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Abstract: During the 16th and 17th centuries, Latin American cities adopted earthen construction
techniques from European colonizers. As a result, rammed earth (RE) buildings now occupy an
important place in Latin America’s cultural heritage. However, earthquakes around the world have
shown that unreinforced earthen constructions are highly vulnerable. For several years, researchers
in northern South America have been proposing a technique that consists of installing confining steel
plates (or wooden elements) on both sides of the RE walls to form a grid. This system has shown
excellent performance in controlling seismic damage and increasing strength and ductility capacity.
Although researchers have tested full-scale one- and two-story earthen walls under pseudo-static
loading in the laboratory, and one- and two-story earthen walls at 1:1 and 1:2 scales on uniaxial and
biaxial shaking tables, the behavior of a complete reinforced module (one- or two-story) on a shaking
table has never been assessed. The present study presents the results of shaking table tests performed
on two-story RE modules at 1:4 scale. The experimental data indicate that the retrofit system with
confining steel plates was effective in reducing the seismic damage of earthen constructions. In
addition, the comparison of the results of the 1:4 scale tests with the 1:2 and 1:1 scale tests previously
conducted by the researchers shows that the acceleration levels of the equivalent prototypes are in
the same order of magnitude for the three scales.

Keywords: seismic retrofit; steel plates; earthen historic buildings; shaking table tests

1. Introduction

Earthen construction techniques have a rich and extensive history, dating back to the
Neolithic period when humans first settled and began constructing permanent structures [1].
Throughout history, civilizations such as the Sumerians, Egyptians, and Babylonians,
among others, have used various forms of earthen structures for dwellings, temples,
and government buildings [2]. Today, earthen buildings serve as homes for at least 33%
of the world’s population and make up one-tenth of World Heritage Monuments [3].
For instance, in regions influenced by European colonial architecture, such as Colombia
(northern South America), rammed earth (RE) buildings hold immense cultural value
and most of them are considered heritage constructions [4]. The preservation of these
architectural legacies becomes crucial, not only to maintain their cultural significance for
future generations, but also because today, earthen buildings represent an ideal sustainable
construction system due to their recyclability, and their low energy and water footprints.
However, the deterioration of earthen buildings has accelerated due to natural and human
impacts, including earthquakes, urbanization, and the adoption of industrialized building
technologies [5].
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Seismic performance has been a particular concern for unreinforced RE constructions
due to their deficient structural behavior during past earthquakes. Events such as the
Peru 2007 and the Chile 2010 earthquakes highlighted the vulnerability of historic earthen
buildings to seismic forces [6,7]. The deficiencies in their seismic behavior can be attributed
to factors such as poor material properties, irregular distribution of walls and openings,
weak connections between walls, inadequate wall–floor–roof connections, heavy roofs and
floors, and deficient out-of-plane strength [8–14]. Earthen buildings have evidenced partial
collapse for 0.5% of inter-story drift levels [8,13,15]. For this reason, in the last four decades,
there has been a growing motivation to improve the seismic performance of earthen
buildings (RE and adobe), driven by the need for conservation of historical sites built with
sustainable construction practices. Researchers worldwide have made significant efforts
to develop retrofitting techniques for existing RE buildings. Various countries, including
Peru [16], Australia [17], Germany [18], and more recently, Colombia [19], have established
regulations and guidelines for seismic rehabilitation of earthen structures. The current
rehabilitation techniques include bonded fibers, mesh reinforcement, tensors, polyester
fabric strips, straps, steel cables, concrete beams, mortar with textiles, and confining
elements (wood and steel plates) [6–9,12–15,20–29].

Among the retrofitting techniques proposed in the literature, confinement with wooden
elements or steel plates have emerged as a prominent alternative for restoration purposes in
order to preserve heritage building in the long term [4,8,9,15,21,28]. These reinforcements
have demonstrated outstanding results in improving the overall capacities and seismic
behavior of earthen walls in comparison to other rehabilitation techniques; for instance,
the maximum residual drift is at least three times lower than the classic mesh reinforce-
ment technique [8], ensuring the integrity of the building after large earthquakes. Both
approaches (confinement with wooden elements or with steel plates) involve installing
vertical and horizontal reinforcement elements approximately (each 1000 mm) on the inner
and outer faces of the wall and interconnected with steel rods (each 500 mm). However, the
reinforcement with wooden elements has significant drawbacks due to the large section
of the strips (180 mm × 40 mm) and the durability issues of the material. To address
these challenges, the use of steel plate confinement has gained attention in northern South
America, as it offers advantages such as equal or superior efficiency compared to wooden el-
ements, improved durability against external agents, less invasive installation, and smaller
reinforcement element size (100 mm × 6.35 mm). Figure 1a shows a typical façade of an
Andean historic earthen house, and Figure 1b allows a visualization of the wall with the
reinforcement based on steel plates. In addition, the connection and compatibility between
the two materials (rammed earth and steel plates) is provided by 9.5 mm diameter pass-
through rods/bars placed every 500 mm. These bars are then welded (or sometimes bolted)
to the steel plates. These connectors are made of steel with a minimum yield strength of
420 MPa, and Figure 1c shows an example of the installation. It is very important to note
that once the steel plates are installed on both sides of the walls, they are covered with a
layer of earth, lime, and sand so that the aesthetic of the building is not affected by the
seismic reinforcement.

Despite the progress in this retrofit technique—with research projects including full-
scale pseudo-static tests (one- and two-story earthen walls) and one- and two-story earthen
wall tests on uniaxial and biaxial shake tables (1:1 and 1:2 scale)—there is a notable lack
of studies concerning multi-story earthen houses (with interconnected walls) reinforced
with steel plate confinement. The importance of this study arises from the prevalence of
multi-story earthen heritage buildings throughout the world. For instance, in the case of
the historic center of Bogota (the main city of Colombia, South America), which is one of
the areas with the highest density of earthen buildings per square meter in the country, it
has been reported that nearly 50% of the earthen historic constructions have two stories [30].
Therefore, this research aims to contribute to the understanding of the seismic behavior
of earthen historic structures reinforced with steel plates in order to preserve the cultural
heritage and promote sustainable construction buildings.
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Figure 1. (a) Typical façade of an Andean heritage earthen house; (b) reinforcement of the earthen
wall with steel plates; and (c) pass-through rods/bars placed every 500 mm.

To evaluate the effectiveness of the steel plate retrofit technique, two shaking table
tests of reduced scale (1:4) two-story houses were performed at the Structures Laboratory
of the Pontificia Universidad Javeriana. In addition, the acceleration records and the dam-
age patterns (reinforced and unreinforced earthen houses) were compared with previous
seismic tests on 1:2 and 1:1 scale specimens [8,31]. The main results show that the steel
plate reinforcement significantly improves the seismic performance, demonstrating its
effectiveness for two-story rammed earth houses. There is also a good agreement between
the 1:4 scale test results and the larger scale tests previously conducted by the authors. This
study will complement existing historic building codes with information from experimental
evidence for two-story buildings, as well as lay the groundwork for new earthen standards.

2. Material Properties

In order to accurately represent a historic earthen building, rammed earth (RE) material
obtained from a 120-year-old historic Colombian building that was demolished due to lack
of maintenance was used to construct the specimens. The granulometry of the material
was passed through a #10 sieve, taking into account the reduced scale of the specimens to
be tested. This was performed to avoid failure zones due to large particles by adjusting
the maximum particle size to a scale of 1:4. With this modification, the particles had a
size that corresponded to the proportion of the cross section of the earthen walls built. As
will be shown later, this modification of the granulometry of the material increases the
compressive strength, since the new grain sizes reduce the void ratio of the rammed earth
blocks and consequently increases the compactness of the material. However, as will be
seen later in this document, the optimum water content and maximum dry density are
very similar to the original material without granulometry modifications. The RE material
was subjected to laboratory tests to determine its physical and mechanical properties and
then compared with the literature. The physical properties are shown in Table 1. The
granulometry, Atterberg’s limits, and maximum dry density along with the optimum
moisture content were evaluated according to the ASTM D422, ASTM D4318, and ASTM
D698 standards, respectively [32–34]. Table 2 shows the compressive strength obtained
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from compression tests on rammed earth cylinders (300 mm height and 150 mm diameter).
Both tables include results from the literature of similar materials for comparison.

The data presented in Tables 1 and 2 include both the average values and the vari-
ations of the physical and mechanical properties, highlighting the distinctive attributes
of the RE material used in historical constructions in the Andean region. The physical
properties determined in the present research are similar to the values reported in the
technical and scientific literature, but the compressive strength shows diverse average
values and remarkable variability. Despite the dispersion found in the references, the
average compressive strength values in the present research fall within the range of the
data in Table 2. The unit weight of the RE specimens is 18.5 kN/m3, which is in the order
of magnitude presented in [31]. However, it is important to note that in some cases the
current results show a difference due to the granulometry adjustment made according to
the 1:4 scale of the samples. This adjustment allows a better compaction of the particles,
resulting in higher values. It should be emphasized that the collapse mechanisms observed
in the present research are similar to those reported for 1:1 and 1:2 scale specimens [8,31].
Finally, the steel plates used in the research were tested according to the standard ASTM
A370-17 (standard test methods and definitions for mechanical testing of steel products),
and had a yield stress of 194 MPa, a tensile strength of 284 MPa, and a Young’s modulus of
201 GPa [35].

Table 1. Physical characteristics of RE material.

Reference

Maximum Dry Density
γdmax, kN/m3

(CoV)

Optimum Water
Content w,%

(CoV)
Atterberg’s Limits, % Passing Sieve, %

LL
(CoV)

PL
(CoV)

PI
(CoV)

#200
(CoV)

#50
(CoV)

#4
(CoV)

Present
study

17 16 32 19 12 82 95 100
(1%) (1%) (3%) (3%) (4%) (2%) (1%) (1%)

[21]
17 19 32 21 11 65 ** 76 ** 86 **
(*) (*) (*) (*) (*) (22%) (22%) (21%)

[8]
18 15 31 18 13 69 82 93

(7%) (12%) (8%) (10%) (23%) (3%) (2%) (2%)

[9]
16 17 33 17 16 77 91 100

(0%) (1%) (1%) (0%) (3%) (1%) (1%) (0%)

[15]
16 17 33 17 16 78 91 100

(1%) (1%) (3%) (3%) (0%) (1%) (1%) (1%)

LL = Liquid Limit, PL = Plastic Limit, PI = Plasticity Index. * Not reported. ** Material data for four different
buildings.

Table 2. Compressive strength.

Test Compressive Strength,
MPa

Present study 2.07 (CoV 16%)

[21] 0.55 (CoV 33%)
[2] Range reported: 0.2~0.8
[8] 1.11 (CoV 8%)

[36] Range for 15 references: 0.81~2.46
[9] 0.62 (CoV 12%)

[15] 1.29 (CoV not reported)
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3. Reduced Scale Specimens

In the structures laboratory at the Pontificia Universidad Javeriana, two 1:4 scale
RE models were constructed and tested on a biaxial MTS shaking device. One of the
specimens was constructed without reinforcement, while the other was reinforced with
steel plates. Both specimens were two-story, square-shaped rammed earth models. The
square typology was chosen to verify the performance of the reinforcement in an earthen
system that simulates the continuity of the walls. Figure 2 shows an example of a typical
earthen historic Andean house and a module with this typology. The module allows for the
study of the interactions between the walls and the diaphragm of the structure. In order
to study the behavior of a model with four walls, instead of analyzing single walls, it was
assumed that the module of the structure to be studied was detached from the building.
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Figure 2. Typical Andean earthen house.

The choice of the 1:4 scale is determined by two main factors: First, the options for
anchoring the house foundation to the shaking table given the square floor plan configura-
tion. Second, it addresses the capacity constraints of the MTS biaxial shaking table in terms
of overturning moment and maximum load (ensuring that the weight of the reinforced
model does not exceed 100 kN). To the best of the authors’ knowledge, there have been few
examples of reduced-scale two-story earthen houses (constructions of the northern region
of South America) being tested on biaxial shaking tables. In particular, this experiment is
the first to subject a two-story earthen module reinforced (with steel plates), with windows
and door, to a seismic-dynamic test.

The dimensions of the 1:4 models were determined according to the main characteris-
tics of typical Andean earthen heritage constructions. The authors conducted a dimensional
study focusing on walls, openings, and floors of the historic city center of Bogotá, Colombia
called “La Candelaria” [30]. Figure 2 shows an example of one of the analyzed heritage
houses. Through the analysis of planimetric information and field visits, it was possible
to obtain statistical data on the geometric characteristics of the earthen heritage buildings.
The results of the analysis showed that the average wall thickness was 640 mm and the
wall height per floor was typically between 3000 mm and 3330 mm. It was also found that
earthen walls usually have symmetrical openings on both floors, to accommodate windows
or doors. Based on these findings, the characteristics of the reduced-scale samples were
determined as explained below.

3.1. Unreinforced Model

The model constructed for the experiment was a two-story RE module, consisting of
four interconnected walls with 5 windows and 1 door (Figure 3). The specimen consists of
one solid wall (with no openings), two walls each with a window on both floors, and one
wall with both a door and a window. This configuration is intended to accurately represent
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typical architectural features (such as those shown in Figure 2), while allowing for potential
differences in damage patterns and collapse mechanisms between walls with and without
openings. In addition, 40 mm × 50 mm wooden scaled beams (160 mm × 200 mm in real
scale) were included to represent the second floor and roof.
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Figure 3. Two-story scaled 1:4 earthen house tested.

Wooden lintels were used over the doors and windows at the appropriate scale for
the model being tested. For the 1:4 scale model, the lintels were two wooden elements,
each measuring 40 mm × 80 mm (thickness × width). These dimensions in real scale
correspond to a lintel made of two elements of 160 mm × 320 mm. All components and
features, including construction tools, foundation stones and the rammed earth particle
size, were adjusted to a scale of 1:4 and are presented in Figure 3.

The walls were constructed with compacted layers of 25 mm (100 mm at 1:1 scale), the
wall thickness was 160 mm (640 mm at 1:1 scale), with a total height of 1560 mm (6240 mm
at 1:1 scale). The foundation of the specimens consisted of a U-shaped steel box to simulate
the boundary conditions of an earthen building. Above the foundation, an 80 mm (320 mm
at 1:1 scale) height stem wall was constructed, followed by the six rows of rammed earth
blocks that make up the rammed earth module. The row configuration was adopted to
represent existing walls, creating interlocking connections between blocks of different rows,
and ensuring structural integrity. Upon completion of construction, the soil material of the
earthen blocks was allowed to dry for 30 days prior to testing.

3.2. Reinforced Module with Steel Plates

After testing the first unreinforced 1:4 scale RE model, an identical specimen was
constructed using the same labor and materials used previously. After four weeks of natural
drying under the controlled laboratory conditions, the second model was reinforced with
confinement steel plates. This reinforcement follows the guidelines of the AIS 610-EP17
standard [19], which systematically outlines the basic requirements for the reinforcement
of earthen heritage constructions in Colombia. The main objective of this reinforcement is
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to significantly increase the structural stiffness and strength of the walls, both in-plane and
out-of-plane, by improving their ability to resist bending and shear loads. Figure 4 shows
a three-dimensional image of the two-story rammed earth model with the reinforcement
system installed.
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The reinforcement consists of steel plates on both sides of the walls, forming horizontal
and vertical rings that confine the walls. To address the scale reduction, the steel plates
were 25 mm wide and 1.6 mm thick, corresponding to a full-scale prototype in which the
steel plates are 100 mm wide and 6.35 mm thick. Following the AIS 610 guidelines [19],
the horizontal spacing of the reinforcement rings was limited to 250 mm (1000 mm in the
full-scale prototype). An exception to this rule is the first three rings at the base, which were
spaced at 125 mm (500 mm in the full-scale prototype). The vertical plates were placed
330 mm apart, a larger spacing than AIS 610 [19] (1200 mm in the prototype), based on the
results of 1:2 shaking table tests performed by the authors in reference [31]. Consequently,
the model had a total of 10 horizontal and 20 vertical reinforcement rings (4 vertical rings
per wall). Compatibility between the steel plates and the earthen material was maintained
through the use of threaded rods. In addition, these rods ensured direct contact between
the plates and the surface of the walls. These rods were placed at the intersection of the
horizontal and vertical rings according to AIS 610 (2017). Finally, to further strengthen
the earthen house, the diaphragm of the first floor was reinforced by adding two diagonal
plates that were welded to the vertical plates.

4. Reduced Scale (1:4) Biaxial Shaking Table Test

In order to extend the test results to the full-scale prototype, similarity ratios were
established based on a 1:4 geometric scale neglecting gravitational forces during dynamic
testing as described by the reference [37]. Previous researchers investigating the seismic
performance of RE or adobe buildings have also made similar assumptions for gravita-
tional forces, see for examples references [13,31]. Specific similarity equations for physical
properties between the scale model (1:4) and the corresponding full-scale prototype are
shown in Table 3. It is important to consider that the subscript “m” refers to the model, and
the subscript “p” refers to the prototype.

For example, for displacement-related variables, the equation Lm =
Lp
4 implies that

the model dimensions are one-fourth the dimensions of the prototype. Based on the
similarity ratio rules, the real acceleration records were adjusted according to Table 3 in
order to control the shaking table tests by accelerations (x and y directions). It is important
to emphasize that to avoid confusion, all results presented in the present research are
converted with similarity equations to the prototype values (i.e., the full-scale 1:1).
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Table 3. Similarity relations (gravity forces neglected) for some physical characteristics for a 1:4 scale.

Physical Variable Similarity
Factor

Model
(Reduced-Scale)

Prototype
(Scale 1:1) Ratio for Scaling

Spectral displacement, or
length, or displacement

1/4 Lm; ∆m; Sdm Lp; ∆p; Sdp Lm =
Lp
4 ; ∆m =

∆p
4 ; Sdm =

Sdp
4

Time 1/4 tm tp tm =
tp
4

Acceleration or
spectral acceleration 4 Am; Sam Ap; Sap Am = 4Ap; Sam = 4Sap

Frequency and
angular frequency 4 fm; ωm fp; ωp fm = 4 f p; ωm = 4ωp

Stress 1 σm σp σm = σp

Lm = length in the model, Lp = length in the prototype, ∆m = displacement in the model, ∆p = displacement in
the prototype, Sdm = spectral displacement in the model, Sdp = spectral displacement in the prototype, tm = time
in the model, tp = time in the prototype, Am = acceleration in the model, Ap = acceleration in the prototype,
Sam = spectral acceleration in the model, Sap = spectral acceleration in the prototype, fm = frequency in the model;
fp = frequency in the prototype, ωm = angular frequency in the model, ωp = angular frequency in the prototype,
σm = stress in the model, σp = stress in the prototype.

4.1. Test Setup

The 3 m × 3 m shaking table was equipped with two dynamic actuators capable to
generate displacements of ±250 mm in the x and y directions with a maximum acceleration
of 10 g and a peak velocity limit of 1 m/s. The primary objective of these tests was to
simultaneously evaluate the seismic performance of the models in both the out-of-plane and
in-plane directions. Figure 5 shows the experimental setup for both models: the reinforced
and the unretrofitted. The weight of the reinforced 1:4 scale model was approximately
30 kN. In addition, the model included 4.0 kN of concrete weights (at the roof) to simulate
the vertical load of 5.3 kN/m per meter of the full-scale walls (gable roof) [15]. These
weights were placed on a wooden platform resting on two of the walls of the rammed-earth
models (Figure 5c,d). It is typical for this type of building to have gabled roofs, with two of
the four walls receiving gravity loads from the roof, and this condition is simulated with the
test setup. In addition, 8 kN of earth bags were used to represent the weight of the first floor
and they were placed on the wooden beams of the first floor. It is important to note that the
first floor has wooden beams in only one direction (Figure 3, right), so two of the four walls
are loaded with the gravity loads from the floor. Based on these observations, the gravity
loads are transferred to the walls with an equivalent linear load per unit length on two of
the four ring beams. To anchor the earthen house to the shaking device platform, the steel
box containing the foundation was anchored with 12 pre-stressed bolts. To enhance the
understanding of the experimental setup, QR codes have been incorporated into Figure 5
to provide access to 360◦ panoramic views.

The 1:4 scale models were instrumented with a total of 18 high sensitivity piezoelectric
PCB accelerometers. These miniature seismic accelerometers (weight 50 g) were ceramic
and flexural with a sensitivity of 102 mV/(m/s2), a measurement range of ±49 m/s2,
a frequency range (±3 dB) of 0.02 to 1700 Hz, a diameter of 25 mm, and a total height
of 32.5 mm. Sixteen of these accelerometers were strategically placed on the walls of
the earthen models, while the remaining two were placed on the shaking table. The
accelerometers were placed to cover both the first and second floor walls. Each of these
points was equipped with two accelerometers, oriented in both the x and y directions.
These locations are shown in Figure 6 with labels from A to H.
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Figure 5. (a) Test set up of the unreinforced model; (b) test set up of the reinforced model. Link for
QR code 360◦ unreinforced model: https://pano.autodesk.com/pano.html?mono=jpgs/183016e4
-f29c-4ede-95c9-bfe33a7024d3&version=2 (accessed on 22 November 2023) Link for QR code 360◦

reinforced model: https://pano.autodesk.com/pano.html?mono=jpgs/6d32568d-f123-4ce6-9d34-
4675c3ce6dc1&version=2 (accessed on 22 November 2023) (c) Photograph of the experimental setup
of the unreinforced model and (d) photograph of the experimental setup of the reinforced model.
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4.2. Test Protocol

The loading protocol for this test was based on a seismic disaggregation analysis
following the procedure described by [8,31,38]. The analysis covers periods in the range
0.3 s to 1.0 s. For the seismic simulation, specific ground motions corresponding to return
periods of 2500, 475, 225, and 31 years were used. These return periods are related to 2%,
10%, 20%, and 80% exceedance probabilities in 50-years, respectively. Table 4 presents the
PGA values for the prototype (full scale) and for the scaled models.

https://pano.autodesk.com/pano.html?mono=jpgs/183016e4-f29c-4ede-95c9-bfe33a7024d3&version=2
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https://pano.autodesk.com/pano.html?mono=jpgs/6d32568d-f123-4ce6-9d34-4675c3ce6dc1&version=2
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Table 4. Protocol for the shaking table tests. Adapted from [8,31,38].

Step Input Record
(Station Name)

Exc. Prob. in
50 Years

MW
(Dist.)

PGA (y-Direction )/g PGA (x-Direction )/g

Prototype Model Prototype Model

1 Quetame 2008
(Bogota–Vitelma) 80% 5.9

(55 km) 0.14 0.56 0.11 0.44

2 Loma Prieta (scaled), 1989
San Francisco Int. Airport 20% 6.9

(59 km) 0.38 1.52 0.29 1.16

3 Loma Prieta (scaled), 1989
San Francisco Int. Airport 10% 6.9

(59 km) 0.43 1.72 0.34 1.36

4 Loma Prieta (scaled), 1989
San Francisco Int. Airport 2% 6.9

(59 km) 0.53 2.12 0.39 1.56

5 Loma Prieta (scaled), 1989
San Francisco Int. Airport * 6.9

(59 km) 0.76 3.04 0.55 2.22

6 Loma Prieta (scaled), 1989
San Francisco Int. Airport ** 6.9

(59 km) 1.02 4.08 0.78 3.12

* This ground movement corresponds to 150% the record with a probability of exceedance of 2% in 50 years,
** This ground movement corresponds to 200% the record with a probability of exceedance of 2% in 50 years.

5. Crack and Damage Patterns

The damage progression of the unreinforced and reinforced houses after the seismic
motions is shown in Figure 7. The unreinforced specimen partially resisted earthquake
phases with PGAy of 0.14 g, 0.38 g, 0.43 g, and 0.53 g, and showed irreparable damage
and partial collapse during the event with PGAy = 0.53 g followed by a complete collapse
during the earthquake with PGAy = 0.76 g. In contrast, the reinforced house withstood the
entire sequence of ground motions up to an earthquake with PGAy = 1.02 g (a total of six
ground motions), with damage in some points of the stone stem wall, but with little damage
in the rammed earth walls. It is noteworthy that in the reinforced house, the diaphragm
works adequately to transfer the seismic forces to the reinforced walls, providing structural
integrity to the system.

The first cracks in the unreinforced model appeared in the masonry joints between
the rammed earth blocks and at some stress concentration points near the wall openings.
These cracks were more pronounced for PGAy = 0.53 g. Diagonal cracks also appeared in
the lower part of the walls, even passing through entire rammed earth blocks. At a PGA
of 0.53 g, the size of pre-existing cracks increased and horizontal cracks also appeared.
Then, at 0.76 g, new horizontal, vertical, and diagonal cracks were noticeable and began to
affect the stability of the model. A diagonal crack in one of the corners of the wall without
openings, which crossed both the joint between the blocks and the blocks themselves,
stands out. A dislocation of the rammed earth blocks can also be seen, as reported in
references such as [21,31]. This phenomenon is critical in the corner areas because the loss
of material from the blocks inevitably destabilizes the structural system, and it is precisely
this condition that generates the catastrophic failure of the unreinforced model for the next
load step.

In contrast, the reinforced model had a lower level of cracking and damage for all
the PGA of the loading protocol. As for the unreinforced model, the first cracks appeared
for the motion with PGAy = 0.43 g. These cracks were vertical and several horizontal
cracks in the lower zone of the second-story wall. For the motion with PGAy = 0.53 g, the
same cracks from the previous motion increased in size, indicating flexural behavior. It is
important to note that several of these cracks correspond to the factory joints of the different
rammed earth blocks. It should also be noted that there were no oblique cracks typical
of shear failure. Finally, for the last two shaking table motions, corresponding to PGA of
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0.76 g and 1.02 g, the damage was mainly concentrated at the base of the first floor wall.
The behavior and cracking pattern presented above had a predominance of vertical and
horizontal cracks related to bending effects rather than diagonal shear cracks reported in
other references for earthen walls subjected to in-plane loading. Furthermore, this pattern
is consistent with the results reported in references [8,31] for the same seismic motions.
Moreover, these last two studies were carried out on models of larger dimensions (real scale
1:1 in reference [8] and scale 1:2 in reference [31]) with materials and construction typology
similar to the one tested in the present research. In particular, the damage concentration in
the lower part of the reinforced model was observed in reference [31] for the same seismic
motions but on 1:2 scale models of C-shaped walls.
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Figure 7 also shows that the second floor of the models had fewer cracks than the
first floor in both models. However, the damage in the unreinforced model was extensive,
with vertical and diagonal cracks in the walls originating at the joints of the rammed earth
blocks, due to block detachment and corner earth separation in the structural assembly.
In contrast, the reinforced model showed localized and repairable damage manifested as
limited vertical or diagonal cracking. It is important to emphasize that, the damage at the
base in the reinforced model, particularly at the rock-wall junction, was significantly more
pronounced compared to the unreinforced structure. At the same time, the buckling of
the plates induced damage at the stem wall for a PGAy = 0.53 g. This buckling was also
observed in reference [31], which tested a two-story RE wall, while it was not evident in
the test of the one-story earthen walls in reference [8]. Therefore, this damage pattern can
be attributed to the additional overturning moment at the base of the walls due to the mass
of the second-story. In conclusion, the test results indicate that steel plates prevent wall
failure, delay cracking, and improve the displacement capacity of the model.

In contrast to what was reported in references [8,31], the modules tested in the actual
research (both reinforced and unreinforced) withstood an additional increase in the loading
protocol defined in Table 4. The authors hypothesize that this better behavior may be due
to the redundancy of the four-wall modules tested in the present research compared to
the C-shaped wall (from reference [31]) and the L-shaped wall from reference [8]. Having
four walls with two diaphragms may reduce the possibility of dislocation of the RE blocks,
which was one of the failure mechanisms reported in both references.

6. Acceleration Records

Figure 8 shows an example of the acceleration records at one of the points of the second
floor (point D) for both the unreinforced and the reinforced prototype. In order to facilitate the
interpretation of the measurements made, all the results presented refer to the prototype (scale
1:1). For this purpose, the experimental results have been adjusted according to the similarity
laws presented in Table 3. For each data set, the peak acceleration value is highlighted.

Accelerations in two mutually perpendicular directions (x and y directions) were
recorded at each point, but only the movements for the y-direction (critical direction) are
shown in Figure 8. For all the data sets analyzed, it was found that the peak accelerations
at all the points of the reinforced prototype are higher than those of the unreinforced
prototype. In addition, the reinforced specimen withstood all six intensities of ground
motions, while the unreinforced specimen showed partial collapse for PGAx = 0.55 g
and PGAy = 0.76 g. The reinforced prototype with steel plates experienced a maximum
acceleration of 1.24 g at point D for the maximum PGAy = 1.02 g.

Figures 9 and 10 show the profile of the maximum accelerations for each of the ground
motions of the shake table protocol. The value reported for each floor is the average of the
four accelerometers installed at each level of the specimen (reinforced and unreinforced).
The selected motions had a direction of greater intensity, which is the y-direction for the
present research. For the unreinforced prototype (Figure 10), the results are shown only for
the first four intensity levels because the unreinforced specimen was severely damaged
after the ground movement with PGAy = 0.53 g. Based on the results, it can be concluded
that the acceleration of the upper floors was always higher than that of the lower floor in
both x and y directions and this distribution indicates a clear first mode response. The
maximum acceleration of the unreinforced prototype was 0.76 g (for PGAy = 0.53 g) in the
y-direction. For the same earthquake motion, but in the x direction (PGAx = 0.39 g), the
average maximum acceleration of the second floor was 0.55 g. According to the results of
the acceleration profiles of the reinforced prototype, a maximum acceleration of 1.22 g and
0.92 g was reached in the y and x directions, respectively. These maximum accelerations
were reached for the last movement at the base of the loading protocol.
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Despite these high levels of PGA and accelerations at the first and second floors, the
reinforced specimen showed little damage (as shown in Figure 8) and the steel plates
confined the rammed earth blocks and absorbed the flexural tensile stresses, reducing the
damage of the specimen. At these maximum acceleration levels, the second floor of the
reinforced specimen showed less damage and cracking than the first floor. As reported
by [31], the steel plates confining the RE blocks reduce the possibility of dislocation. Based
on the experimental results, the reinforcement system reduces the fragility of the rammed
earth walls and gives the structural system an inelastic displacement capacity.

7. Comparison of Accelerations between Scale Reinforced Models

Table 5 presents a comparison of the maximum accelerations determined for the
present study (1:4 scale two-story reinforced earthen module) with the maximum ac-
celerations measured in two previous tests conducted by the authors and presented in
references [8,31]. All three specimens tested used soil from demolished houses in the An-
dean region of northern South America, and the three models were constructed using the
rammed earth technique. For comparison purposes, Figure 11 shows the schemes and the
main characteristics of the three models retrofitted with steel plates, which are compared in
terms of maximum accelerations. This figure shows relevant information such as the scale,
the dimensions of the prototype they represent, the number of stories and the initial period
(elastic) of the full-scale prototype. These periods were determined from the experimental
results for all the three specimens based on the analysis of the recorded acceleration data. It
is important to note that the fundamental elastic natural periods of the full-scale prototypes
representing the three buildings tested are of the same order of magnitude, about 0.3 s, so
their dynamic response could be comparable. The comparison of maximum accelerations
is shown in Table 5 for the out-of-plane direction for five ground motion intensities. Table 5
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includes data on the accelerations of a one-story steel plate reinforced RE wall, whose
shaking table results (uniaxial ground motions) are reported in reference [8]. In addition,
Table 5 shows the out-of-plane results for the two-story C-shaped wall of the reference [31].
The current research analyzes a four-wall module with openings, while the references [8,31]
tested walls without doors or windows. Both two-story scale models were built with RE
walls and included a floor system with crown beam and load-bearing wood beams.

Table 5. Comparison of the average out-of-plane accelerations (first and second floor) of a 1:1 scale
prototype estimated from the data of the present study and values interpolated from graphs of
references [8,31].

PGA
out-of-Plane, g Level

Prototype Acceleration, g

Values Interpolated from
Graphs of Reference [31]

Present
Study

Values Interpolated from
Graphs of Reference [8]

0.76
Floor 2 1.33 1.07 1.65
Floor 1 1.07 0.93 ----

0.53
Floor 2 0.92 0.90 1.15
Floor 1 0.68 0.72 ----

0.43
Floor 2 0.76 0.78 0.83
Floor 1 0.56 0.62 ----

0.38
Floor 2 0.62 0.71 0.83
Floor 1 0.47 0.52 ----

0.14
Floor 2 0.25 0.29 0.35
Floor 1 0.19 0.21 ----
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The three reinforced (with steel plates) earthen models (the present study, reference [8,31])
were subjected to ground motions with the same loading protocol defined in Table 4, although
in each case adapted to the scale of the test according to the similarity rules presented in
Table 3. The model from reference [8] was tested unidirectional with the ground motions
in the y-direction of Table 4 while the other two models were tested with a biaxial protocol.
Considering the data in Table 5, although the 1:1 scale model tested in reference [8] has
only one floor, the results for the maximum accelerations recorded are in the same order of
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magnitude as the acceleration values of the second floor of reference [31] and the present
study. In addition, the experimental data suggest that the results of the accelerations of the
equivalent prototypes of each test (which had natural periods close to 0.3) are in the same
order of magnitude for all the loading protocol (five intensities motions). The above facts
suggest that RE models following the guidelines of reference [37] allow to reasonably estimate
the maximum accelerations of large prototypes. However, this is generally true only if the
spatial model has external (outer or perimeter) walls of higher stiffness and also floors of a
lightweight wood structure. In this case, the behavior of the building on a macro scale can be
inferred from tests on smaller models, but only if the natural periods are similar. Differences
could be found between the model and the prototype if there is asymmetric behavior (due to
geometry or internal walls) and, as a result, other types of failure modes are likely to occur.

8. Conclusions

The steel plate reinforcement system reduces the cracking and the possibility of
dislocation of the earthen blocks that conform RE walls. Additionally, the retrofitting
system provides the earthen buildings with an energy dissipation capacity, good behavior
in the inelastic range, and confinement of the earthen constructions.

The failure mechanism of the unreinforced earth model subjected to the seismic shaking
table test is the appearance of flexural and shear cracks that induce the dislocation of the
earth blocks and, consequently, the instability and collapse of the walls. According to the
experimental results, the cracks appear to be critical at PGAy = 0.53 g and PGAx = 0.39 g.

Effectively, the steel plate reinforcement system provides continuity, connection, and
confinement to the rammed earth walls, and as a consequence, the reinforced model
withstood the entire load protocol up to peak ground acceleration values of PGAy = 1.02 g
and PGAx = 0.78 g. For these PGA values, the maximum average roof acceleration was
1.22 g with no signs of structural collapse. After the loading protocol, the reinforced module
presented repairable damage in the zone of the stem wall. This evidence confirms that
the steel plate reinforcement system provides resilience to RE buildings even during high
intensity earthquakes.

Comparing the results of the 1:4 scale tests of the present research with the 1:2 and
1:1 scale tests previously conducted by the authors, the accelerations of the prototypes are
in the same order of magnitude. This means that it is possible to estimate the maximum
accelerations of RE building prototypes using reasonably small-scale models.
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