, 23–27 August 2010. [Google Scholar]
- Hörnmark, J. Acoustic Performance of Junctions in Cross Laminated Timber Constructions. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2019. [Google Scholar]
- ISO 10848-1; Acoustics—Laboratory and Field Measurement of Flanking Transmission for Airborne, Impact and Building Service Equipment Sound between Adjoining Rooms. Part 1: Frame Document. International Organization for Standardization: Geneva, Switzerland, 2019.
- Nilsson, E.; Ménard, S.; Bard, D.; Hagberg, K. Effects of building height on the sound transmission in cross-laminated timber buildings—Airborne sound insulation. Build. Environ. 2023, 229, 109985. [Google Scholar] [CrossRef]
- Murta, B.; Höller, C.; Sabourin, I.; Zeitler, B. Measurement of structural reverberation times for calculation of ASTC in upcoming NBCC. In Proceedings of the Acoustic Week in Canada 2014, Winnipeg, MB, Canada, 8–10 October 2014. [Google Scholar] [CrossRef]
- Bietz, H.; Wittstock, V. Comparison of Different Methods for the Determination of Structure-Borne Noise Reverberation Time. In Proceedings of the CFA-DAGA’04, Strasbourg, France, 22–25 March 2004. [Google Scholar]
- Nilsson, E.; Ménard, S.; Hagberg, D.B.; Hagberg, K. Effect of Bearing Direction and Mounting Techniques on Cross-Laminated Timber Elements in the Field. In Proceedings of the InterNoise 2022, Glasgow, UK, 21–24 August 2022. [Google Scholar] [CrossRef]
- ISO 3382-2; Acoustics—Measurement of Room Acoustic Parameters. Part 2: Reverberation Time in Ordinary Rooms. International Organization for Standardization: Geneva, Switzerland, 2008.
- Hopkins, C.; Robinson, M. On the Evaluation of Decay Curves to Determine Structural Reverberation Times for Building Elements. Acta Acust. United Acust. 2013, 99, 226–244. [Google Scholar] [CrossRef]
- Pontius, R.G.; Thontteh, O.; Chen, H. Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 2007, 15, 111–142. [Google Scholar] [CrossRef]
- Hopkins, C. Sound Insulation, 1st ed.; Routledge: London, UK, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilsson, E.; Ménard, S.; Bard, D.; Hagberg, K. Effects of Building Height on the Sound Transmission in Cross-Laminated Timber Buildings—Vibration Reduction Index. Buildings 2023, 13, 2943. https://doi.org/10.3390/buildings13122943
Nilsson E, Ménard S, Bard D, Hagberg K. Effects of Building Height on the Sound Transmission in Cross-Laminated Timber Buildings—Vibration Reduction Index. Buildings. 2023; 13(12):2943. https://doi.org/10.3390/buildings13122943
Chicago/Turabian StyleNilsson, Erik, Sylvain Ménard, Delphine Bard, and Klas Hagberg. 2023. "Effects of Building Height on the Sound Transmission in Cross-Laminated Timber Buildings—Vibration Reduction Index" Buildings 13, no. 12: 2943. https://doi.org/10.3390/buildings13122943
APA StyleNilsson, E., Ménard, S., Bard, D., & Hagberg, K. (2023). Effects of Building Height on the Sound Transmission in Cross-Laminated Timber Buildings—Vibration Reduction Index. Buildings, 13(12), 2943. https://doi.org/10.3390/buildings13122943