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Abstract: Accurately evaluating the vulnerability of prefabricated components in prefabricated build-
ings is the basis of scientific management of its supply chain. Thus, a novel vulnerability evaluation
method for the suppliers of prefabricated components in the context of prefabricated buildings was
proposed in this study. First, a vulnerability evaluation index system was identified and constructed
by the pressure–state–response (PSR) model. With the clear logic and strong applicability of PSR,
this system, including 18 indexes, was easy to understand and exhibited strong practicability. The
weights were then determined via the multiplicative analytic hierarchy process with the expansion
of a probabilistic language terminology set (PLTS). PLTS could describe decision information more
comprehensively, so the evaluation result is more scientific. Subsequently, the probability of the
vulnerability level was superimposed in a parallel bottom-to-top method via the controlled interval
and memory (CIM) models, and these were extended by the PLTS. This set handled the uncertain
information in the decision-making process more efficiently and accurately, and finally determined
the vulnerability distribution. Ultimately, the probability of each vulnerability level was determined
by combining the weight information. The reconstruction and resettlement housing construction
project of urban shanty towns in the Taohua South Road Community in Xihu District, Nanchang City,
was selected as a case study. The case study proves the effectiveness of this method, which has higher
resolution and is more convenient for managers to make decisions.

Keywords: prefabricated buildings; component suppliers; vulnerability assessment; CIM model;
probability language terminology set

1. Introduction

Rapid urbanization and the growing environmental awareness in China have led to
the increasing adoption of prefabricated buildings as efficient and environmentally friendly
building technology [1]. According to the 14th Five-Year Construction Development Plan
issued by the Ministry of Housing and Urban-Rural Development of China, prefabricated
buildings are predicted to comprise more than 30% of new buildings. In prefabricated
buildings, problems may arise, including an insufficient production capacity or supply
capacity of suppliers, inadequate quality control, and imperfect supply chain management.
These challenges can lead to delays during construction, quality problems, and increased
costs, which can negatively affect the sustainability of the entire project construction and
operation [2,3].

The supplier management of prefabricated components in prefabricated buildings
refers to the standardized management and supervision of prefabricated component sup-
pliers in prefabricated buildings to ensure that their product quality, delivery time, and
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safety meet the standards. At present, supply chain management has been successfully
applied in food management [4], e-commerce [5], wine management [6], urban logistics
systems [7], and other fields.

Vulnerability research is a systematic analysis of systems, networks, or programs to
identify, classify, and evaluate security weaknesses or defects that may cause damage to the
system. Uncertainty research in supplier management has gradually refined vulnerability
research from traditional risk research [8]. Compared with risk research, vulnerability
research focuses more on the internal nature of the system, more deeply analyzes sup-
pliers, and provides more targeted risk management and coping strategies for related
enterprises [9,10]. Vulnerability research explores system vulnerability characteristics to
predict and reduce the risk of system interference. Vulnerability assessment helps managers
to identify potential risks and threats in order to conduct effective preventive and coping
measures. The supply interruption of prefabricated components is the vulnerability that
this paper focuses on evaluating. The significance of this study lies in the offering of a
novel supplier vulnerability evaluation method, providing scientific decision support for
the supplier management of prefabricated components in buildings, as well as improving
the sustainability and competitiveness of prefabricated construction.

Prefabricated buildings have gained traction among researchers, drawing significant
attention. However, research on the evaluation of prefabricated component suppliers
remains limited, and targeted research on the concept of “vulnerability” of prefabricated
component suppliers is lacking. Studies on prefabricated component suppliers predomi-
nantly encompass the broader subject, with limited research conducted from the perspective
of vulnerability. Zhu and Liu [11] focused on the risk management of prefabricated building
supply by using the risk breakdown structure method. This approach was intended to iden-
tify the risk factors of the supply chain in prefabricated buildings. Liu et al. [2] proposed
an evaluation system of supplier management maturity on the basis of five dimensions:
procurement process, operational efficiency, relationship coordination, strategic adjustment,
and corporate social responsibility. From the perspective of an owner’s procurement, Wang
et al. [12] investigated the owner’s perspective of owner’s procurement by establishing
an elastic supplier evaluation model for prefabricated components with the following
three dimensions being considered: main evaluation criteria, enterprise flexibility and
service, and green buildings. Song et al. [13] established the supplier evaluation index for
prefabricated building components with the following five dimensions being considered:
economy, quality, transportation, long-term cooperation, and aftersales. Jiang et al. [14]
studied and analyzed the factors that hinder the growth of prefabricated buildings in China,
and determined that risk is the main factor hindering the development of prefabricated
buildings. However, risk has rarely been the focus of research. This scarcity justifies the
importance of refining risk research and the suitability of vulnerability research as the
research topic.

Vulnerability research has recently drawn wide interest and has been applied in var-
ious fields. Aleksic et al. [15] established a project vulnerability assessment model for
the planning stage of a project prior to its implementation, providing a key direction for
the follow-up management of the project. Karagiorgos et al. [16] analyzed the physical
vulnerability and social vulnerability of mountain torrents, which can be used as a ref-
erence for the management strategy of mountain torrents. He et al. [17] conducted an
ecological vulnerability assessment in China and identified the ecologically fragile areas,
providing effective guidance for ecological protection and environmental management.
Xu et al. [18] introduced the concept of vulnerability in the context of subway network
systems. Their study focused on urban rail transit systems and classified vulnerability
into three categories: station vulnerability, network vulnerability, and social vulnerability.
Zhang et al. [19] proposed the concept of bike-sharing system vulnerability, and developed
corresponding analysis techniques related to bike-sharing systems. Vulnerability research
has been successfully applied in various fields, offering advantages such as sensitivity and
applicability. Therefore, this study introduces vulnerability in the field of supplier evalua-
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tion for prefabricated components in prefabricated buildings. It analyzes the potential risks
and problems faced by suppliers, reveals the weak links and fragile factors in the system,
and predicts their effect on prefabricated building projects.

Traditional system evaluation methods include the fuzzy comprehensive evaluation
method (FCEM) [20], grey relational analysis method (GRAM) [21], and the fault tree
analysis (FTA) method [22], among others. The vulnerability evaluation of prefabricated
component suppliers in prefabricated buildings is a relatively new research direction,
and researchers have limited access to relevant information. In the fuzzy comprehensive
evaluation method, the accurate determination of the membership function presents a
challenge, potentially influencing the precision of the final evaluation results. The grey
relational analysis assumes that the factors exhibit a linear and independent relationship,
which may not always hold true in vulnerability research [21]. FTA modeling is complicated,
and it typically assumes that failure has only one primary cause, which may not always
hold true in vulnerability research [22]. By contrast, controlled interval and memory (CIM)
models can effectively handle the fuzziness and correlation of risk factors, rendering them
suitable for assessing the complexities of vulnerability factors and fuzzy evaluation in
prefabricated component suppliers for prefabricated buildings. CIM models have been
proven to be effective in risk assessment across various complex fields. In the study by
Tian et al. [23], the risk factors for expressway investment exhibited multilevel structures,
multiple factors, fuzzy evaluation, and randomness. Through using the CIM model,
Tian determined the probability of risks at all levels in the risk assessment of expressway
investment, verifying the feasibility of the project and presenting insights for project-related
investment decisions. Zhang et al. [24] used the CIM model for the cost risk assessment
of large hydropower projects, as well as for measuring the corresponding probability
distribution. The study provided valuable information through which to enhance cost
control measures.

The traditional CIM method often relies on an evaluation set to obtain the probability
distribution of index risk [25]. This technique requires experts to precisely assess the risk
level, which is based on the elements in the evaluation set and may not fully adhere to real-
world scenarios. In this study, the CIM method was extended to a probabilistic language
information environment. This extension considers the possibility of hesitation, ambiguity,
and lack of knowledge (of the experts), rendering it preferable for actual decision-making
situations. The glossary of probabilistic language was introduced in 2016 by Pang et al. [26],
and the theory can be traced back to fuzzy sets [27] at the earliest stage. The probability
language terminology set (PLTS) can be used to represent the language evaluation of
decision makers at all levels, with indecision and uncertainty considered in the decision-
making process [28]. In addition, the PLTS conforms to the natural expression habits
of people in daily life, enhancing the relevance and practicality of decision makers. In
recent years, numerous research findings have emphasized the good expandability of the
probability language terminology set. Wu et al. [29] applied multiplication multi-objective
optimization by ratio analysis by using the expanded probability language terminology
set in karaoke TV brand selection, effectively demonstrating the efficacy of the method.
Similarly, on the basis of the expansion of the probability language terminology set, Wang
et al. [30] employed the grey relational projection method for hospital construction site
selection. Lin et al. [31] used the TOmada de Decisão Iterativa Multicritério (TODIM) with
an expanded set of probabilistic language terms to evaluate the Internet of Things platform,
and then verified the advantages of this approach by comparative analysis. In addition,
the technique for order preference by similarity to an ideal solution (TOPSIS), analytic
hierarchy process (AHP), and VlseKriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) methods when based on the expansion of the probabilistic language terminology
set have also been successfully used [32,33].

Therefore, the current study seeks to use the CIM method with a probabilistic language
extension to perform the vulnerability evaluation of prefabricated component suppliers.
The primary contributions of this study are as follows: (1) Contrary to previous risk-based
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research results, this study shifts its perspective from risk to the vulnerability evaluation
of prefabricated component suppliers. By analyzing supplier vulnerability, this study
sheds light on the susceptibility of suppliers to external shocks. This change in perspective
entails a closer examination of the vulnerabilities that suppliers may encounter, allowing
for the refinement of risks and providing a basis for more accurate supplier management
decision making. (2) The comprehensive, understandable, and operable index system in
this study for evaluating the vulnerability of the suppliers of prefabricated components
provides a solid theoretical basis for further research in related fields. Notably, no academic
research on the vulnerability of the suppliers of prefabricated components has thus far
been conducted. (3) Considering the particularity and complexity posed by the vulner-
ability research of prefabricated component suppliers, this study introduces the parallel
response model of CIM and extends it to the probabilistic language environment. This
model retains the inherent advantages of the CIM method in handling complex information
while integrating the probabilistic language environment. Experts can more flexibly ex-
press different language evaluations, assign varying weights to language evaluations, and
consider the intricacies and uncertainties of their thinking. Consequently, the evaluation
process becomes more scientifically sound, yielding more accurate and reliable evaluation
results. (4) This study reveals that the state of prefabricated component suppliers exerts
the most significant effect on vulnerability, which is a key factor in supplier management.
This finding shows that the attributes of the supplier encompass not only their capabilities,
but are also key to measuring their vulnerability. These attributes represent two facets of
competitiveness, and it also provides a scientific reference for the supplier management of
prefabricated components.

The remaining sections of this paper are organized as follows: Section 2 describes, in
detail, the vulnerability evaluation index system of prefabricated construction suppliers
that is proposed in this study. Section 3 introduces the vulnerability evaluation model for
prefabricated building suppliers. Section 4 presents a case study on the reconstruction
and resettlement housing construction project of urban shanty towns in Taohua South
Road Community, Xihu District, Nanchang City. Section 5 compares the proposed model
with the classical CIM model, and analyzes the influence of different PLTS standardization
methods on the evaluation results. In Section 6, the research content is summarized, and
future research directions for this study are outlined.

2. The Vulnerability Evaluation Index System
2.1. Analysis of Influencing Factors

Accurate identification of influencing factors is the basis of scientific evaluation [34].
The vulnerability of prefabricated components suppliers in prefabricated buildings refers
to the extent of irreversible losses caused by the potential risks and unfavorable factors
in such projects. With respect to the capabilities of suppliers, vulnerability can also be
viewed as a measure of supplier resistance to adverse conditions, such as external pressure
or internal interference.

The pressure–state–response (PSR) model is one of the most widely used methods
to evaluate the index system [35]. PSR model emphasizes the analysis from three levels:
pressure (external pressure, threat or change borne by the system), state (current state or
health degree of the system), and response (response or countermeasures made by the
system to external pressure), which helps to fully understand the causes and effects of
system vulnerability [36]. According to the PSR model, vulnerability management becomes
a dynamic process, which can constantly adjust the response measures according to the
actual situation and improve the system’s ability to adapt to changes.

In the current study, the pressure index reflects the external or internal pressure factors
faced by suppliers, the status index indicates the capabilities of prefabricated component
suppliers, and the response index denotes the coping strategies made by suppliers to deal
with the pressure factors.
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When the PSR model is applied to this study, there is a causal relationship and
interaction among pressure, state, and response.

(1) Pressure→ state. This represents the direct influence of external pressure on the state
of supply chain system of prefabricated buildings.

(2) State → response. This refers to the response of the manager or the system itself
caused by the change of the state of the assembled building supply chain system.
When the adverse changes in the system state are identified, managers will formulate
and implement corresponding strategies and measures to deal with them, aiming at
restoring or improving the system state.

(3) Response→ stress. This means that the response measures taken by managers can
affect and change the original stress.

(4) Cyclic interaction: there is not only a direct linear relationship between these, but also
a cyclic feedback. The response often changes the pressure, which further affects the
state and forms a dynamic cycle.

Stress index elements can be summarized as follows:

(1) Market competition. The escalation of market competition has increased the pres-
sure on enterprises, compelling them to continuously improve their competitiveness.
This involves adapting to changes in market demand and seeking innovation and
differentiation [11,37].

(2) Supply chain instability. Both unpredictable material supply and unreliable partner-
ships can directly lead to supply chain interruptions [2,13].

(3) Market demand. The drastic fluctuation of market demand can lead to unstable order
quantities, presenting challenges in production adjustment [14,38].

(4) Policy changes. The level of state support for prefabricated buildings can directly
affect all aspects of prefabricated building construction and supply enterprises [39].

(5) Technological progress. Prefabricated building construction is currently in its early
stages. The rapid technological progress in this industry can potentially subject
suppliers to competitive pressure, market share decline, and customer loss, as well as
increases in the vulnerability of suppliers [2].

The elements of state indicators can be summarized as follows:

(1) Financial status. The financial status of prefabricated building construction suppliers
directly reflects whether an enterprise can withstand unexpected adverse events [2,37].

(2) Technical ability. The higher the technical level of suppliers, the larger the pool of
skilled technicians, and the stronger the stable supply and high-quality production
capacity of prefabricated buildings [2,40].

(3) Production capacity. A well-designed production scheme can not only optimize the
production process and improve production efficiency, but it can also be a significant
manifestation of enterprise competitiveness [13,41].

(4) Supply capacity. Prefabricated building components usually have large sizes and
weights, requiring special transportation and handling. Thus, the transportation
capacity of suppliers for large components is related to their delivery reliability,
transportation cost, and market competitiveness [11,13].

The response index elements are divided into the following:

(1) Emergency preparedness. A complete emergency plan can enable suppliers to respond
to emergencies more quickly and effectively, as well as help to reduce production
interruptions and business losses, thus decreasing vulnerability [42].

(2) Supply management. Effective inventory management becomes crucial for suppliers
facing external pressure. It directly affects the reliability and stability of the supply
chain and serves as a key factor in helping overcome difficulties and successfully
navigate through difficulties [37,41].

(3) Market diversification. Suppliers with business distribution in multiple markets can
better cope with the changes or instability of a certain market, and this can also reduce
the vulnerability of suppliers [11,43].
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(4) Innovative ability. Suppliers exhibiting strong innovation capabilities can constantly
introduce new products, services, or solutions that align with evolving market de-
mands. This can help with sustaining a competitive advantage, thus reducing the
vulnerability of suppliers [11,13].

2.2. Proposed Indicator System

Based on the identification results of the evaluation indexes in Section 2.1, the vulner-
ability evaluation index system of prefabricated components suppliers in prefabricated
buildings was established (Table 1).

Table 1. The proposed indicator system.

Primary Indicator Secondary Indicator

Pressure : P

Market competition intensity : P1
Material supply stability : P2

Partnership stability : P3
Market demand fluctuation : P4

Degree of policy support : P5
Sensitivity to new technology : P6

State : S

Financial stability : S1
Capital flow : S2

Technical level : S3
Technical team experience : S4

Production plan : S5
Product quality : S6

Transport capacity of large components : S7

Response : R

Completeness of emergency plan : R1
Inventory management : R2

Abundance of supply channels of key materials : R3
Component diversification level : R4

Emphasis on research and development : R5

P1 refers to the competitive pressure faced by the supply chain in the current market
environment. P2 relates to the continuity and reliability of raw material supply in the
supply chain. P3 measures the stability of long-term cooperative relations. P4 refers to the
change of market demand for construction products, and high demand fluctuation may
lead to difficulties in supply chain planning and operation. P5 is the government’s policy
orientation and support for prefabricated buildings.P6 refers to the speed and flexibility of
the supply chain to adopt new technologies.

S1 relates to the financial soundness and robustness of the supply chain. S2 refers to
the liquidity of funds in the supply chain, and sufficient liquidity is conducive to smooth
operation. S3 refers to the overall technical capacity of the supply chain. S4 refers to
the experience accumulated by the team in performing technical tasks. S5 refers to the
supply chain’s arrangement of future orders and production. S6 means that maintaining
high-quality products is a key factor for the success of the supply chain. S7 means that the
transportation capacity of large components is very important for the smooth supply chain
in prefabricated buildings.

R1 refers to whether the supply chain has a complete response to possible interruptions
and shocks. R2 means that the supply chain can still maintain operation when the material
supply is unstable. R3 means that multiple supply channels can reduce the risk of a single
supplier. R4 means that the diversification of components can increase the ability of supply
chain to adapt to different needs. R5 means that continuous R&D investment will help to
enhance the long-term competitiveness of the supply chain.
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3. The Proposed Vulnerability Evaluation Model
3.1. Introduction to PLTS

PLTS is a set of terms and concepts used to describe and analyze the probabilistic
nature of language models. PLTS can help to quantify and deal with the uncertainties and
diversity in language generation and understanding.

(1) Definition of the probability term set:
Let S = {sα|α = 0, 1, · · · , τ} be a given language set. The set of probabilistic language
terms is then defined as follows [26]:

L(p) =
{

L(k)
(

p(k)
)∣∣∣L(k) ∈ S, p(k) ≥ 0, k = 1, 2, · · · , #L(p)

}
, (1)

where L(k) is a linguistic term in L(k)
(

p(k)
)

, p(k) is the probability that the linguistic

term L(k) occurs, and #L(p) is the number of terms contained in this probabilistic
linguistic term set.

(2) Standardization of the probability language terminology set:
Since the introduction of the term set of probabilistic language, numerous standard-
ized methods have been proposed [26,44,45]. However, not a single method has thus
far been generally recognized by academic circles. The present study adopts the
standardization method proposed by Pang [26]:
Given a PLTS L(p) and ∑

#L(p)
k=1 p(k) < 1, then the relevant PLTS

.
L(p) is defined as

follows [26]:
.
L(p) =

{
L(k)

( .
p(k)

)∣∣∣k = 1, 2, · · · , #L(p)
}

, (2)

where
.
p(k) = p(k)/∑

#L(p)
k=1 p(k), k = 1, 2, · · · , #L(p).

In order to improve the universality of the model proposed in this paper, the most
classic PLTS standardization method was selected. In Section 5.2 of this manuscript,
the influence of different normalization methods on the results will be discussed
in detail.

(3) Constructing the decision matrix of the probability language terminology set:

1. Let E =
{

eq
∣∣q = 1, 2, · · · , n

}
be a group of experts, with eq as the q th expert. The

expert weight vector is (γ1, γ1, · · · , γn)
T and ∑n

q=1 γq = 1. Suppose that each
expert eq uses PLTS to evaluate the attribute ai, and the Liq(p) is the evaluation
result of the attribute ai by the expert eq. These results are aggregated into a
probabilistic language evaluation matrix R =

[
Liq(p)

]
m×n [29]:

R =
[
Liq(p)

]
m×n =


L11(p) L12(p) · · · L1n(p)
L21(p) L22(p) · · · L2n(p)

...
...

. . .
...

Lm1(p) Lm2(p) · · · Lmn(p)

, (3)

where m represents the total number of secondary indicators, n denotes the total
number of experts.

2. The expert collective evaluation of the secondary indicator ai is the following [46]:

Li(p) =
{

L(ki)
i

(
p(ki)

i

)∣∣∣∣L(ki)
i ∈ S, p(ki)

i = ∑n
j=1 v

(kiq)

iq γq, ki = 1, 2, · · · , #Li(p)
}

, (4)

where v
(kiq)

ij is the weight of L
(kiq)

ij in Liq(p).
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3.2. The PLTS-MAHP for Weight Calculation

On the basis of introducing PLTS in Section 3.1, this section introduces an improved mul-
tiplicative analytic hierarchy process (MAHP) method based on PLTS for weight calculation.

The MAHP, which was proposed by Lootsma in 1993 [47], is an effective weight
determination technique based on a pairwise comparison standard matrix. It addresses
the shortcomings of the analytic hierarchy process (AHP) in terms of weight scale, order
preservation, and weight synthesis. Through using the multiplication equation, MAHP is
transitive and eliminates the need for consistency checks [48]. Thus, the MAHP extended
under a probabilistic language environment was used in this study. The concrete steps of
the extended MAHP are as follows:

(1) Establishing the language terminology set S = {s−4, s−3, s−2, s−1, s0, s1, s2, s3, s4}.
(2) Inviting the expert eq to use PLTS to evaluate the relative importance between the

attributes ai and aj. The expert eq collects evaluation information to form a paired
comparison matrix AR(q) [29]:

AR(q) =
[

L(q)
ij (p)

]
m×m

=


L(q)

11 (p) L(q)
12 (p) · · · L(q)

1m(p)
L(q)

21 (p) L(q)
22 (p) · · · L(q)

2m(p)
...

...
. . .

...
L(q)

m1(p) L(q)
m2(p) · · · L(q)

mm(p)

, (5)

(3) Through using Equation (4) to aggregate the pairwise comparison matrices provided
by all experts Pg, we obtain the following [49]:

Pg =
[

Lg
ij(p)

]
m×m

=


Lg

11(p) Lg
12(p) · · · Lg

1m(p)
Lg

21(p) Lg
22(p) · · · Lg

2m(p)
...

...
. . .

...
Lg

m1(p) Lg
m2(p) · · · Lg

mm(p)

. (6)

(4) The weight relation between attributes ai and aj is determined based on the MAHP
method [47] to satisfy the following:

∼
ωi/

∼
ω j = e(ln

√
2×(∑#L(p)

k=1 α
(k)
ij p(k)/∑

#L(p)
k=1 p(k)))e(−ln

√
2×(∑#L(p)

k=1 α
(k)
ji p(k)/∑

#L(p)
k=1 p(k))), (7)

where ∏m
i=1
∼
ωi = 1. In accordance with the logarithmic least square method, the

weight can be obtained as follows:

∼
ωi = e(

ln
√

2
m ×(∑#L(p)

k=1 α
(k)
ij p(k)/∑

#L(p)
k=1 p(k))). (8)

(5) After normalization, the weight of the attribute ai is expressed as per the following:

ωi =

∼
ωi

∑m
i=1
∼
ωi

. (9)

3.3. The PLTS-CIM for Vulnerability Assessment

On the basis of introducing PLTS in Section 3.1, this section introduces an improved
CIM method based on PLTS for vulnerability assessment.

The CIM model uses a histogram to represent the probability distribution of vari-
ables. It determines the final probability of each vulnerability level in the upper layer
by superimposing the calculation results of the former variable with the latter variable
and circularly superimposing them. Based on the correlation and independence between
variables, the CIM model can be categorized into a series response model and a parallel
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response model. This classification shares similarities with concepts in physics. The vulner-
ability of prefabricated subcontractors adheres to the law that any influencing factor in the
parallel response model can affect vulnerability; thus, the vulnerability factors at the same
level are substituted into the model in a parallel relationship. This process determines the
probability distribution of their risk levels. The parallel superposition model is shown in
Figure 1.
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The evaluation steps of the traditional CIM model are as follows:
(1) Establish a vulnerability evaluation set V = {extreme risk, high risk, moderate

risk, low risk, extremely low risk}, and invite experts to assign scores for the vulnerability
elements of secondary indicators to obtain preliminary data.

(2) The probability Pih of the element ei under the vulnerability level h can be expressed
as Pih = nih/n. h represents the vulnerability grade, where h = 1 is extremely dangerous,
h = 2 is high risk, and h = 5 is extremely low risk; nih is the number of experts scoring
under vulnerability level h, and n is the total number of experts.

(3) Calculate the vulnerability distribution of each element layer by layer by using the
parallel response model. The probability calculation equation for the vulnerability level h
after e1 and e2 are connected in parallel is as follows:

Ph(e12) = Ph(e1)×∑h
f=1 Pf (e2)+Ph(e2)×∑h−1

f=1 Pf (e1), (10)

where Ph(e1) is the probability of the element e1 under the vulnerability level h, and Ph(e2)
is the probability of the element e2.

(4) Based on the calculated vulnerability probability distribution value of each element,
the vulnerability distribution of all elements under each upper-level element is gradually
computed after parallel connection [50]. The vulnerability probability Ph at all levels is then
calculated by combining the weight information of upper-level elements:

Ph = ∑l
s=1 ωsPh(Ys), (11)

where l is the number of upper elements; Ph(Ys) is the probability of the sth upper layer
element under the vulnerability level h; and ωs is the weight of the sth upper element.

The evaluation steps of the CIM model, based on the expansion of the probability
language terminology set, are as follows:
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(1) Establish PLTS
Researchers can construct PLTS according to the characteristics of the research object.

This paper provides a suggested five-level PLTS, i.e., S = {s0, s1, s2, s3, s4}. s0 is extremely
dangerous, s1 is highly dangerous, s2 is moderately dangerous, s3 is slightly dangerous,
and s4 is extremely slightly dangerous.

(2) Invite an expert eq to evaluate the language of the element ai. Then, the evaluation
results are as follows:

Liq(p) =
{

L
(kiq)

iq

(
p
(kiq)

iq

)∣∣∣∣L(kiq)

iq ∈ S, p
(kiq)

iq ≥ 0, kiq = 1, 2, · · · , 5
}

. (12)

In this study, the language terms with a probability of 0 in PLTS are retained.
(3) Collect the evaluation information of each expert and assemble it into a probabilistic

language evaluation matrix R =
[
Lij(P)

]
m×n:

R =
[
Lij(P)

]
m×n =


L11(P) L12(P) · · · L1n(P)
L21(P) L22(P) · · · L2n(P)

...
...

. . .
...

Lm1(P) Lm2(P) · · · Lmn(P)

, (13)

where m represents the total number of secondary indicators, and n denotes the total
number of experts.

(4) In accordance with Equation (4), the expert evaluation of the secondary indicator
ai can be summarized as follows:

Li(P) =
{

L(ki)
i

(
p(ki)

i

)∣∣∣ki = 1, 2, · · · , 5
}

. (14)

(5) Standardize the collective evaluation
If ∑5

ki=1 p(ki)
i < 1, the PLTS

.
Li(p) is defined as follows:

.
Li(p) =

{
L(ki)

i

( .
pi

(ki)
)∣∣∣ki = 1, 2, · · · , 5

}
, (15)

where
.
pi

(ki) = p(ki)
i /∑5

ki=1 p(ki)
i .

(6) Collect the standardized expert evaluation matrix U =
[ .

Li(p)
]

m×1
:

U =


.
L1(p)
.
L2(p)

...
.
Lm(p)

 =



{
s0

( .
p1

(1)
)

, s1

( .
p1

(2)
)

, s2

( .
p1

(3)
)

, s3

( .
p1

(4)
)

, s4

( .
p1

(5)
)}{

s0

( .
p2

(1)
)

, s1

( .
p2

(2)
)

, s2

( .
p2

(3)
)

, s3

( .
p2

(4)
)

, s4

( .
p2

(5)
)}

...{
s0

( .
pm

(1)
)

, s1

( .
pm

(2)
)

, s2

( .
pm

(3)
)

, s3

( .
pm

(4)
)

, s4

( .
pm

(5)
)}

. (16)

(7) Calculate the vulnerability grade probability of each element layer by layer via the
parallel response model. The vulnerability distribution of ai and aj after parallel connection
is as follows:

.
Lij(p) =

{
s0

( .
pij

(1)
)

, s1

( .
pij

(2)
)

, s2

( .
pij

(3)
)

, s3

( .
pij

(4)
)

, s4

( .
pij

(5)
)}

, (17)

.
pij

(kij) =
.
pi

(kij) ×∑
kij
f=1

.
pj

( f )
+

.
pj

(kij) ×∑
kij−1
f=1

.
pi

( f ). (18)



Buildings 2023, 13, 3070 11 of 23

(8) In accordance with Equation (18), gradually calculate the vulnerability distribution
of all elements connected in parallel under each upper element and obtain the vulnerability
distribution of the upper elements:

.
Ls(p) =

{
s0

( .
ps

(1)
)

, s1

( .
ps

(2)
)

, s2

( .
ps

(3)
)

, s3

( .
ps

(4)
)

, s4

( .
ps

(5)
)}

. (19)

(9) By combining the weight information of the upper elements, the total probability
Pks of each vulnerability level is calculated:

Pks = ∑l
s=1 ωs

.
ps

(ks), (20)

where ks = 1, 2, · · · , 5; l is the number of upper elements;
.
ps

(ks) is the probability that
is the language term L(ks) of the sth upper-level element; and ωs is the weight of the sth
upper element.

3.4. Realization Method of the Proposed Model

Vulnerability assessment is a typical multi-criteria decision making (MCDM) prob-
lem [51]. Referring to the general research paradigm of MCDM, the flow chart of the model
proposed in this paper is shown in Figure 2.

Buildings 2023, 13, x FOR PEER REVIEW  11  of  23 
 

(8) In accordance with Equation (18), gradually calculate the vulnerability distribu-

tion of all elements connected in parallel under each upper element and obtain the vul-

nerability distribution of the upper elements: 

𝐿ሶ ௦ሺ𝑝ሻ ൌ ൛𝑠൫𝑝ሶ௦
ሺଵሻ൯, 𝑠ଵ൫𝑝ሶ௦

ሺଶሻ൯, 𝑠ଶ൫𝑝ሶ௦
ሺଷሻ൯, 𝑠ଷ൫𝑝ሶ௦

ሺସሻ൯, 𝑠ସ൫𝑝ሶ௦
ሺହሻ൯ൟ.  (19)

(9) By combining the weight information of the upper elements, the total probability 

𝑃ೞof each vulnerability level is calculated: 

𝑃ೞ
ൌ ∑ 𝜔௦


௦ୀଵ 𝑝ሶ௦

ሺೞሻ,  (20)

where  𝑘௦ ൌ 1,2, ⋯ ,5;  𝑙  is the number of upper elements;  𝑝ሶ௦
ሺೞሻ  is the probability that is 

the language term  𝐿ሺೞሻ  of the  𝑠th upper-level element; and 𝜔௦  is the weight of the  𝑠th 
upper element. 

3.4. Realization Method of the Proposed Model 

Vulnerability assessment is a typical multi-criteria decision making (MCDM) prob-

lem  [51]. Referring  to  the general  research paradigm of MCDM,  the flow  chart of  the 

model proposed in this paper is shown in Figure 2. 

Forming the comparison matrix by 
Equation (5)

Determining PLTS of weight 
information

Obtaining the normalized weight 
calculation result  by Equation (9)

Getting the aggregation matrix by 
Equation (6)

Determining the non-normalized 
weight result by Equations (7) and 

(8)

Processing expert evaluation 
information by Equation (12)

Forming a matrix of PLTS by 
Equation (13)

Determining PLTS of comments 

Obtaining the aggregation matrix 
by Equation (14)

Normalizing the aggregation 
matrix by Equation (15) 

Collecting standardized expert 
evaluation matrix by Equation (16) 

Constructing parallel response 
model of CIM by Equations (17) 

and (18) 

Determining the vulnerability 
distribution of the upper layer in 

sequence by Equation (19)

Start

End

Determining the final probability 
distribution according to Equation 

(20)

P
L

T
S

-M
A

H
P

P
L

T
S

-C
IM

 

Figure 2. Flowchart of vulnerability assessment. 
Figure 2. Flowchart of vulnerability assessment.



Buildings 2023, 13, 3070 12 of 23

According to Figure 2, the detailed implementation steps of the proposed model are
as follows.

Step 1. Collecting weight information and evaluation information based on PLTS.
According to the management purpose and case characteristics, managers set up a rea-

sonable set of language terms, collecting enough information of experts on the importance
of indicators and case evaluation by means of expert interviews and questionnaires.

It should be noted that the number of experts should be appropriate; too few experts
are difficult to obtain comprehensive data, and too many experts often make the calculation
too large. Approximately 5 or 7 is the recommended number of experts. If the expert
information is collected by questionnaire, the result of consistency test should be acceptable.

Step 2. Calculating the weight of each index.
Equation (5) was used to aggregate the expert evaluation information and to form the

pairwise comparison matrix AR. This was the beginning of weight calculation.
By using Equation (6), all pairwise comparison matrices provided by the experts were

aggregated into the probability preference matrix Pg.
By substituting Pg into the Equations (7) or (8), the normalized weights were achieved

for the secondary index. In addition, the normalized weights {ωs} for the primary index
were obtained by bringing the weight results of the secondary index into Equation (9).

Step 3. Determining the probability distribution of vulnerability level.
Equation (12) was a tool to process the information of experts’ evaluation of cases.

Equation (13) was used to form the probability linguistic evaluation matrix R. The expert
evaluation of the secondary indicator was obtained by Equation (14). Equation (16) was
engaged to collect the standardized expert evaluation matrix U.

Equations (17) and (18) were used to solve the vulnerability distribution of ai and aj
after parallel connection. Equation (19) was employed to the vulnerability distribution of
the upper elements

.
Ls(p).

Bring the primary index weights {ωs} and
.
ps

(ks) obtained in the Step 2 into Equation (20),
and the final probability distribution was obtained. Obviously, the maximum probability
distribution was the final solution.

4. Case Studies
4.1. Project Overview and Data Sources

The reconstruction and resettlement housing construction project of urban shanty
towns in the Taohua South Road Community in Xihu District, Nanchang City covers an
area of approximately 32,000 m2, with a total construction area of around 137,000 m2,
including an aboveground construction area of about 103,000 m2, and an underground
construction area of around 34,000 m2. The high-rise residential buildings in this project
all adopt an assembled structure system, with a total construction area of 85,629.9 m3, and
a volume of PC components of approximately 14,000 m3. The construction unit shall be
given a capital subsidy of 50 RMB/m2, and the maximum subsidy for a single project shall
not exceed 2 million RMB.

Nanchang City is actively promoting the large-scale development of prefabricated
buildings, with more than ten component suppliers being involved in this industry. As
a result, the market competition for this project is relatively intense, and the supply of
components is stable due to strong government policy support. The selected supplier for
evaluation in this study is the Changsha Yuanda Company, which is one of the largest
prefabricated building suppliers in China and has extensive engineering experience.

The main reasons for choosing Changsha Yuanda Company in this paper are as fol-
lows. (1) Market position. Changsha Yuanda Company has a high market share and
influence in the assembled construction industry in China. Assessing its supply chain
vulnerability would provide important information about the supply chain of the whole in-
dustry. (2) Supply chain scale. This company’s prefabricated building supply chain is larger
and therefore more complex. Evaluating a responsible supply chain is more conducive to
revealing the potential risks and problems that may exist in it, and providing corresponding
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improvement and management suggestions. (3) Feasibility. This company participated in
the construction of the case object. The authors could obtain the supply chain data and
information of Changsha Yuanda Company completely. This makes the corresponding
evaluation work more feasible. Obviously, reliable and sufficient engineering data is the
basis of accurate evaluation. (4) Industry representativeness. Changsha Yuanda Company,
as one of the leaders in the assembled construction industry in China, has a good industry
representation in its supply chain. By evaluating the fragility of its supply chain, it can
represent the supply chain situation of the whole prefabricated construction industry to a
certain extent.

This study adopted a questionnaire survey and expert interviews to collect the neces-
sary research data. The basic information on the five invited experts is shown in Table 2.

Table 2. Basic information on the five experts.

No. Education Level Work Experience
(Years) Professional Title Number of Involvements in

Prefabricated Projects

(1) Bachelor’s 20 Senior engineer 5
(2) Master’s 14 Senior engineer 12
(3) Bachelor’s 23 Senior engineer 6
(4) Doctor 5 Senior engineer 5
(5) Bachelor’s 27 Senior engineer 6

According to Table 2, all five experts had undergraduate and above education in the
field of civil engineering, with an average work experience of 17.8 years. All engineers held
the title of senior engineer and have been involved in the supply chain management of
five or more prefabricated projects. These findings indicate that the five experts possessed
extensive engineering experience and solid professional knowledge. Therefore, based
on the composition of the experts, it can be preliminarily concluded that the research
data obtained through the questionnaire survey and expert interviews in this study are
valid. Furthermore, the reliability and validity of the questionnaire survey results in this
study have been tested and verified, further confirming the effectiveness of the research
data [52,53].

It is worth mentioning that these experts are also invited to discuss their opinions and
suggestions on the index system. All five experts agree that the index system proposed in
this paper is complete and comprehensive in the case study. This preliminarily proves that
the index system proposed in this paper is complete and comprehensive.

4.2. Weight Calculation Based on the PLTS-MAHP

(1) Establishing the PLST of weight information:
This manuscript establishes the weighted information for PLST based on the charac-

teristics of the research subject, as shown in Table 3.

Table 3. PLST of the weight information.

PLST Language Description PLST Language Description

s−4 Absolutely Less Important s1 Slightly More Important
s−3 Much Less Important s2 More Important
s−2 Less Important s3 Much More Important
s−1 Slightly Less Important s4 Absolutely More Important
s0 Equally Important - -

(2) Formation of the pairwise comparison matrix AR:
Due to space limitations, this section only provides detailed weight calculation results

for three primary indicators based on PLTS-MAHP. Experts were invited to use the PLTS in
Table 3 to assess the relative importance between the primary indicators. Equation (5) was
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used to aggregate the expert evaluation information and to form the pairwise comparison
matrix AR.

AR(1) =

 {s0(1)} {s−1(0.6), s0(0.4)} {s1(0.5), s2(0.5)}
{s0(0.4), s1(0.6)} {s0(1)} {s1(0.3), s2(0.7)}
{s−2(0.5), s−1(0.5)} {s−2(0.7), s−1(0.3)} {s0(1)}

, (21)

AR(2) =

 {s0(1)} {s−1(0.4), s0(0.6)} {s1(0.7), s2(0.3)}
{s0(0.6), s1(0.4)} {s0(1)} {s2(0.6), s3(0.4)}
{s−2(0.3), s−1(0.7)} {s−3(0.4), s−2(0.6)} {s0(1)}

, (22)

AR(3) =

 {s0(1)} {s−1(0.5), s0(0.5)} {s1(0.4), s2(0.6)}
{s0(0.5), s1(0.5)} {s0(1)} {s2(1)}
{s−2(0.6), s−1(0.4)} {s−2(1)} {s0(1)}

, (23)

AR(4) =

 {s0(1)} {s0(0.4), s1(0.6)} {s0(0.3), s2(0.7)}
{s−1(0.6), s0(0.4)} {s0(1)} {s1(0.6), s2(0.4)}
{s−2(0.7), s0(0.3)} {s−2(0.4), s−1(0.6)} {s0(1)}

, (24)

AR(5) =

 {s0(1)} {s−1(0.3), s0(0.7)} {s1(0.6), s2(0.4)}
{s0(0.7), s1(0.3)} {s0(1)} {s2(0.5), s3(0.5)}
{s−2(0.4), s−1(0.6)} {s−3(0.5), s−2(0.5)} {s0(1)}

. (25)

(3) Formation of probability preference matrix:
By using Equation (6), all pairwise comparison matrices provided by the experts were

aggregated into the probability preference matrix Pg:

Pg =



{s0(1)}


s−1(0.36),
s0(0.52),
s1(0.12)




s0(0.06),
s1(0.44),
s2(0.5)


s−1(0.12),
s0(0.52),
s1(0.36)

 {s0(1)}


s1(0.18),
s2(0.64),
s3(0.18)


s−2(0.5),

s−1(0.44),
s0(0.06)




s−3(0.18),
s−2(0.64),
s−1(0.18),

 {s0(1)}


. (26)

(4) Calculation of indicator weights:
By substituting Pg into Equation (8), the normalized weights were obtained as

∼
ω1 = 1.149,

∼
ω2 = 1.295, and

∼
ω3 = 0.672. By applying Equation (9) for normalization, the

weight information for the primary indicators was calculated as ω = (0.369, 0.416, 0.215).
Through using a similar approach, the calculation results for all indicator weights

could be obtained, as shown in Table 4.
In the primary indicators, the state indicator (S) had the highest weight. The con-

struction management of prefabricated buildings heavily relies on suppliers consistently
providing components. Factors such as the supplier’s production capacity, resource condi-
tion, supply chain management, and coordination directly affect the stability of component
supply. If the supplier’s own state is unstable and they are unable to provide components
in a timely manner, it will result in supply instability or interruption, leading to project
delays and uncertainty in the construction of prefabricated buildings. Therefore, it is
reasonable that S has the highest weight. These research findings are highly consistent
with the comprehensive results of predecessors, which enhances the persuasive power of
this article [54]. However, the research subject of that manuscript is industrial buildings,
whereas the present article is about ordinary residential buildings.
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Table 4. Calculation results of weights based on the PLTS-MAHP.

Indicator Weight Ranking Indicator Weight Ranking

P 0.369 2 S1 0.0742 2
S 0.416 1 S2 0.0659 5
R 0.215 3 S3 0.0627 7
P1 0.0661 4 S4 0.0491 13
P2 0.0629 6 S5 0.0495 12
P3 0.0501 11 S6 0.0611 8
P4 0.0715 3 S7 0.0535 9
P5 0.0775 1 R1 0.0389 18
P6 0.0409 16 R2 0.0418 15
- - - R3 0.0395 17
- - - R4 0.0420 14
- - - R5 0.0528 10

In the secondary indicators, the degree of policy support (P5) had the highest weight
at 0.0775. Currently, the prosperity of the prefabricated building market in China primarily
depends on measures such as tax relief, subsidies, and the priority approval of projects,
which is provided by various levels of the Chinese government. Clearly, any changes in
the intensity of these policy supports will have a significant impact on the prefabricated
building market. Therefore, the vulnerability of supplier evaluation to policy support level
was found to be the greatest, which is reasonable.

Combined with the actual situation of the case, we suggest that managers consider
the following aspects to ensure the effective support of policies for the supply chain of
prefabricated buildings: (1) Formulate long-term clear and stable policy guidance and
support measures to enhance the development confidence and investment willingness of
enterprises. (2) Improve the provision of financial subsidies, tax relief and other incentives.
(3) Promote the formulation and implementation of industry standards and norms, en-
sure the quality of products and services, and promote healthy and orderly competition.
(4) Encourage public–private partnership (PPP) to invest in infrastructure and projects in
prefabricated buildings.

Financial stability (S1) ranks second in terms of weight. The financial stability of
prefabricated building component suppliers directly reflects their operational capability
and stability. If a supplier faces issues such as funding shortages, debt pressures, or
financial risks, it may lead to a disruption in the capital chain and the inability to complete
component orders smoothly. Therefore, the financial condition has a significant impact on
the vulnerability of suppliers.

Market demand fluctuation (P4) ranks third in terms of weight. This indicates that
market demand fluctuations are an important indicator but have a slightly smaller impact
on the vulnerability of suppliers compared to the previous two. The possible reason for this,
is that the demand for the prefabricated building market in China still shows a clear upward
trend, and any potential market fluctuations would be relatively short-term impacts.

Based on the above analysis, the weight calculation results based on the PLTS-MAHP
are reasonable and interpretable.

4.3. Vulnerability Assessment Based on the PLTS-CIM

(1) Establishing PLST for evaluating comment information:
Due to the uncertainty in the occurrence probability of vulnerability factors for pre-

fabricated building component suppliers, this study invited five experts to quantitatively
assess the vulnerability of 18 secondary indicators of the PC supplier based on a set of
probability linguistic terms. The set of linguistic terms was defined as S = {s0, s1, s2, s3, s4},
where s0 is extremely risky, s1 is highly risky, s2 is moderately risky, s3 is slightly risky, and
s4 is extremely slightly risky.

(2) Constructing the probability linguistic evaluation matrix:
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A questionnaire survey method was used to collect the experts’ evaluations of each
secondary indicator. The probability linguistic evaluation matrix R1 was then formulated:

R1 =



{s1(0.4), s2(0.6)} {s2(0.8), s4(0.2)} {s3(0.5), s4(0.5)} {s0(0.3), s1(0.7)} {s3(0.7)}

{s3(0.4), s4(0.6)} {s1(0.2), s3(0.7)}
{

s0(0.3), s3(0.6),
s4(0.1)

}
{s2(0.3), s3(0.6)} {s1(0.3), s2(0.7)}

{s2(0.9)} {s3(0.8)} {s0(0.9), s1(0.1)} {s0(0.2), s1(0.8)} {s2(0.5), s3(0.5)}
{s2(0.5), s3(0.4)} {s0(0.3), s3(0.7)} {s1(0.5), s2(0.4)} {s0(0.7)} {s3(0.9)}{
s2(0.3), s3(0.4),

s4(0.3)

} {
s0(0.5), s3(0.3),

s4(0.2)

}
{s3(0.6), s4(0.4)}

{
s1(0.1), s2(0.4),

s4(0.5)

}
{s2(0.4), s3(0.6)}{

s0(0.3), s2(0.5),
s3(0.2)

}
{s2(0.8), s3(0.2)}

{
s1(0.2), s2(0.5),

s3(0.2)

}
{s2(0.9)} {s2(0.3), s4(0.7)}

{s0(0.3), s2(0.5)} {s3(0.9), s4(0.1)} {s0(0.4), s1(0.6)} {s3(0.5), s4(0.5)} {s3(0.7), s4(0.2)}{
s0(0.3), s2(0.1),

s3(0.5)

}
{s2(0.3), s3(0.7)} {s3(0.4), s4(0.6)}

{
s1(0.3), s2(0.1),

s3(0.5)

}
{s0(0.2), s2(0.8)}

{s1(0.3), s3(0.7)}
{

s1(0.3), s3(0.5),
s4(0.1)

}
{s2(0.4), s3(0.6)} {s0(0.9)} {s2(0.5), s4(0.5)}

{s0(0.9)} {s2(0.7), s4(0.3)}
{

s1(0.2), s3(0.3),
s4(0.5)

}
{s3(0.6), s4(0.4)} {s2(0.8)}

{s1(0.2), s2(0.8)} {s0(0.4), s3(0.6)} {s2(0.2), s4(0.7)}
{

s1(0.2), s2(0.5),
s3(0.2)

}
{s3(0.7), s4(0.2)}

{s2(0.3), s4(0.7)} {s2(0.5), s3(0.4)} {s0(0.3), s1(0.7)} {s0(0.2), s3(0.8)} {s2(0.8)}
{s2(0.9)} {s2(0.4), s3(0.6)} {s1(0.9)} {s3(0.7)} {s0(0.5), s1(0.5)}

{s0(0.6), s1(0.4)} {s0(0.9)} {s0(0.6), s2(0.4)} {s1(0.7), s3(0.3)} {s3(0.8), s4(0.2)}{
s0(0.6), s1(0.2),

s3(0.2)

}
{s1(0.2), s2(0.8)} {s0(0.5), s3(0.5)} {s1(0.7), s4(0.2)} {s0(0.7)}

{s0(0.5), s2(0.5)} {s0(0.6), s3(0.4)} {s0(0.9)} {s2(0.4), s3(0.6)} {s1(0.9)}

{s1(0.7), s2(0.3)}
{

s0(0.5), s1(0.4),
s2(0.1)

}
{s0(0.8)} {s1(0.4), s3(0.6)} {s2(0.7), s3(0.2)}

{s1(0.8)} {s0(0.4), s2(0.6)} {s2(0.9), s3(0.1)} {s0(0.9)} {s2(0.6), s3(0.4)}



. (27)

(3) Assuming that the expert weights of the five experts in this study were consistent,
the aggregated expert assessment matrix can be obtained based on Equation (13):

U1 =
[ .

Li(p)
]

m×1
=



{s0(0.064), s1(0.234), s2(0.298), s3(0.255), s4(0.149)}
{s0(0.063), s1(0.104), s2(0.208), s3(0.479), s4(0.146)}
{s0(0.234), s1(0.191), s2(0.298), s3(0.277), s4(0)}
{s0(0.227), s1(0.114), s2(0.205), s3(0.454), s4(0)}
{s0(0.1), s1(0.02), s2(0.22), s3(0.38), s4(0.28)}

{s0(0.063), s1(0.041), s2(0.625), s3(0.125), s4(0.146)}
{s0(0.149), s1(0.128), s2(0.106), s3(0.447), s4(0.170)}
{s0(0.104), s1(0.063), s2(0.271), s3(0.437), s4(0.125)}
{s0(0.188), s1(0.125), s2(0.188), s3(0.375), s4(0.125)}
{s0(0.191), s1(0.044), s2(0.319), s3(0.191), s4(0.255)}
{s0(0.085), s1(0.085), s2(0.319), s3(0.319), s4(0.192)}
{s0(0.106), s1(0.149), s2(0.341), s3(0.255), s4(0.149)}
{s0(0.111), s1(0.311), s2(0.289), s3(0.289), s4(0)}
{s0(0.429), s1(0.224), s2(0.082), s3(0.224), s4(0.041)}
{s0(0.391), s1(0.239), s2(0.174), s3(0.152), s4(0.043)}
{s0(0.417), s1(0.188), s2(0.188), s3(0.208), s4(0)}
{s0(0.277), s1(0.319), s2(0.234), s3(0.17), s4(0)}
{s0(0.277), s1(0.17), s2(0.447), s3(0.106), s4(0)}



. (28)

(4) Solving for vulnerability distribution:
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By using Equations (17) and (18), the superimposed vulnerability distributions for Mar-
ket competition intensity (P1) and Material supply stability (P2) can be obtained as follows:

.
L12(p) =

{
s0

( .
p12

(1)
)

, s1

( .
p12

(2)
)

, s2

( .
p12

(3)
)

, s3

( .
p12

(4)
)

, s4

( .
p12

(5)
)}

={s0(0.04), s1(0.046), s2(0.174), s3(0.503), s4(0.273)}. (29)

The detailed calculation process of Equation (29) can be found in Table 5.

Table 5. Superimposed probability for vulnerability levels of P1 and P2.

Vulnerability Level Probability Distribution

s0 0.064× 0.234 = 0.04
s1 0.234× (0.063 + 0.104) + 0.104× 0.064 = 0.046
s2 0.298× (0.063 + 0.104 + 0.208) + 0.208× (0.064 + 0.234) = 0.174
s3 0.255× (0.063 + 0.104 + 0.208 + 0.479) + 0.479× (0.064 + 0.234 + 0.298) = 0.503
s4 0.149× (0.063 + 0.104 + 0.208 + 0.479 + 0.146) + 0.146× (0.064 + 0.234 + 0.298 + 0.255) = 0.273

Similarly, the superimposed vulnerability distribution for all secondary indicators can
be calculated. Based on this, the vulnerability distribution for each primary indicator can
be calculated (refer to Table 6).

Table 6. Vulnerability distribution of primary indicators.

Primary
Indicator s0 s1 s2 s3 s4

P 1.35× 10−6 8.87× 10−5 0.0218 0.4250 0.5531
S 5.56× 10−7 6.15× 10−5 0.0096 0.3163 0.6751
R 0.0054 0.0610 0.2814 0.5700 0.0823

Based on the weight information obtained in Section 4.2, the probability distribution
of the vulnerability levels for prefabricated component suppliers in modular construction
can be determined, as shown in Table 7.

Table 7. Probability distribution of the vulnerability levels.

Vulnerability Level Probability Distribution

s0 1.35× 10−6 × 0.369 + 5.56× 10−7 × 0.416 + 0.0054× 0.215 = 0.0012
s1 8.87× 10−5 × 0.369 + 6.15× 10−5 × 0.416 + 0.061× 0.215 = 0.0132
s2 0.0218× 0.369 + 0.0096× 0.416 + 0.2814× 0.215 = 0.0725
s3 0.425× 0.369 + 0.3163× 0.416 + 0.57× 0.215 = 0.411
s4 0.5531× 0.369 + 0.6751× 0.416 + 0.0823× 0.215 = 0.5026

According to Table 7, the vulnerability level of the supplier falls between s3 and s4, and
is closer to s4. Through an investigation into the component supply process for this project,
it was found that the supplier was able to deliver the required prefabricated components
on time, ensuring the stability of the supply chain. They had sufficient production capacity
and resources to meet project demands, thus avoiding issues of over reliance on a single
supplier or supply difficulties. Quality inspections conducted on site showed that the
provided prefabricated components by this supplier were stable in quality and complied
with relevant building standards and regulations. Furthermore, during the construction of
the case project, there were three instances of design changes requiring urgent adjustments.
The supplier was able to flexibly adapt their component production and supply with
the help of their professional technical team and engineers. Therefore, the evaluation
results presented in this article are consistent with the actual conditions of the project,
and it could be considered that the index system constructed in this paper is complete
and comprehensive.
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5. Discussions
5.1. Comparison of Computational Performance with Classical CIM

In order to highlight the superiority of the proposed model, this paper compares it
with the computational principles of the traditional CIM method. According to the classical
CIM method, a re-survey should be conducted; as such, the same five experts were invited
back to quantitatively assess the risk of the 18 secondary indicators based on the risk
evaluation set {extremely dangerous, highly dangerous, moderately dangerous, slightly
dangerous, and extremely slightly dangerous}.

To avoid the influence of weight calculation on the discussion in this section, the
classical CIM model also adopts the weight information calculated in Section 4.2 of this
paper. The distribution of the supplier’s secondary indicator risks is shown in Table 8.

Table 8. Vulnerability distribution for secondary indicators based on the classical CIM model.

Indicator s0 s1 s2 s3 s4

P1 0 1/5 2/5 1/5 1/5
P2 0 0 1/5 3/5 1/5
P3 1/5 1/5 2/5 1/5 0
P4 1/5 1/5 1/5 2/5 0
P5 1/5 0 1/5 2/5 1/5
P6 0 0 4/5 0 1/5
S1 0 1/5 1/5 2/5 1/5
S2 0 0 1/5 3/5 1/5
S3 1/5 0 1/5 3/5 0
S4 1/5 1/5 1/5 1/5 1/5
S5 0 0 2/5 2/5 1/5
S6 0 1/5 2/5 1/5 1/5
S7 1/5 1/5 1/5 2/5 0
R1 4/5 1/5 0 0 0
R2 2/5 1/5 1/5 1/5 0
R3 2/5 1/5 1/5 1/5 0
R4 2/5 1/5 1/5 1/5 0
R5 1/5 1/5 3/5 0 0

With the combination of weight information for the secondary indicators, the total
probability distribution of vulnerability levels for prefabricated component suppliers in
modular construction can be obtained and showed in Table 9.

Table 9. Vulnerability distribution of primary indicators under the classical CIM method.

Indicator s0 s1 s2 s3 s4

P 0 0 0.0184 0.3912 0.5904
S 0 0 0.0028 0.3249 0.6723
R 0.0102 0.0762 0.2256 0.6880 0

By incorporating the weightings of the three primary indicators and the calculation
results from Table 9, the evaluation results of the project based on the traditional CIM
method can be determined. The probabilities for the five vulnerability levels are as follows:
0.0022, 0.0164, 0.0565, 0.4274, and 0.4975, respectively. Consequently, the evaluation result
based on the traditional CIM method falls between the categories of “low risk” and “very
low risk”, leaning towards the latter.

When comparing the aforementioned evaluation results with those obtained from
the PLTS-CIM method, it becomes apparent that the outcomes of both algorithms were
remarkably similar. However, the evaluation results derived from the PLTS-CIM approach
offered certain advantages. Firstly, in contrast to the classical CIM method, the results
yielded by the PLTS-CIM approach exhibited a higher resolution. Under the classical
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CIM model, the probabilities for “low risk” and “very low risk” are 0.4274 and 0.4975,
respectively, with a mere difference of 0.0701 (equivalent to a 14.09% variation) between
them. Conversely, under the PLTS-CIM, the probabilities for “low risk” and “very low risk”
amount to 0.411 and 0.5026, respectively, thus showing a significance difference of 0.0916
(corresponding to an 18.23% variation). Enhanced resolution in the evaluation results can
effectively diminish the possibility of misjudgment on the part of management personnel.

Secondly, in comparison with the classical CIM method, the evaluation results based on
the PLTS-CIM approach are more distinct. In the PLTS-CIM, the probability of falling into
the category of “very low risk” is 0.5026, surpassing the 50% threshold. Furthermore, the
probabilities of encountering “high risk”, “moderate risk”, and “low risk” are substantially
lower in the PLTS-CIM than in the traditional CIM. This discrepancy can be attributed to
the fact that PLTS expansion enables the CIM model to provide a more elaborate description
of expert opinions, thereby leading to more focused evaluation results. Evidently, more
prominent evaluation results can effectively minimize the likelihood of misjudgment by
management personnel.

5.2. Influence of Different PLTS Standardization Methods on Evaluation Results

Different normalization methods for PLTS can potentially affect the performance
evaluation of the proposed model in this study. In order to evaluate this impact, we analyze
two additional recently developed normalization methods for PLTS [26,44,45]. It should
be emphasized that only the standardization methods are different, and other calculation
processes are exactly the same.

Normalization Method 1 was proposed by Pang et al. [26]. It is widely used and con-
sidered a classic method in the relevant field, and it is also the method selected in this study.
This method uniformly distributes the value of 1−∑

#L(p)
k=1 p(k) among the probabilities:

.
p(k) = p(k)/∑#L(p)

k=1 p(k). (30)

Normalization Method 2 was introduced by Zhang et al. [55]. Its calculation equation
is as follows:

p(k) =
1−∑

g
k=1 p(k)

g
+ p(k), (31)

where k = 1, 2, · · · , g, and g is the number of different language terms in the language term
set S.

Normalization Method 3, proposed by Song and Li [45], is an improvement on Method
1 of normalization.

Rule 1: If language term L(k) is not found in the L(p), there is no need to find it in the
normalized PLTS.

Rule 2: If ∑
#L(p)
k=1 p(k) ≤ 1, then 1−∑

#L(p)
k=1 p(k) is allocated to certain language terms in

L(p) according to the following rules:
(1) Optimistic attitude: 1−∑

#L(p)
k=1 p(k) is allocated to the largest binary language term

in L(p), which corresponds to the largest index.
(2) Pessimistic attitude: 1−∑

#L(p)
k=1 p(k) is evenly allocated among the smallest binary

language terms in L(p), which correspond to the smallest indexes.
(3) Neutral attitude: 1−∑

#L(p)
k=1 p(k) is evenly allocated, as proposed by Pang et al. [26]

in the Normalization Method 1.
The three different normalization methods use the same PLTS information, with slight

variations in the PLTS normalization process. Their results are shown in Table 10.
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Table 10. Calculation results based on three different normalization algorithms.

Vulnerability
Level

Normalization
Method 1

Normalization
Method 2

Normalization Method 3

Optimistic Pessimistic

s0 0.0012 0.0095 0.0022 0.0042
s1 0.0132 0.0186 0.0013 0.0165
s2 0.0725 0.0715 0.0655 0.0726
s3 0.4110 0.4053 0.4001 0.4106
s4 0.5026 0.4952 0.5308 0.4961

As can be seen from Table 10, the calculation results of the three normalization meth-
ods are especially close. This shows that it is reasonable to choose the most classical
normalization algorithm in this paper.

Compared with the other two algorithms, the result of Normalization Method 2 is more
optimistic—even more optimistic than the result of optimism in Normalization Method 3.
In Normalization Method 3, with the change in managers’ attitude from optimism to
pessimism, the probability of being at the s4 level increases. However, even if the manager
is very pessimistic, the probability that the project is at the s4 level is still the largest. That
is to say, in this case, the attitude of managers will not affect the final evaluation results.

To summarize, considering the calculation performance and amount of calculation,
this paper suggests that managers adopt classical standardization methods. Of course, this
conclusion needs more engineering cases to prove this assertion.

6. Conclusions

To accurately evaluate the vulnerability of prefabricated components in prefabricated
buildings, this study proposes a novel vulnerability evaluation index system and evaluation
model for prefabricated construction suppliers. Building upon the PSR model, this research
delves into the external or internal pressure factors faced by suppliers, their current status
or situation, and their actions or strategies in response to pressure factors. Combining these
aspects with literature research, this study developed an evaluation index system with
18 indicators. The vulnerability of suppliers was analyzed from both macro and micro
perspectives. The influence of external factors and internal details such as capabilities,
resources, and management were considered. The proposed index system is easy to com-
prehend, is practical, and provides valuable insights or effective vulnerability assessment.
In addition, this study used the multiplicative AHP with an extended probability language
terminology set to obtain weight information. Based on this, it introduced the CIM model
with an extended PLTS to evaluate the vulnerability of prefabricated building suppliers in
the reconstruction and resettlement housing project of urban shanty towns in the Taohua
South Road Community, Xihu District, Nanchang City. Case studies show that state is
the most important primary indicator. The degree of policy support, financial stability,
and market demand fluctuation are the most important secondary indicator indicators.
Managers can manage important indicators to improve efficiency. The probability that the
vulnerability assessment result of this project is low risk is set at 0.411, and the probability
of extremely low risk is set at 0.5026. The conclusions of these cases are essentially con-
sistent with engineering practice. Compared with the traditional CIM model, the expert
decision information of this method is more scientific and comprehensive, resulting in
more objective and effective outcomes through data analysis. The PLTS standardization
method has little influence on the evaluation results of this case.

Based on the research results of this paper, the future research directions in this field
are as follows. (1) The vulnerability evaluation index system of prefabricated building
suppliers will be continuously enriched and improved from the perspective of stakeholders
or the whole life cycle. (2) According to the characteristics of vulnerability assessment of
prefabricated building suppliers, more standardized methods of probabilistic language
terms set will be proposed. (3) Meta-heuristic optimization algorithms (particle swarm
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optimization algorithm [56], genetic algorithm [57], and so on), artificial neural networks,
or data mining algorithms will be considered to evaluate the vulnerability of prefabricated
building suppliers.
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