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Abstract: Stepwise phase change material (PCM) aggregate concrete has advantages in controlling
temperature and resisting frost heave, but its freeze–thaw resistance performance is still unclear.
This paper explored the impact of replacing ordinary coarse aggregate with stepwise aggregate on
the freeze–thaw resistance characteristics of concrete. Firstly, the compressive strength, splitting
tensile strength, and their relationship were evaluated. Then, the freeze–thaw resistance properties
of PCM aggregate concrete were investigated, including macroscopic changes, mass loss, relative
dynamic elasticity modulus loss, and compressive strength loss. Subsequently, the pore changes
before and after freeze–thaw cycles were tested through non-destructive testing and nuclear magnetic
resonance (NMR) testing, and the evolution of pores under freeze–thaw cycles was explored. The
results show that adding 100% PCM aggregate reduces the strength of concrete by 32%. However,
due to the high porosity in the 100% PCM aggregate concrete, it would have an adverse impact on
corrosion resistance. The corrosion resistance of concrete increases firstly and then decreases with
the addition of PCM aggregate, which can be attributed to PCM aggregate having a limiting effect
on pore development. Overall, a substitution rate of 60% is acceptable for compressive strength and
corrosion resistance.

Keywords: PCM aggregate; stepwise; non-destructive test; pore evolution; replacement ratio

1. Introduction

Infrastructure in cold regions, such as high-speed railways and highways, is greatly
affected by frost heave [1,2]. Temperature is one of the main causes of frost heave [3].
Stepwise phase change material (PCM) aggregate concrete can limit low temperatures,
which can reduce frost heave amount and freezing depth [4]. Although stepwise PCM
aggregate concrete has advantages in regulating thermal energy, its impact on freeze–thaw
resistance is still unclear.

In cold regions, concrete structures are damaged due to freeze–thaw cycles, and
freeze–thaw action is the primary factor in concrete deterioration, which directly affects
the lifespan of concrete [5]. Concrete is a porous material with defects such as pores and
cracks inside. When subjected to freeze–thaw cycles, the free water in the pores generates
hydrostatic pressure, osmotic pressure, and crystallization pressure [6–8], which will lead
to concrete failure. The infrastructure engineering in the cold regions of northern and
southwestern China has been extensively affected by freeze–thaw damage [9]. Therefore,
the study of freeze–thaw resistance strategies has a great significance for the application of
concrete in cold regions.

Scholars from around the world have conducted extensive research on improving
the freeze–thaw resistance of concrete, mainly focused on material modification. Adding
mineral admixtures or fillers, such as fly ash, can improve frost resistance. The active effect
and filling effect of fly ash particles contribute to improving the bonding ability of aggre-
gates and slurries [10,11], and the internal pores are filled with fly ash particles [12]. This
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makes the internal structure of concrete dense, cuts off the seepage channels in the concrete,
and improves the frost resistance of concrete. The research of Wang et al. [11] showed
that the internal structure of concrete with 25% fly ash addition becomes denser after
freeze–thaw cycles compared ordinary concrete, which is related to the filling of micropores
and microcracks by fly ash generated products. Zhang et al. [13] studied the freeze–thaw
resistance of fly ash as fine aggregate under stress and high temperature, and the results
showed that fly ash fine aggregate concrete has higher freeze–thaw resistance than ordinary
concrete. In addition to fly ash, other micro-particles can also improve the frost resistance
of concrete, such as silica fume [14], metekaolin [15], rice husk ash [16], ground-granulated
blast-furnace slag [17], and nanoparticles [18]. The reasons for improving freeze–thaw
resistance of these materials can be summarized in two aspects: pozzolanic reaction and
reduced permeability, which are beneficial for improving the internal defects of concrete
and thus improving its freeze–thaw resistance. In addition, fiber addition can prevent crack
propagation and improve freeze–thaw resistance. Cui et al. [19] showed that adding fibers
significantly enhances all the wheel-impact indexes of airport pavement concrete under
freeze–thaw conditions, which can be attributed to the fiber addition that limited crack
expansion, inhibited seepage, and effectively reduced water transfer channels.

The freeze–thaw resistance also can be improved by the incorporation of air-entraining
agents. The addition of air-entraining agents is conducive to generating a large number of
microbubbles, which improve the pore structure of the concrete and reduce the maximum
expansion pressure. When concrete was subjected to freeze–thaw cycles, water froze in the
capillary pores of the cement matrix. Due to the formation of ice, the volume expanded
and the squeezed water generated internal stress on the concrete, and bubbles could
accommodate the squeezed water, which allowed stress to be released [20,21]. Therefore, air
entrainment can provide expansion space for water, thereby improving the frost resistance
of concrete.

In addition to being related to the material properties of concrete, the freeze–thaw
characteristics are also related to environmental factors, such as freezing rate, minimum
freezing temperature, and duration at minimum temperature [22]. The scaling damage
was decreased by an increase in the freezing rate, and the effect of freezing rate on the
scaling amount also depended on water-to-cement ratio [23]. The minimum temperature
affected the phase transformation and migration of pore water, the low temperature led
to accelerating pore water crystallization, and the generated temperature stress would
accelerate concrete failure due to the heterogeneity of concrete [24]. The minimum temper-
ature seemed to have a greater impact on scaling damage than the cooling rate, and the
lower freezing temperatures caused greater expansion pressure that exacerbated the scaling
damage [25]. A longer exposure time at the minimum temperature caused higher scaling
damage and internal deterioration. Longer exposure time at the minimum temperature
provided the time needed for the water to transport, resulting in increasing damage.

It seems that adjusting concrete internal temperature can improve freeze–thaw re-
sistance characteristics. In recent years, PCM concrete has become a hot topic due to its
ability to regulate temperature through latent heat. When temperature decreases, PCM
releases latent heat, and when temperature rises, it absorbs latent heat, thereby achieving
the purpose of temperature regulation. Currently, there are some studies on improving
freeze–thaw properties of concrete by PCM. Yu et al. [26] chose expanded graphite (EG)
as a carrier to encapsulate PCM and then incorporated it into concrete, and they found
that mortar with 4% EG-PCM can increase the center temperature of concrete, which re-
duced the freeze–thaw damage of cement mortar. Tian et al. [27] developed artificial PCM
aggregate, and their results showed that the PCM aggregates have high freeze–thaw resis-
tance, with maximum strength reaching 66% of 28 d strength after 200 freeze–thaw cycles.
Liu et al. [28] prepared cementitious materials integrated with PCM encapsulated by di-
atomite, showing that the incorporation of PCM weakened the mechanical properties of the
cement matrix but improved the frost resistance. This can be explained by the following
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effect of PCM: when ambient temperature drops below the critical level, PCMs release
latent heat, which guarantees the cement matrix at a relatively safe level.

However, freeze–thaw damage aggravates during continuous temperature decrease.
The existing research focuses on the fact that that PCM stabilizes temperature by releasing
latent heat within a single temperature point, once the temperature exceeds transition
temperature, the PCM completes phase transition and cannot continue to release latent
heat. Unfortunately, there is little research on regulating temperature at multiple phase
transition points to resist freeze–thaw cycles. This paper focuses on developing the PCM
concrete with continuous phase transition points during temperature decreases. Utilizing
the latent heat released during the temperature drop process helps to resist the adverse
effects of freeze–thaw.

This paper aims to study the mechanical properties and freeze–thaw resistance of
concrete incorporated with stepwise PCM aggregates, whose transition temperature is from
5 to −15 ◦C. Firstly, the mechanical properties of concrete, whose coarse aggregate was
replaced by 0–100% stepwise PCM aggregate, were evaluated, including cubic compressive
strength and cubic splitting tensile strength. Secondly, the freeze–thaw resistances of
concrete with different replacement amounts of stepwise PCM aggregates were evaluated
from macroscopic changes, quality loss, relative dynamic elasticity modulus (RDEM) loss,
and compressive strength loss. Finally, non-destructive nuclear magnetic resonance (NMR)
technology was used to detect the changes in internal pores of concrete after freeze–thaw
cycles. This paper will further expand the research on the freeze–thaw resistance of concrete
using PCM.

2. Materials and Experimental Details
2.1. Materials

The cementitious material was ordinary Portland cement, with a strength grade of
42.5R, produced from Shaanxi, China. Natural gravel and river sand were produced in
Shaanxi, China. The particle size range of gravel was 5–20 mm, the modulus of river sand
was 2.69. In this study, shale ceramsite was used to encapsulate PCM, and the particle
size range of ceramsite was 5–20 mm. Shale ceramsite had abundant internal pores, which
can be used for a container of PCM. The porosity of ceramsite was 33.30%. The micro-
morphology of ceramic particles is shown in Figure 1. The main physical properties of
shale ceramsite were obtained by testing and are shown in Table 1.
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Figure 1. The micro-morphology of shale ceramsite.

Three PCMs, dodecane, tridecane and tetradecane, were used to prepare stepwise PCM
aggregate, including dodecane aggregate, tridecane aggregate and tetradecane aggregate.
The thermal properties of three PCMs were tested using a differential scanning calorimeter
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and are shown in Table 2. Epoxy resin was used as the first coating layer, and cement
powder was used as the second coating layer.

Table 1. Elementary properties of shale ceramsite.

Aggregate
Apparent
Density
(kg/m3)

Loose Bulk
Density
(kg/m3)

Crushing
Index (%)

24 h Water
Absorption

(%)

Mud
Content (%)

Water
Content (%)

Shale ceramsite 1504 873 28.67 10.30 0.87 0.01

Table 2. Thermal properties of PCMs.

PCM Density
(g/mL)

Solidifying
Temperature

(◦C)

Solidifying
Heat Latent

(J/g)

Melting
Temperature

(◦C)

Melting
Heat Latent

(J/g)

Dodecane 0.7487 −12.86 200.5 −10.96 199.8
Tridecane 0.7560 −7.84 142.9 −7.26 139.0

Tetradecane 0.7628 4.26 206.3 4.85 212.4

2.2. Preparation of PCM Aggregate and Stepwise PCM Aggregate Concrete
2.2.1. PCM Aggregate Prepared by Vacuum Impregnation

In this paper, dodecane aggregate, tridecane aggregate, and tetradecane aggregate
were prepared using vacuum impregnation method, and their combination had stepwise
phase transition temperature points. Firstly, the shale ceramsite particles were cleaned
and then dried in an oven for 24 h. Subsequently, PCM and shale ceramsite particles were
mixed and placed in a vacuum heating box, the temperature was set to 60 ◦C, and the
particles were vacuumed for 60 min and then placed in the box for another 60 min. After
the above measures, vacuum impregnation process was completed.

2.2.2. PCM Aggregate Coated by Double-Layer Material

PCMs adsorbed with porous aggregates were prone to leakage during the phase change
process, the leaked PCM hindered the cement hydration process [29,30]. Suitable coating
material to coat PCM aggregate had a better compatibility, such as cement paste [31]. In order
to prevent the adverse effects of PCM on the cement matrix, this paper uses epoxy resin and
cement powder as coating materials, and the specific ratio is discussed in this paper [4]. PCM
aggregate was firstly wrapped by epoxy resin, and after 4 h, when epoxy resin had not yet
lost its adhesion, the PCM aggregate was wrapped by cement powder. After being wrapped
by the first layer, PCM aggregate was left for 8 h for the first-layer epoxy resin to solidify
and finally placed in water for second-layer cement to hydrate. After 3 days, coated PCM
aggregate was taken out for subsequent use. The schematic diagram of PCM aggregates
for each stage is shown in Figure 2. Due to the density of PCM in this paper being close,
the quality of each component for PCM aggregate is also very close. The proportion of each
component and the latent heat of PCM aggregate are shown in Tables 3 and 4.
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Figure 2. The schematic image of PCM aggregate preparation: (a) raw aggregate, (b) PCM aggregate,
(c) PCM aggregate coated by epoxy, (d) PCM aggregate coated by cement, and (e) PCM aggregate
after hydration.
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Table 3. The relative amount for each component of PCM aggregate (wt.).

Shale Ceramsite PCM Epoxy Layer Cement Layer

59.62% 10.31% 9.10% 20.97%

Table 4. The latent heat of PCM aggregate (J/g).

Dodecane Aggregate Tridecane Aggregate Tetradecane Aggregate

20.67 14.73 21.67

2.2.3. Stepwise PCM Aggregate Concrete

According to previous research, dodecane aggregate, tridecane aggregate and tetrade-
cane aggregate were mixed in a ratio of 4:3:3 and incorporated into concrete to prepare
stepwise PCM aggregate concrete, which has stepwise phase transition temperature points
between 5 and −15 ◦C. In this paper, the three types of PCM aggregates replaced coarse
aggregates at 0% to 100% by volume substitution. The mix proportion of stepwise PCM
aggregate concrete is shown in Table 5. The control mixture was cast without any PCM
aggregate. In the next five mixtures, 20%, 40%, 60%, 80%, and 100% of coarse aggregates
were replaced by stepwise PCM aggregate. The water–cement ratio was fixed at 0.32, the
sand-gravel ratio was 37.60%.

Table 5. The mixing ratio and density of concrete (kg/m3).

Mix Cement Sand Gravel Stepwise PCM Aggregate Water SP

C-1 550 652 1080 0 176 5.5
C-2 550 652 864 112 176 5.5
C-3 550 652 648 224 176 5.5
C-4 550 652 432 336 176 5.5
C-5 550 652 216 448 176 5.5
C-6 550 652 0 560 176 5.5

In order to prevent PCM aggregate from crushing during the mix process, the prepara-
tion process has been adjusted according to the reference [4] and is presented as follows:

(1) Cement and sand were mixed together and stirred for 60 s.
(2) Then, water and superplasticizer were added and stirred for 120 s.
(3) Subsequently, the stepwise PCM aggregates were added and stirred for 120 s.
(4) Finally, the mixture was poured into molds and vibrated to compact.

The specimen was demolded after 1 d, then cured in curing room with a humidity of
96% and a temperature of 20 ◦C for 28 d. Cubic specimens, with a size of 100 mm × 100 mm
× 100 mm, were used to test mechanical properties and also used for nondestructive
testing. Prismatic specimens, with a size of 100 mm × 100 mm × 400 mm, were used to
test freeze–thaw resistance.

2.3. Experimental Techniques
2.3.1. Mechanical Properties

A 2000 KN microcomputer-controlled electro-hydraulic servo universal testing ma-
chine was used to test compressive strength and splitting tensile strength. The 7, 14 and
28 d strengths were tested, and each group ensured at least three specimens for improving
the test data accuracy.

2.3.2. Freeze–Thaw Resistance

Freeze–thaw cycle test was conducted in a concrete automatic quick freeze–thaw
machine. The test method was in accordance with ordinary concrete durability and long-
term performance test methods (Chinese standard GB/T 50082-2009 [32]). The freeze–thaw
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resistance was tested by rapid freeze–thaw for 0, 50, 100, 150, 200 cycles. In each cycle,
the maximum temperature was 5 ◦C and minimum temperature was −18 ◦C. The mass,
relative dynamic elasticity modulus (RDEM) and strength were tested after freeze–thaw
cycles to characterize the freeze–thaw resistance. The average value of three specimens was
used as the final result in the test to ensure the accuracy of test data.

Concrete specimen weight was measured by an electronic scale, and the surface water
was wiped dry before weighting. The mass loss rate was measured after prescribed freeze–
thaw cycles using Equation (1). A resonator was used to test RDEM. The experiment used
the prism with a size of 100 mm × 100 mm × 400 mm. The water on the specimen surface
was wiped. In order to ensure full contact between the measuring rod and the specimen,
vaseline was applied as a medium on the contact surface between the measuring rod and
specimen. There were two measuring rods, one was the transmitting unit and the other
was the receiving unit. The transmitting unit was attached at the middle of the specimen,
and the receiving unit was 5 mm away from the edge of the specimen, as shown in Figure 3.
The RDEM loss rate was calculated using Equation (2). The cubic compressive strength,
fcu, was tested using a compression testing machine. The fcu loss rate was calculated using
Equation (3).

∆mn =
m0 − mn

m0
(1)

where ∆mn is the mass loss rate after n time freeze–thaw cycles, m0 is the initial mass, and
mn is the mass after n time freeze–thaw cycles.

∆Ed =
Ed0 − Edn

Ed0
(2)

where ∆Ed is the RDEM loss rate after n time freeze–thaw cycles, Ed0 is the initial RDEM,
and Edn is the RDEM after n time freeze–thaw cycles.

∆ fcu =
fcu0 − fcun

fcu0
(3)

where ∆fcu is the cubic compressive strength loss rate after n time freeze–thaw cycles,
f cu0 is the initial compressive strength, and fcun is the compressive strength after n time
freeze–thaw cycles.
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2.3.3. NMR Test

Nuclear magnetic resonance (NMR) is a non-destructive testing method and is widely
used in the field of detecting concrete pores. The measurement of relaxation time in
cementitious materials can be divided into longitudinal relaxation time and transverse
relaxation time. It is difficult to measure the longitudinal relaxation time and establish a
relationship with pores, so measuring the transverse relaxation time is adopted. Before
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testing, the concrete specimens were fully saturated with water. By using the NMR method,
the transverse relaxation rate (1/T2) of hydrogen atom spin in concrete specimens was
measured. Based on the fast exchange assumption, the relationship between the transverse
relaxation and pore distribution was obtained [33], as shown in Equation (4).

1
T2

= ρ2,sur(
S
V
) (4)

where T2 is the transverse relaxation time, ρ2,sur is the T2 surface relaxivity, which is related
to the properties of material itself, and S/V is the pore surface area-volume ratio.

3. Results and Discussion
3.1. Mechanical Properties

Figure 4a,b shows the 7, 14, and 28 d cubic compressive strength and splitting tensile
strength of concrete after incorporating different proportions of PCM aggregates. Figure 5
shows the relationship between compressive strength and splitting tensile strength.
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As shown in Figure 4a, the compressive strength fcu increased with curing age increase.
At curing for 28 d, the fcu of concrete without the incorporation of PCM aggregate reached
58.84 MPa, and the fcu of the concrete with a curing age of 7 and 14 d reached 81.83%
and 92.86% of the 28 d fcu, respectively. In addition, the fcu gradually decreased with the
increase in PCM aggregate substitution rate. The fcu of the concrete-integrated 20–100%
PCM aggregate decreased by 11.88% to 32.46%. This is due to the difference in strength
between the aggregates. The strength of natural aggregate is higher than that of PCM
aggregate, resulting in a reduction in strength with the replacement of PCM aggregate.
This conclusion is identical that found in the literature [34,35]. The 28 d strength of concrete
replaced by 60% PCM aggregate was 45.55 MPa, and the 7 and 14 d strengths were 79.07%
and 92.23% of the 28 d strength, respectively. The 28 d strength of concrete replaced by
100% PCM aggregate was 39.74 MPa, and the 7 and 14 d strengths were 75.69% and 89.93%
of the 28 d strength, respectively. With the substitution rate increased, the proportion of 7
and 14 d strengths to 28 d strength decreased, which was due to the unfavorable impact on
strength caused by the incomplete solidification of the PCM aggregate wrapping layer in
the early stage.

As shown in Figure 4b, the splitting tensile strength fst also increased with curing age.
After curing for 28 d, the maximum strength was 4.06 MPa, and the 7 and 14 d strengths
were 81.53% and 92.61% of the 28 d strength, respectively. With the substitution rate of
PCM aggregate increased, fst also showed the same trend as compressive strength. After the
coarse aggregate was completely replaced by PCM aggregate, the fst decreased by 21.18%.

The relationship between fcu and fst was given in Figure 5. The relationship between
the two equations can be expressed as Equation (5).

fst = a· f b
cu (5)

In this paper, fitting and analyzing the test data by using origin software, the fcu-fst
fitting curve, fitting equation (Equation (6)), and correlation coefficient R2 were obtained.
The correlation coefficient R2 = 0.89, with high fitting accuracy.

fst = 0.128 × f 0.85
cu (6)

The relationship between fcu and fst advised by American Concrete Institute (ACI), Con-
crete European Board (CEB), and Australia (AS), respectively, were listed from
Equation (7) to Equation (9).

fst = 0.59 × f 0.5
cu (7)

fst = 0.301 × f 0.67
cu (8)

fst = 0.4 × f 0.5
cu (9)

The fitting equation, Equation (6), was compared with the equations recommended
by various countries, as shown in Figure 6. The value of the fitting equation was lower
than the equation recommended by the United States and Europe but higher than the
equation recommended by Australia. In order to further clarify the numerical differences,
the differences of the fitted fst of concrete under different substitution amounts of PCM
aggregates and the fst recommended by various countries were calculated, as shown in
Table 6. It was worth noting that with the replacement amount of PCM aggregate increased,
the difference between the recommended values in the United States and Europe increased,
while the difference between the recommended values in Australia decreased.
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Table 6. The difference of fitted value and theoretical value.

PCM Aggregate
Replacement Rate ACI CEB AS

0% 10.73% 12.93% −24.93%
20% 15.74% 15.53% −21.53%
40% 19.22% 17.31% −19.17%
60% 21.11% 18.26% −17.89%
80% 24.38% 19.89% −15.68%

100% 27.03% 21.20% −13.88%

3.2. Freeze–Thaw Resistance
3.2.1. Morphology

The morphologies of the concrete prisms after 50, 100, 150, 200 freeze–thaw cycles
are presented in Figure 7. The number of freeze–thaw cycles gradually increases from
top to bottom in the figure. As the freeze–thaw cycles increased, the surface morphology
gradually deteriorated, but the severity was different. The surface damage of the ordinary
concrete group and the 100% PCM aggregate concrete group was significant, compared
with that of the other PCM aggregate concrete group. In the ordinary concrete group,
several cracks appeared on the surface after 150 freeze–thaw cycles. Subsequently, the
cracks continued to expand. After 200 freeze–thaw cycles, the surface cracks of ordinary
concrete were large, and local scaling was severe. The freeze–thaw damage of the 100%
PCM aggregate concrete group was also significant. Within 100 freeze–thaw cycles, the
damage was relatively small, but after 150 cycles, the surface scaling was increased. At
200 cycles, the surface scaling became more severe, and the through crack appeared in the
middle of the sample. However, there was less damage after freeze–thaw cycles in 20% and
60% PCM aggregate concrete, especially in the 60% substitution group. This is due to the
addition of PCM aggregate. However, the high substitution has an adverse effect on the
concrete system.
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3.2.2. Mass Loss

The mass loss rates of ordinary concrete and PCM aggregate concrete after freeze–thaw
cycles are shown in Figure 8. The replacement of PCM aggregates can reduce mass loss to
a certain extent. At 50 cycles, the mass loss rate gradually decreased with the replacement
of PCM aggregates, and the more PCM aggregates were added, the smaller the mass
loss. After 100 freeze–thaw cycles, the mass loss of high substitute rate PCM aggregate
concrete began to increase. After 150 to 200 cycles, the mass loss of ordinary concrete and
high substitution rate PCM aggregate concrete increased significantly, but the mass loss of
other substitution rate PCM aggregate concrete, especially the 60% substitution rate, was
still relatively small compared to ordinary concrete. In the early stage of freeze–thaw, an
increase in PCM aggregate content is beneficial for reducing mass loss. However, as the
time of freeze–thaw cycles increases, the mass loss of high substitute rate PCM aggregate
concrete increases rapidly. After 200 cycles, the mass loss of 60% PCM aggregate concrete
is the least.
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Figure 8. Mass loss rate of concrete after freeze–thaw cycles.

The damage of freeze–thaw is not severe in the early stage, and the addition of PCM
aggregate is beneficial for improving the frost resistance of concrete. However, as the freeze–
thaw damage intensifies, the advantageous impact of PCM aggregate on frost resistance is
not enough to offset the adverse effects of PCM aggregate. Therefore, the frost resistance
of 100% PCM aggregate concrete decreases after 50 freeze–thaw cycles. However, the
beneficial effect of PCM aggregates on concrete is greater than the adverse effect in 60%
PCM aggregate concrete, exhibiting the best frost resistance performance.

3.2.3. RDEM Loss

The RDEM losses of concrete under different substitution amounts of PCM aggregate
concrete are shown in Figure 9. As the number of freeze–thaw cycles increased, the RDEM
loss increased. Within 50 cycles, the differences between different groups were relatively
small. After 100 freeze–thaw cycles, the differences gradually increased—namely, the
loss of the ordinary concrete group began to increase. After 100 freeze–thaw cycles, the
RDEM of ordinary concrete decreased to 88%, and after 200 cycles, the RDEM was only
62%, indicating significant damage in ordinary concrete. The RDEM loss of concrete
incorporated with PCM aggregate was smaller than that of ordinary concrete, which is
attributed to the temperature control effect of PCM aggregate on concrete, reducing the
amplitude of temperature change. The results indicate that PCM aggregate can slow down
the internal damage of concrete. In the early stages of freeze–thaw cycles, an increase in
the replacement rate of PCM aggregate could improve the RDEM loss. However, when
the freeze–thaw cycle reached 100 cycles, the RDEM loss of high replacement rate PCM
concrete accelerated. After 100 freeze–thaw cycles, the RDEM of 100% PCM aggregate
concrete decreased to 90%, and after 200 cycles, it decreased to 66%. When the substitution
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rate was 60%, the RDEM was the highest among all PCM aggregate concrete, indicating
the best frost resistance. The experimental results indicate that when the substitution rate
exceeds 60%, continuing to add PCM aggregates cannot improve the frost resistance, which
also confirms the result of mass loss rate.
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Figure 9. RDEM loss of concrete after freeze–thaw cycles.

3.2.4. Strength Loss

The strength loss of different concrete groups under freeze–thaw environment is shown
in Figure 10. As the number of freeze–thaw cycles increased, the strength loss gradually
increased. However, PCM aggregates could reduce the loss of mechanical properties to a
certain extent. Ordinary concrete experienced significant strength loss after freeze–thaw
cycles, the strength decreased to 88% after 100 cycles, and then the loss accelerated. By
200 cycles, the strength was only 62%, and the strength loss exceeded 25%. Compared to
ordinary concrete, PCM aggregate concrete showed higher strength, indicating that the
addition of PCM aggregate can improve the frost resistance of concrete. In the early stage of
freeze–thaw environment, the addition of PCM aggregates seemed to have a positive effect
on improving strength. After more than 100 freeze–thaw cycles, the gap between different
PCM aggregate concrete groups gradually increased. When the replacement amount of
PCM aggregate was 60%, it showed the minimum strength loss and can still maintain
85% strength after 200 cycles. However, further increase in substitution rate seemed to
have a negative impact on the freeze–thaw resistance. The strength loss of 100% PCM
aggregate concrete was 8% and 29%, respectively, after 100 and 200 freeze–thaw cycles, but
the strength loss was still smaller than that of ordinary concrete.
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Figure 10. fcu loss of concrete after freeze–thaw cycles.



Buildings 2023, 13, 3076 12 of 16

3.3. Pore Evaluation by NMR

The T2 spectra of different concretes detected by nuclear magnetic resonance are
shown in Figure 11. The abscissa represents the relaxation time and is related to the pore
size. The vertical axis represents the signal intensity, and its area is related to porosity. Each
T2 spectrum consists of three peaks, which can be considered as micropores, mesopores,
and macropores from left to right based on the pore size. After the freeze–thaw cycles, it
can be seen that the area of micropore peaks decreases, while the area of mesopore peaks
and macropore peaks increases. It can be concluded that under the freeze–thaw cycle
effect, the pores are subjected to internal stress, and micropores gradually develop into
larger pores. It is worth noting that the highest intensity point of peak shifts to the right
in various degrees, indicating an increasing trend in pore size. After freeze–thaw cycles,
the damage of each group of concrete were different. After 200 freeze–thaw cycles, the
area of mesoporous and macroporous peaks in ordinary concrete increased significantly, as
shown in Figure 11a, indicating that the internal damage of ordinary concrete was severe,
mainly due to the action of mesopores and macropores causing damage to the concrete. The
three highest intensity points of ordinary concrete showed a significant shift to the right,
indicating a significant change in pore size under freeze–thaw cycles. The mesoporous peak
and macroporous peak of 100% PCM aggregate concrete also showed a significant increase,
and it was worth noting that high content PCM aggregate had a larger pore volume inside
before freeze–thaw, as shown in Figure 11c, indicating that higher pores may have adverse
effects on freeze–thaw resistance. This is because the favorable temperature control effect
of PCM aggregate cannot change the negative impact of high pore volume. The concrete
with a 60% PCM aggregate content exhibited high frost resistance after freeze–thaw cycles.
As shown in Figure 11b, although both the mesoporous and macroporous peaks increased
after freeze–thaw cycles, their growth was relatively gentle compared to ordinary concrete
and 100% PCM aggregate concrete. The experimental results indicate that PCM aggregate
has outstanding performance in alleviating freeze–thaw damage.
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In order to provide a more intuitive explanation of the changes in pore volume, the T2
spectrum areas of each pore after freeze–thaw cycles are displayed, as shown in Figure 12.
The intensity integral area is directly related to the pore volume. After freeze–thaw cycles,
the volume of micropores in ordinary concrete and 100% PCM aggregate concrete decreased
significantly, while the volume of mesopores increased significantly. This indicates that
more micropores develop into mesopores under the action of internal stress after freeze–
thaw cycles, leading to severe damage inside the concrete. However, in concrete mixed
with 60% PCM aggregate, although the micropore volume decreased after freeze–thaw, the
increase in mesopore volume was relatively small, and there was no excessive increase, as
was the case in ordinary concrete and 100% PCM aggregate concrete. This indicates that
concrete incorporated with 60% PCM aggregate exhibits good frost resistance.
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Figure 12. T2 spectrum area of different PCM aggregate concrete.

The volume ratios of micropores, mesopores, and macropores before and after freeze–
thaw cycles are presented in Figure 13. The majority of micropores were found in ordinary
concrete, but after freeze–thaw cycles, the volume ratio of micropores was 42.85%, and the
volume ratio of mesopores was 44.74%. After freeze–thaw cycles, the volume of micropores
decreased by 52%, but the volume of mesopores increased by nearly 10 times. The severe
increase in the volume of mesopores was the main reason for concrete deterioration after
freeze–thaw cycles. Similarly, after freeze–thaw testing, the micropore volume of 100%
PCM aggregate concrete with poor frost resistance decreased by 37%, while the mesopore
volume increased to 2.42 times. However, the micropore volume of 60% aggregate concrete
decreased by 5%, while the mesopore volume only increased by 1.42 times after freeze–
thaw cycles, demonstrating the excellent performance of PCM aggregate in freeze–thaw
resistance. Before the freeze–thaw cycle, the proportion of micropores in each group was
the highest. However, after freeze–thaw cycles, the proportion of mesopores in ordinary
concrete and 100% PCM aggregate concrete was the highest, while the proportion of
micropores in 60% PCM aggregate concrete was still the highest. This indicates that PCM
aggregate substitution at 60% can have the best frost resistance performance.

PCM aggregates are beneficial for freeze–thaw resistance, but the pores of concrete
also continue to increase with the increase in PCM aggregates, which will have adverse
effects on frost resistance. The beneficial effect of PCM aggregate is greater than the adverse
effect in 60% PCM aggregate concrete, demonstrating the best frost resistance performance.
However, the adverse effects of high porosity cannot be offset in 100% PCM aggregate
concrete, resulting in a decrease in frost resistance.
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4. Conclusions

This paper develops stepwise PCM aggregate concrete and evaluates its mechanical
properties and freeze–thaw resistance. Due to the excellent temperature control ability of
PCM aggregates, it is possible to improve frost resistance by incorporating PCM aggregates
into concrete. Therefore, this paper studies the compressive strength, and the splitting
tensile strength of concrete replaced coarse aggregate by 0% to 100% stepwise PCM aggre-
gate. Subsequently, 200 freeze–thaw cycles are conducted on prisms and cubic specimens
to evaluate the macroscopic morphology, mass loss, dynamic modulus loss, and strength
loss after freeze–thaw cycles. Finally, the changes in pore volume are explored through
microscopic NMR techniques. The main conclusions are as follows:

After adding PCM aggregate, the compressive strength and splitting tensile strength
of concrete decrease, but even with the addition of 100% PCM aggregate, its strength is still
higher than 30 MPa, which is acceptable.

Subsequently, freeze–thaw tests are conducted. In the early stages of freeze–thaw
cycles, the more PCM aggregates added, the better the frost resistance of the concrete. How-
ever, after more than 50 cycles, the high replacement rate PCM aggregate concrete rapidly
deteriorates, but all indicators are still better than ordinary concrete. After 200 freeze–
thaw cycles of ordinary concrete, the mass loss rate, RDEM, and strength all decreased
significantly, but 60% PCM aggregate concrete shows good frost resistance.

Through NMR testing, it is found that the proportion of micropores in each group of
concrete before freeze–thaw is relatively large, but the proportions of mesopores in ordinary
concrete and 100% PCM aggregate concrete with severe deterioration after freeze–thaw
cycles are the highest. This indicates that during the freeze–thaw process, micropores
gradually develop into mesopores due to internal stress, ultimately causing damage to the
concrete. However, the pore ratio of 60% PCM aggregate concrete remains relatively stable
after freeze–thaw cycles, indicating that the concrete can have good freeze–thaw resistance
when the substitution rate is 60%.

Stepwise PCM aggregate concrete exhibits the better freeze–thaw resistance compared
to ordinary concrete, which can be attributed to the addition of PCM aggregate. The cost
of PCM aggregate concrete is higher than that of ordinary concrete due to the expensive
PCM. However, the PCM concrete can effectively resist the influence of freeze–thaw, which
is very beneficial for improving the frost resistance of buildings in cold regions.
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