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Abstract: Compared with polymer-modified ordinary-Portland-cement-based materials, research
on cement materials based on polymer-modified sulfoaluminate is still in the preliminary stage and
lacks an understanding of the mechanism of the interaction interface. The aim of this work is to
study the bond performance of ettringite, the main hydration product of sulfoaluminate cement,
with various types of polymers using molecular dynamics methods. Steered molecular dynamics
were used to simulate the separation of polyamide (PA), polyethylene glycol (PEG), polyacrylic acid
(PAA) and polypropylene (PP) from ettringite substrate, reflecting the order of bond properties of the
four polymers: PAA > PA > PEG > PP. The internal mechanism of bond properties between different
polymers and ettringite was analyzed by studying the local structure and dynamic characteristics.
The results show that a Ca–O ionic pair is formed between the calcium ions on the surface of the
polymer and ettringite substrate, resulting in strong interaction. In addition, the formation of a
H bond also contributes to bond performance. The properties of the polymer itself, such as the
degree of polymerization and branched-chain freedom, affect the coordination of the polymer to the
substrate. This study provides valuable insights for advancing the development of polymer-modified
sulfoaluminate-cement-based materials.

Keywords: polymer; ettringite; interfacial bonding performance; molecular dynamics

1. Introduction

Portland cement has been widely used because of its reliable performance and low
price. However, it also has problems, such as long maintenance time, slow development of
early strength, poor fluidity and low compaction rate. Therefore, sulfoaluminate cement,
which has the characteristics of fast hardening, early strength, shrinkage and short design
age, has become a research focus of new building materials in recent years and is widely
used in construction, roads, water conservancy, port tunnels and other fields of emergency
repair. Compared with Portland cement, the CO2 content of sulfoaluminate cement can
be reduced by 40% per ton [1], which is in line with the development trend regarding low
carbon emissions and high-performance cement. However, as a brittle material, cement has
poor bending and tensile effects, and also has certain defects in wear resistance and flexibil-
ity, which cannot meet the requirements for its toughness and bond strength. Fortunately,
polymer-reinforced cement matrix composites can solve this problem well.

Polymer materials exhibit excellent toughness and high bond strength, attributed to
the relaxation movement between their chain segments. The incorporation of polymers
into cement-based materials results in the formation of a polymer–cement composite
system. On one hand, polymers can adsorb particles generated during cement hydration
through their inherent polar functional groups, creating a network with interpenetrating
structures of polymer–cement hydration products. On the other hand, the extended chain
segments of polymers contribute to enhancing the stiffness of cement-based materials. This
comprehensive enhancement significantly improves the toughness and bonding properties
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of cement-based materials. Because polymer-reinforced cement matrix composites are
still cement-based, they are more compatible with concrete substrates. Polymer-reinforced
cement matrix composites have been more widely used in projects such as the Yangtze River
Three Gorges Power Station, the National Theatre and municipal projects in China [2,3].

Currently, the research on polymer-modified sulfoaluminate cement is still in the pre-
liminary stage. Scholars have carried out research on the mechanical properties, workability
and toughness of polyacrylic acid and polyvinyl alcohol for sulfoaluminate-cement-based
materials. The experiments have demonstrated that the incorporation of polymers effec-
tively improves the mechanical properties of cement-based materials, and compounding
could play a synergistic role to improve the flowability, increase flexural and compressive
strength and enhance toughness [4–6]. Xiao et al. [7] found that the optimal dosage of
polyvinyl alcohol was 0.75%, and the 28d flexural strength of mortar increased by 15%
under this dosage. Zhang et al. [8] studied the effects of polyacrylamide on the setting
time, mechanical properties and water resistance. The study showed that the addition of
polyacrylamide could significantly prolong the setting time and improve its fluidity, among
which the 3d and 28d flexural strengths increased by 75% and 39%, respectively, when the
dosing amount was 0–0.3%, and the mechanical properties were greatly improved. In addi-
tion, polymers such as polyacrylic acid, polyurethane and epoxy [9–11] can improve the
performance of sulfoaluminate cement very well. According to previous studies, it can be
found that the macroscopic properties, such as the mechanics of polymer-reinforced cement
matrix composites, are mainly studied, while the study of the interfacial interaction between
the two phases at the nanoscale is still imperfect and challenging, occurring only through
experimental studies, where molecular dynamics has a significant advantage [12,13].

Molecular dynamics (MD) simulation can break the limitations of time and conditions,
demonstrate experimental laws at the atomic level, realize the exploration of mechanisms
and can also combine with the experimental development of novel materials [13,14]. Molec-
ular dynamics has been used to elaborate and reveal the integrated interfacial mechanism
between polymers and hydrated calcium silicate (C–S–H) [15]. Wang et al. [16] revealed
the reasons for the differences in interfacial shear strength between different polymer fibers
and C–S–H by the molecular dynamics method. Hou et al. [17] proved that the interfacial
bonding between C–S–H and polymers is related to the polarity of polymer functional
groups, H bonds, Ca–O ionic pairs and bond stability. Liu et al. [18] found that electro-
static and H-bond interactions increased the adhesion properties of cellulose fiber to the
C–S–H interface. Zhou et al. [19,20] investigated the interaction mechanism of PVA with
the micro-test method and MD simulations. However, there are significant differences in
the composition of ordinary Portland cement and sulfoaluminate cement. The strength of
ordinary-Portland-cement-based material is derived from the interaction between C–S–H
gels, while the strength of sulfoaluminate-cement-based material is derived from ettringite
crystals, which account for about 65% of the hydration products. Therefore, there may
be differences in the affinity and bonding properties of the polymers to the two types
of cement.

Due to the lack of targeted studies on the bonding performance of polymers with an
ettringite interface, in this work, the bond performance of ettringite, the main hydration
product of sulfoaluminate cement, with four types of polymers was investigated via the
molecular dynamics method for the first time. The tensile strength of the four polymers
separated from the ettringite substrate was simulated separately by tensile dynamics to
reflect the bonding performance between the four polymers and ettringite. The intrinsic
mechanism of bonding performance between different polymers and ettringite was ana-
lyzed by local structural and dynamic characterization. This work is instructive for the
development of polymer-modified sulfoaluminate-cement-based materials.
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2. Simulation Method
2.1. Model Construction

The initial model for the study is based on existing modeling of ettringite utilizing crystals
from a crystal library [21]. Ettringite, with the molecular formula 3CaO·Al2O3·3CaSO4·32H2O
and a basic structural unit of [Ca3Al(OH)6·12H2O]3+, exhibits a columnar structure depicted
in Figure 1a [22–24]. These columns consist of lines of [AI(OH)6]3− octahedra along the
(001) direction, connected to neighboring columns by three groups of Ca2+ ions, completing
coordination polyhedra with water molecules. Each Ca2+ ion is 8, coordinated by 4 H2O
molecules and 4 OH− ions, forming a trigonal prism. The polyhedra share edges with adja-
cent [AI(OH)6]3− octahedra. SO4

2− ions and remaining water molecules are hexagonally
arranged in the cylindrical gap, encircling the positively charged cylinder’s axis.
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Figure 1. (a) Crystal structure model of ettringite; (b) four polymer models; (c) composite structure
model.

Secondly, four representative polymers with different functional group types are
selected, which are non-polar polypropylene as the control, polyethylene glycol with
hydroxyl functional group, polyamide with amide functional group and polyacrylic acid
with carboxyl functional group. Under the condition of the same number of functional
groups, the molecular model is established by selecting the degree of polymerization of
polypropylene polyethylene glycol and polyacrylic acid as 16. Due to the large molecular
formula of polyamide monomer, on the premise that the main chain length of polyacrylic
acid is basically the same as that of the other three polymers, the degree of polymerization
is four. Their molecular structure formula is shown in Figure 1b.

The ettringite model of the bottom and top layers is created by means of the super cell,
and the parameters are as follows: a = 44.67 Å, b = 38.68 Å, c = 25.87 Å. The polymer is left
in 25 Å space between the two parts of ettringite. The four polymer molecules are placed
in the middle of the ettringite in two layers of four for each layer to form the composite
structural model of the sandwich. In addition, a vacuum layer of 80 Å is reserved at
the top to prevent ettringite from crossing periodic boundaries and causing interaction
between upper and lower layers, and the simulation box is large enough to accommodate
the bonding and stripping behavior of ettringite and polymer. The balanced structures of
the four materials are shown in Figure 1c.

2.2. Simulation Details

In this study, the ClayFF [25] force field is employed to characterize the interactions
within ettringite substrates, offering a detailed representation of their structural dynamics.
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Simultaneously, the CVFF force field is harnessed to delineate the interactions occurring
within polymers [26]. The ClayFF has been proved to accurately describe the interaction of
clay hydroxide and interface structure and has also been successfully applied in the molec-
ular dynamics study of the interaction between cement-based materials. Ettringite is one of
the hydration products of cement-based materials. The ClayFF force field does not provide
for sulfate interactions, so sulfate parameters from Cannon [27,28] are used as supplements,
with sulfur charges of 2e and oxygen charges of −1e. The non-bond interaction parameters
and the charges of each atom in ettringite are referenced from Ref. [25]. The comprehen-
sive simulation, executed using Lammps [29], incorporates the efficient descent method
to systematically relax the entire system, aiming to minimize overall energy. Following
system relaxation, an equilibrium adsorption phase is conducted under the NVT ensemble
for a duration of 3 nanoseconds. To facilitate subsequent microstructure analysis, trajectory
data are output at regular intervals of 1 picosecond (lps) throughout the simulation period.
This meticulous approach ensures a thorough exploration of system dynamics, allowing
for in-depth examination and interpretation of the resulting microstructural features.

At the stage of steered molecular dynamics, in the NVT system [30–32], an external
force of the form shown below is applied to the centroid portion of the upper ettringite:

F = K((X0 + V × t) − Xcom)

where F is external force; K is the spring force constant, set as 0.0005 kcal/mol/nm2; X0 is
the initial Z coordinate of the selected upper ettringite core [33]. V is the pulling speed of
the reference point along the Z axis, set as 100 m/s. T is the simulation time; Xcom is the
selected dynamic location of the upper ettringite core along the Z direction. The schematic
diagram of the polymer and ettringite matrix model under the action of additional forces is
shown in Figure 2. To guarantee the precision of the tensile process simulation, a meticulous
approach is adopted. The simulation step is finely tuned to 0.1 femtoseconds, and the
simulation time is extended to 20 nanoseconds. This meticulous setup aims to capture the
intricate details of the dynamic tensile behavior. Throughout the simulation process, data
for force (F) and the center of mass displacement (Xcom) are meticulously extracted. This
extraction process enables the derivation of a comprehensive tensile force–displacement
curve. By employing these finely tuned parameters and extracting key data points, the
simulation aims to provide a detailed and accurate representation of the tensile behavior,
facilitating a thorough analysis of the material’s response under tensile loading conditions.
In this study, Visual Molecular Dynamics (VMD) is utilized for graphical visualization [34].
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3. Results and Discussion

The pulling force of the separation of the four polymers and ettringite substrate is
simulated by steered molecular dynamics to reflect the interfacial bond property between
the four polymers and ettringite. The microscopic mechanism of the difference in interfacial
bonding properties is analyzed by local structural and dynamic characterization.

3.1. Separation Behavior

In order to preliminarily observe the behavior changes of four polymers, we extract
the behavior change images of ettringite and four polymers during tensile dynamics.
Simulation snapshots of the four systems are shown in Figure 3, which intuitively reflect
the adsorption and separation behavior of the polymers.
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Figure 3. (a1–a6), (b1–b6), (c1–c6), and (d1–d6) indicate the damage snapshots of Ettringite/PP,
Ettringite/PEG, Ettringite/PA, and Ettringite/PAA at different times, respectively.

The image comparison shows that the interface region between the four polymers
and ettringite is separated with the increase in stretching time. PP is the first to detach,
followed by PEG, PA and PAA. The bond strength relationship between the four polymers
and ettringite can be qualitatively reflected from the simulated snapshots as PAA > PA >
PEG > PP.

3.2. Force–Displacement Curves

Based on the qualitative analysis in the preceding section, the mechanical curve is
extracted for quantitative analysis. Figure 4 shows the tensile force–displacement curves
of the four polymers at a simulated tensile speed of 100 m/s using the tensile dynamics
method. The slope of a curve is the ratio of the stretching force to the displacement at the
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stretching point. When the tensile force does not reach the critical value of the interfacial
force, the value is positive. When the tensile force reaches the maximum value, that is,
after the polymer is separated from the ettringite base, the slope becomes negative and
remains unchanged.
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It can be found from the curve of tensile dynamics simulation that the interface bond
properties of four polymers and ettringite from high to low at the same tensile speed of
different polymers are as follows: PAA > PA > PEG > PP. The first half of the curve is
wavy because the chemical bond between the polymer and ettringite base is not completely
disconnected in the tensile process, and the phenomenon of reconnection occurs.

The above laws are in good agreement with the experiment. Bezerra et al. [6,35]
studied PVA and PP, both enols, and showed that the strength and toughness of PVA were
higher than those of PP, and PVA had better adhesion to the substrate. At present, there are
experimental studies on the properties of the four types of polymers modified, but there is
a lack of horizontal comparison of the four polymers. Therefore, this work can effectively
guide the selection of polymers and the development of experiments from the perspective
of simulation. In the following sections, the mechanisms behind the differences in bonding
performance between various polymers and ettringite were analyzed by the local structural
and dynamic characteristics.

3.3. Atomic Intensity Distribution

The atomic intensity distribution can reflect atoms of the polymer on the surface of
the ettringite. Figure 5a–d describe the intensity distribution of polyamide, polyacrylic
acid, polyethylene glycol and the components between the four polymers, respectively,
where Ca denotes the ettringite surface calcium atom, Os denotes the polymer single-bond
oxygen atom, Od denotes the polymer double-bond oxygen atom, Oco denotes the polymer
carboxyl oxygen atom, Oc denotes the polymer main-chain oxygen atom, Hal denotes the
aluminum hydroxyl group of ettringite and C denotes the polymer main-chain carbon
atom. While ensuring the same length of the main chains of the four polymers, the atomic
content of the main chains of the polymers differed due to the degree of polymerization, so
we mainly observe the changes in the intensity distribution of each polymer atom in terms
of position.
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It can be seen from Figure 5a that the Od intensity distribution is closer to the Ca
layer than its main-chain carbon atoms at the ettringite interface, indicating the strong
interaction between calcium atoms near the interface between polyamide and ettringite,
which causes its distribution to shift. The atomic strength distribution of polyacrylic acid
and ettringite substrate is shown in Figure 5b. The intensity peak of Oco of the carboxyl
functional group of PAA is close to that of Ca, and, from the overall view of the polymer,
the carboxyl Oco is biased to be distributed on the side of the main-chain C close to the
substrate. Both phenomena can reflect the interaction of PAA with Ca of the surface layer
of ettringite. Different from the former two kinds of polymers, polyethylene glycol is out of
the side chain of hydroxyl functional groups, and the main chain also exists in the more
electronegative Oc. From Figure 5c, the intensity distribution can be observed; the intensity
peak of hydroxyl Os is very close to the intensity peak of Ca, both with strong interaction,
while the main-chain oxygen, due to the restrictions of the main chain itself, does not show
a bias towards the base. In addition to the interaction mentioned above, it can be obviously
found from Figure 5d that Hal of the ettringite substrate of the PAA, PA and PEG system is
more inclined to the intermediate polymer layer than the PP system, indicating that there
is H-bond interaction between the three polymers and the substrate. The specific bonding
situation will be analyzed later.

Fundamentally, due to the polarity of the polymer itself, the above three polymers
interact with the surface calcium and hydroxyl groups of the ettringite substrate, reflecting
the adsorption characteristics of the polymer and the substrate.
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3.4. Local Interface Analysis

In order to accurately analyze the bond situation at the interface between polymer and
ettringite, and exclude the influence brought by the complexity and diversity of the interme-
diate polymer layer, a single polymer at the interface was selected for subsequent analysis.

3.4.1. Interfacial Ca–O Ionic Pair

The radial distribution function (RDF) can qualitatively reflect the interface structure of
polymers and ettringite [36]. Figure 6a–d show the bonding of the three polymer functional
groups, PAA, PA and PEG, to the surface calcium of ettringite. In the PA/ettringite interface,
the first peak of Ca–Od is 2.55 Å, which is consistent with the bond length of the calcium–
oxygen polyhedron in ettringite crystal between 2.35 and 2.75 Å [37]. Therefore, the sharp
peak of PA indicates that the double-bonded oxygen on the amide group is bonding with
the surface Ca, and the peak value is high, indicating the strong interaction between the two.
Figure 6e is a partial schematic diagram of the Ca–O ionic pair of PA and ettringite, which
intuitively shows the bonding situation of the interface. This simulation phenomenon is
consistent with the experimental characterization of the polymer in the process of cement
modification and will participate in the chemical reaction regarding the formation of the
Ca–O ionic pair [11,38,39].
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Similarly, the first peak of Ca on the surface of PAA and ettringite is about 2.65 Å,
indicating that oxygen atoms of the carboxyl group in PAA can interact with calcium atoms
on the ettringite interface. In PEG/ettringite composites, the first peaks of Ca–Os and
Ca–Oc are both at 2.65 Å, respectively, indicating that the surface Ca of ettringite interacts
not only with the hydroxyl group at the end of the PEG chain but also with the oxygen
atom on the PEG main chain. This analysis method is consistent with the related simulation
studies on polymers and CSH, indicating that polymer functional groups can interact with
the substrate to achieve performance improvement [15,16,40,41]. The bonding between
PAA, PEG and the ettringite interface is shown in Figure 6f,g.

The coordination number can be used to quantitatively analyze the interaction between
different polymers and ettringite [36]. Table 1 shows the number of coordination calcium
atoms of each polymer. The three polar polymers can coordinate with the surface calcium
of ettringite, and the overall order of the total coordination number of the three polymers
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is PAA > PA > PEG. The coordination number of PAA is three times that of PA and PEG,
indicating that PAA has the stronger binding ability with ettringite surface, mainly because
the carboxyl molecular structure of the PAA branch chain is larger and the degree of
freedom is higher, which makes it easier to capture the surface calcium of ettringite.

Table 1. The coordination number of calcium ions between each polymer and ettringite substrate.

CN Ettringite/PA Ettringite/PAA Ettringite/PEG

Ca–Od 1.30 / /
Ca–Os / / 0.58

Ca–Oco / 4.38 /
Ca–Oc / / 0.66
Total 1.30 4.38 1.24

While ensuring that the main chain length of all kinds of polymers is basically the
same, the degree of polymerization of PA is only one-fourth that of other polymers, and
the number of functional groups is significantly smaller; thus, its value on the number of
coordination calcium atoms is relatively small. In addition, the number of oxygen atoms in
the main chain of PEG is much larger than that of hydroxyl oxygen at the end of the chain,
but there is little difference between them in the coordination number, indicating that the
main-chain oxygen atoms are difficult to bind to the calcium ions due to the limitation in
the degree of freedom, and calcium prefers to adsorb on the hydroxyl oxygen. Thus, it
can be seen that the polymerization degree, branched chain degrees of freedom and other
properties of the polymer will affect the coordination of the polymer to the substrate.

3.4.2. H Bond

Apart from the crucial Ca–O ionic pair, the interaction between ettringite and the
polymer involves H bonds that significantly influence the overall bond performance at the
interface. In Figure 7, the Radial Distribution Function (RDF) diagram and local structure
diagram elucidate the H-bond interactions between the polymer and ettringite. Here,
H represents the hydrogen in the polymer functional group, Ow denotes water oxygen,
Os signifies sulfate oxygen and Oal represents the oxygen in the aluminum hydroxyl
group. The ettringite surface, comprising water molecules, aluminum hydroxyl groups
and sulfate, facilitates the formation of two types of H bonds with the polymer. One
type involves the oxygen atom as the acceptor, capable of accepting electrons from the
hydrogen atom in the polymer functional group. The other type features the hydrogen
atom as the donor, providing electrons to the oxygen atom of the polymer functional
group. This dual role of H bonding underscores the intricate nature of the interactions at
the polymer–ettringite interface, emphasizing the diverse mechanisms contributing to the
overall bond performance. The detailed analysis presented in the RDF and local structure
diagram enhances our understanding of the complex intermolecular dynamics governing
the interface.

Figure 7a is the RDF curve of the PAA system. It can be seen from the figure that
PAA can form five types of H bonds with the base within the bond formation range of
2.45 Å, and the H bonds formed are mainly with oxygen atoms of sulfate and oxygen atoms
in water. The local structure diagrams of five kinds of bonds are shown in the blue box
in Figure 7b. The peak position of the RDF diagram shows that only two representative
polymers are indicated to show the H bond between the polymer and ettringite substrate
more intuitively and briefly. Figure 7b shows the distribution of H bonds of all PAAs. It can
be found that H bonds can also be formed among PAA, which increases the bond between
polymers and increases the bond strength between PAA and the ettringite interface. In
Figure 7c for the RDF curves of the PA system, PA is special in that the H-bond receptor
comes from the amino nitrogen atoms, has less electronegativity than O atoms and, coupled
with the number of functional groups, was only about a quarter of the PAA, decreasing
the likelihood to form H bonds, so the hydrogen atoms form a H bond on the functional
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groups of the aft peak position, and the peak fell. The basket on the right of Figure 7d is
the local diagram of H bonds. Similarly, there are H bonds between PA chains. It can be
seen intuitively that the number of H bonds in PA decreases due to the small number of
functional groups.
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The H-bond RDF curve of PEG is shown in Figure 7e. It can be seen from the curve
that PEG mainly forms H bonds with water molecules and sulfate, while the H bond with
the aluminum hydroxyl group is weak, and its bond is shown in the blue box in Figure 7f.
By comparing the left of Figure 7b,d,f, it can be found that the H-bond relationship between
molecules is PAA > PA > PEG, and the intermolecular interaction of polymers enhances the
interfacial bonding properties between polymers and ettringite substrate.

3.4.3. Time Correlation Function

The bond formation and coordination number of different polymers and ettringite
substrates were analyzed in the previous section, and bond stability also determines the
strength of bond performance. The time correlation function (TCF) can be used to describe
the stability of chemical bonds between different ions; the faster the TCF curve decays with
time, the weaker the bond connection [42]. Figure 8a is the time correlation function of
the Ca–O ionic pair. It can be seen from the figure that the TCF value of the Ca–O ionic
pair of PAA is maintained at about 0.9, and the stability is the best. The two Ca–O ionic
pairs of PEG exhibit different stability, and the bonding stability of oxygen atoms in the
main chain is higher than that of the terminal hydroxyl group. It can be shown that the
main-chain oxygen atom is the main source of PEG forming the Ca–O ionic pair. The Ca–O
ionic pair stability of PA is between PAA and PEG. In analyzing the stability order of the
Ca–O ionic pair among three polymers—PAA, PA and PEG—it is evident that PAA exhibits
the highest stability, followed by PA and PEG. This order aligns consistently with prior
examinations of bond formation. The intricate interplay of chemical structures within each
polymer contributes to the observed variations in Ca–O ionic pair stability. The preference
for PAA suggests specific molecular features enhancing its bond strength, reinforcing the
importance of understanding polymer characteristics in the context of bond dynamics. The
established order sheds light on the nuanced relationships between polymer composition
and the strength of Ca–O ionic pairs, offering valuable insights for applications in various
scientific and industrial domains reliant on these materials.
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Figure 8b shows the stability of the H bond. The stability of the H bond formed by the
amino group of PEG and ettringite is relatively poor, and the TCF value is about 0.25. For
PAA and PA, although the above local structure analysis results show that the number of H
bonds formed is small, its stability is high, which is inseparable from the fact that there are
more water layers on the surface of the ettringite substrate. The H bond between polymer
and substrate is still an important source of interfacial bond performance.

3.5. Dynamic Coordination Number

According to the above microscopic analysis of local structure, the bond performance
between polymer and ettringite interface mainly depends on the interaction of Ca–O ionic
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pair strength and H-bond interaction. In order to quantitatively characterize the changes in
the interface during the tensile process, the changes in coordination number over time, i.e.,
dynamic coordination numbers, of the two bonds were statistically analyzed, as shown
in Figure 9. As can be seen from Figure 9a in the Ca–O dynamic coordination map, the
curve shows a trend of rising first and is then stable in the first 300 ps, which is consistent
with the equilibrium stage of polymer and substrate in the first 300 ps, where the two
interact and the coordination number increases first and then achieves stable adsorption.
At the stretching stage of 300 ps, the coordination number showed a downward trend. At
a1, a2 and a3, the coordination number of the corresponding polymer decreased sharply
and then remained stable. Combined with Figure 3, it can be found that this turning
point corresponds to the time when the polymer separates from the substrate, which can
reverse-prove that the three polymers bond with the substrate through Ca–O ionic pairing.
In addition, the coordination number relationship of the three polymers can also be the
strength of the bond: PAA > PA > PEG. Similarly, the dynamic coordination number of H
bonds (Figure 9b) also shows a corresponding sharp decrease and stable stage at the time
of polymer separation, b1 and b2, respectively, but peg does not change significantly due to
the small number of H bonds, which is consistent with the previous analysis. The H bond
is not the main source of PEG bond performance.
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coordination number of Ca–O bonds at 500 ps, 1000 ps, and 1500 ps respectively. b1 and b2 represent
the coordination number of hydrogen bonds at 1000 ps and 1500 ps, respectively.

4. Conclusions

In this work, the interfacial bonding properties between ettringite and polymers were
investigated by molecular dynamics for the first time. The separation process of four poly-
mers, PA, PAA, PEG and PP, from ettringite was simulated by steered molecular dynamics
to characterize the strength of the interfacial bonding properties of the four polymers,
and the microscopic mechanisms of the differences in interfacial bonding properties were
analyzed by local structural and dynamic characterization. The main findings of this work
are as follows:

1. Under the tensile dynamics simulation adopted in this paper, the order of tension
required for the separation of the four polymers from the interface bond is PAA > PA
> PEG > PP. In the interaction with polar ettringite substrate, three polar polymers
show better bonding properties than non-polar PP, and the types of polar functional
groups in the polymer have a key influence on the strength of the interaction.

2. Through the microscopic mechanism analysis of local structure, it is found that the
polymer can form a Ca–O ionic pair with ettringite surface calcium atoms, resulting
in a strong interaction. Oxygen atoms on PA, PAA and PEG non-backbone chains
can provide sites to bind calcium ions, and oxygen atoms on the PEG backbone
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chain can also provide sites for calcium atoms, but, due to limitations in freedom, the
coordination number value is relatively small.

3. In addition to the Ca–O ionic pair, the H bond between ettringite and polymer also
determines the bond performance of the interface. The carboxyl group of PAA, the
amino group of PA and the hydroxyl group of PEG provide sites for the formation of
H bonds.

This study unveils the molecular-scale interface bond mechanism between ettringite
and polymers, providing valuable insights into characterizing the bond properties of four
types of polymers on ettringite surface. These findings offer guidance for advancing
polymer-modified sulfoaluminate-cement-based materials.
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draft, L.Z. All authors have read and agreed to the published version of the manuscript.
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