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Abstract: The evaluation of the shear performance of stone panel–panel joints (SPPJs) in stone
cladding has important engineering significance, as it plays a crucial role in stone cladding failure.
The purpose of this paper is to analyze and predict the influence of the dimension and the Young’s
modulus of sealant on the shear performance of SPPJs. Based on monotonic and cyclic loading tests,
the effects of Young’s modulus and the dimension of sealant on the failure characteristics, stress–strain
characteristics, stiffness degradation, and energy dissipation capacity of an SPPJs were investigated.
According to finite element analysis, the strain distribution of an SPPJ under monotonic loading
was analyzed for different sealant widths and number of sealant layers. The results indicate that the
failure modes of SPPJs change with the variation of sealant amount. As the Young’s modulus of the
sealant increases, the shear failure strength and shear yield strain of SPPJs increase. The increase in
sealant thickness reduces the shear failure strength and stiffness of SPPJs. Based on the same shear
strain, the increase in the sealant thickness enhances the cumulative energy consumption of SPPJs.
The strain concentration zone of the specimens with two sealant layers in unilateral SPPJs becomes
larger with the increase in sealant width.

Keywords: stone panel–panel joint; silicone sealant layer; shear text; stone cladding; cyclic loading

1. Introduction

Silicone sealant is often adopted as a sealing material for the stone panel-panel joint
(SPPJ) of the stone cladding due to its excellent waterproofness, sealing performance, and
deformation resistance. However, under strong winds or earthquakes, the SPPJs often
encounter tearing failure after undergoing reciprocating deformation, which is caused by
shear force [1,2]. The neglect of the shear performance of SPPJs will seriously threaten the
safety of the stone cladding [3]. Through investigation, it is found that in the construction
field, there are numerous cases of damage to the steel keel of stone cladding due to shear
failure of the sealant joint, resulting in maintenance costs ranging from 65 billion dollars
to 80 billion dollars [4,5]. The consequences of the failure of SPPJs under shear force have
made many scholars realize the importance of the shear performance of the SPPJ. Therefore,
it is of great practical significance to comprehensively and accurately evaluate the shear
performance of the SPPJ in the stone cladding.

At present, there has some research on the shear strength of the sealant joint [6].
The results show that the sealant can effectively improve the ultimate bearing capacity
of the specimen. Chataigner et al. [7] conducted shear tests on shear specimens which
were made of two different sealants and carbon plates. Based on monotonic and cyclic
loading tests, DalLago et al. [8,9] and Negro [10] investigated the mechanical properties
of concrete joints filled with the sealant. The results indicated that the shear performance
of concrete joints was closely related to their strain rate. Nemati et al. [11] analyzed
the effect of the amount and type of sealant on the shear strength of timber–concrete
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joints and proposed that different amounts of sealant would change the shear strength of
timber–concrete joints. Based on single lap joint tests, Giannis and Adams [12] studied
the effects of four different sealant thicknesses and two types of adherend on the shear
performance of specimens. Based on finite element analysis, Gupta [13] proposed that the
strain distribution of adhesively bonded structure is mainly influenced by the thickness of
the adhesive layer [14]. The previous research indicated that the shear strength of adhesive
joints was related to the mechanical properties of the sealant and adherend.

Due to the influence of installation environment and on-site environment [15], adhe-
sion failure often occurs during the practical application of sealants. Therefore, in-depth
research on the shear performance of SPPJs is beneficial for better controlling the quality of
claddings [16]. Hagl [17] and Staudt et al. [18] studied the failure mode of silicone sealant
and found that it is mainly caused by cohesive failure. The shaking table test of glass curtain
walls conducted by Broker et al. [19], the explosion–proof test conducted by Clif et al. [20],
and the in-plane shear test completed by Wallau and Recknagel [21] all indicate that the
silicone sealant at the sealant joint plays an important role in coordinating the deformation
of adjacent panels in the curtain wall system. The in-depth study of the shear performance
of SPPJs provides a new direction for improving the performance of the stone cladding.

However, for the stone cladding system, there is no comprehensive analysis of the
shear performance of SPPJs [22,23], which reflects a lack of attention to the research on
the shear of SPPJs in the stone cladding. The purpose of this paper is to analyze and
predict the influence of the dimension and the Young’s modulus of the sealant on the
shear performance of the SPPJ. Based on monotonic and cyclic loading tests, the shear
performance of double–shear specimens with the SPPJ, which is made of three stone
panels and the sealant, is investigated. The influence of the Young’s modulus, width, and
thickness of the sealant on the failure characteristics and stress–strain characteristics of
the SPPJ is analyzed. Furthermore, the difference in shear performance of SPPJs under
different loading methods was investigated. By analyzing the stiffness variation curve
and the cumulative energy consumption curve, the influence of sealant thickness on the
energy consumption and stiffness degradation of the specimen is discussed. In order to
investigate the numerical modeling strategy for predicting the shear performance of the
SPPJ in the stone cladding, the finite element models of double–shear specimens with
SPPJs are established by using ABAQUS. The correctness of the established finite element
models is verified based on experimental results, and the strain distributions of SPPJs
filled with different sealant widths under monotonic loading are analyzed. In addition, the
influence of the number of sealant layers in the unilateral SPPJ on the strain of the SPPJ
was investigated. Figure 1 shows a typical SPPJ of the stone cladding.
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Figure 1. Typical sealant joint of stone cladding: (a) schematic representation and (b) photograph. 
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ers were set to 10 mm and 75 mm. In addition, the lengths of the sealant layers of all 
specimens were considered to be 45 mm. In order to reduce random errors during the 
experimental process, 4 specimens were made for each parameter group, totaling 48 
specimens. Figure 2b,c show specimens with sealant layer widths of 10 mm and 75 mm, 
respectively. Table 1 shows the parameter information of the specimens. For the naming 
of the specimen, SA (Sealant A) represented that the Young’s modulus of the sealant was 
0.5 MPa, SB (Sealant B) represented that the Young’s modulus of the sealant was 1.079 
MPa, T represented that there were two sealant layers in the SPPJ on each side of the 
specimen, O represented that there was one sealant layer in the SPPJ on each side of the 
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thickness and width of each sealant layer are 6 mm and 10 mm, respectively. 

Figure 1. Typical sealant joint of stone cladding: (a) schematic representation and (b) photograph.
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The research results and finite element model of this paper can provide a comprehen-
sive reference for the evaluation and prediction of the shear performance of the SPPJ of the
stone cladding. This study has important guiding significance for practical applications and
provides a theoretical basis for the engineering design and construction of stone claddings.

2. Experiment Program
2.1. Specimen Information

In this paper, the double-shear specimens with sealant were made according to the JC/T
989–2016 [24], which are shown in Figure 2a. In all specimens, the dimension of the stone
panel was considered to be 75 mm × 75 mm × 25 mm. The granite (No. G636), which was
produced from China, was adopted as the material of the stone panels. Based on material
performance tests, the compressive strength, splitting strength, and elastic initial Young’s
modulus of the granite used in this paper were measured to be 118.3 MPa, 9.0 MPa, and
45 GPa, respectively. In order to investigate the influence of the Young’s modulus of sealant
filled between stone panels and the dimension of the sealant layer on the shear performance
of the SPPJ in the stone cladding, 12 groups of specimens with different parameters were
designed and manufactured. Two types of specialized silicone sealants with initial Young’s
moduli of 0.500 MPa and 1.079 MPa were selected for connecting stone panels. The thicknesses
of the sealant layers were considered to be 6 mm, 8 mm, and 10 mm. Based on the dimension
of the specimen, the widths of the sealant layers were set to 10 mm and 75 mm. In addition,
the lengths of the sealant layers of all specimens were considered to be 45 mm. In order to
reduce random errors during the experimental process, 4 specimens were made for each
parameter group, totaling 48 specimens. Figure 2b,c show specimens with sealant layer widths
of 10 mm and 75 mm, respectively. Table 1 shows the parameter information of the specimens.
For the naming of the specimen, SA (Sealant A) represented that the Young’s modulus of
the sealant was 0.5 MPa, SB (Sealant B) represented that the Young’s modulus of the sealant
was 1.079 MPa, T represented that there were two sealant layers in the SPPJ on each side of
the specimen, O represented that there was one sealant layer in the SPPJ on each side of the
specimen, and the two numbers in the specimen code represent the thickness and width of
the sealant separately. For example, SA-6-10-T represents that the SPPJ on each side of the
specimen contains two sealant layers with the Young’s modulus of 0.5 MPa, and the thickness
and width of each sealant layer are 6 mm and 10 mm, respectively.
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Figure 2. The double-shear specimens with sealant: (a) schematic representation, (b) sealant layer 
width of 10 mm, and (c) sealant layer width of 75 mm. 
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Figure 2. The double-shear specimens with sealant: (a) schematic representation, (b) sealant layer
width of 10 mm, and (c) sealant layer width of 75 mm.

Table 1. Parameters of specimens.

Specimen Young’s Modulus
/MPa

Thickness
/mm

Width
/mm Specimen Young’s Modulus

/MPa
Thickness

/mm
Width
/mm

SA-6-10-T 0.500 6 10 SB-6-10-T 1.079 6 10
SA-8-10-T 0.500 8 10 SB-8-10-T 1.079 8 10

SA-10-10-T 0.500 10 10 SB-10-10-T 1.079 10 10
SA-6-75-O 0.500 6 75 SB-6-75-O 1.079 6 75
SA-8-75-O 0.500 8 75 SB-8-75-O 1.079 8 75
SA-10-75-O 0.500 10 75 SB-10-75-O 1.079 10 75
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2.2. Test Setup, Instrumentation, and Loading Protocol

In this paper, the specimen was fixed on a universal testing machine for shear
test. However, during the loading process, there was inevitably a slip phenomenon
between the fixture and the specimen. Therefore, in order to eliminate the interference
of this phenomenon on the test results, the digital image correlation (DIC) technology
was used to measure the test results. The DIC measurement system included a high-
resolution camera, an LED source, a DIC controller, and the professional post-processing
software [25]. Figure 3 shows the equipment used in the experiment. This system could
accurately measure the deformation of the sealant layer by tracking the position changes
of discrete points. Before the experiment, in order to improve image contrast, the front
of the specimen was painted white and its surface was covered with black spots. At
the same time, points A and B were marked on the front of the specimen, as shown in
Figure 3b. During the experiment, a set of images that reflected the deformation process
of the sealant layer was obtained at a frequency of 1 Hz, and the vertical displacement
changes between points A and B in the specimen were calculated by post-processing
software. The change in distance between marked points A and B was defined as the
shear displacement value of the sealant layer.
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Figure 3. Typical experimental test setup: (a) DIC measurement and (b) specimen.

In order to investigate the influence of loading methods on the strength, deformation
capacity, and failure mode of specimens, monotonic and cyclic loading tests were conducted
on 12 groups of double-shear specimens with SPPJs. The displacement control was used as
the loading system for monotonic loading tests, and the loading rate was set to 5 mm/min in
accordance with the requirements of GB/T 12830–2008 [26]. When the loading displacement
reached 28 mm, the test was terminated and the load was removed. For the cyclic loading
experiment, displacement control was still applied for testing, and the tensile direction of
the specimen was considered as positive. The displacement increment was set to 2 mm.
After the positive loading displacement reached the set value for each level, negative
loading was carried out. Each level of displacement was cycled once. When the loading
displacement reached 28 mm, the test was stopped. Figure 4 shows the loading method
of the cyclic loading test. The experimental data were taken as the average of the data
results at each loading level. All mechanical tests were performed at ambient laboratory
conditions of 23 ± 2 ◦C and 55 ± 5% RH.



Buildings 2023, 13, 3079 5 of 17

Buildings 2023, 13, x FOR PEER REVIEW 5 of 18 
 

the average of the data results at each loading level. All mechanical tests were performed 
at ambient laboratory conditions of 23 ± 2 °C and 55 ± 5% RH. 

  
(a) (b) 

Figure 3. Typical experimental test setup: (a) DIC measurement and (b) specimen. 

 
Figure 4. The loading protocol of the cyclic loading test. 

3. Experimental Results and Discussion 
3.1. Failure Mode 

According to the experimental results, the deformation characteristics and failure 
process of the specimens corresponding to silicone sealants with different Young’s 
moduli were basically consistent. Based on ASTM D907 [27], the failure mode of SPPJs 
after testing was visually evaluated and classified [28]. The failure mode of the SPPJ in 
the specimens was mainly influenced by the sealant layer width. When the width of the 
sealant was 10 mm, the main form of failure of the SPPJ in the specimen was cohesive 
failure, which meant the failure occurred in the sealant itself. However, for specimens 
with the sealant width of 75 mm, the primary failure mode of the SPPJ was a mixed fail-
ure of both adhesive and cohesive failures, which appear at the sealant–stone interface 
and in the sealant itself. 

In order to present the cohesive failure of the sealant more clearly, the back of the 
specimen without black spots was selected for display. Figure 5 shows the final failure of 
specimens with the sealant layer width of 10 mm and the sealant Young’s modulus of 
1.079 MPa under different sealant thicknesses. During the experiment, it was found that 
the failure phenomenon of SPPJs with different sealant layer thicknesses began with 
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3. Experimental Results and Discussion
3.1. Failure Mode

According to the experimental results, the deformation characteristics and failure
process of the specimens corresponding to silicone sealants with different Young’s moduli
were basically consistent. Based on ASTM D907 [27], the failure mode of SPPJs after testing
was visually evaluated and classified [28]. The failure mode of the SPPJ in the specimens
was mainly influenced by the sealant layer width. When the width of the sealant was
10 mm, the main form of failure of the SPPJ in the specimen was cohesive failure, which
meant the failure occurred in the sealant itself. However, for specimens with the sealant
width of 75 mm, the primary failure mode of the SPPJ was a mixed failure of both adhesive
and cohesive failures, which appear at the sealant–stone interface and in the sealant itself.

In order to present the cohesive failure of the sealant more clearly, the back of the
specimen without black spots was selected for display. Figure 5 shows the final failure
of specimens with the sealant layer width of 10 mm and the sealant Young’s modulus of
1.079 MPa under different sealant thicknesses. During the experiment, it was found that
the failure phenomenon of SPPJs with different sealant layer thicknesses began with small
cracks appearing at both ends of the sealant. As the load increased, the size and number
of cracks also increased, and ultimately the cracks penetrated and converged together,
which led to shear failure of the sealant. In addition, the damage path of the sealant mainly
extended from the end to the middle.
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Figure 6 shows the failure process of the SB-10-75-O specimen during the cyclic loading
test. When the shear strain was about 0.8, the specimen exhibited small-scale end interface
failure, as shown in Figure 6a. From Figure 6b, it could be seen that as the shear strain
increased to 2.8, the sealant showed a significant distortion. The surface of the sealant
encountered shear failure and inward expansion. Therefore, it could be inferred that the
inner core sealant was in a plastic stress state at this time. After the test was completed, the
residual displacement of the adhesive seam reached 2.8 mm, which is shown in Figure 6c.
Based on the failure process of the SB-10-75-O specimen, it was demonstrated that when
the width of the sealant layer was 75 mm, the failure characteristic of the specimen’s sealant
was a mixed failure of both adhesive and cohesive failures. In addition, the specimens with
the sealant layer width of 75 mm and the sealant Young’s modulus of 1.079 MPa did not
show complete fracture at the end of the test, indicating that the increase of the width of
the sealant layer can effectively reduce the degree of the specimens’ failure.
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(b) crack expansion, and (c) residual deformation.

3.2. Stress–Strain Analysis

Based on the shear displacement values collected by the DIC system and the load
values obtained by the testing machine, the shear stress–strain curves of the specimens
under monotonic loading test are shown in Figure 7. The failure process of sealant layers
between panels in the stone cladding generally went through three stages: elastic stage,
plastic stage, and failure stage. At the initial stage of loading, the shear stress–strain curves
of the specimens approximated a straight line. As the shear displacement increased, the
sealant entered the plastic stage from the elastic stage. During the plastic stage, the sealant
appeared to have severe deformation and its surface began to show damage. For the
failure stage, when the load reached the ultimate load, the displacement continuously
accumulated. In addition, the cracks in the sealant began to expand from the surface to the
interior and eventually ran through the entire sealant layer. By comparing Figure 7a,b, it
was found that the strain attenuation rate of the specimens with the sealant layer width of
75 mm was significantly slower than that of the specimens with the sealant layer width
of 10 mm. It indicated that the number of sealants could effectively change the plastic
deformation of the specimens. As the width of the sealant layer increased, the plastic stage
of the specimens also extended, and its ductility was significantly improved.
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In addition, in contrast to the specimens with the sealant layer width of 10 mm, there was
no significant decrease in the stress–strain curves of the SPPJs with the sealant layer width of
75 mm. This observation was attributed to the fact that the sealants in the specimens with
the sealant layer width of 75 mm did not completely break after the experiment. However,
the SPPJs with the sealant layer width of 10 mm were completely destroyed. For SPPJs,
the increase in the width of the sealant layer provided a larger bonding area and stronger
adhesion. This meant that when the width of the sealant layer increased to 75 mm, the stress
transfer of the SPPJ was enhanced, resulting in a decrease in the difference on stress–strain
values for samples. Therefore, there are very small differences in stress–strain values for
samples with sealant layer width of 75 mm. For the specimens that had SPPJs of the same
dimension, when the Young’s modulus of the sealant was higher, the shear failure strength
and yield strain of the specimens were also higher. For example, compared with SA-10-10-T,
the shear failure strength and shear yield strain of SB-10-10-T increased by 43.3% and 22.6%,
respectively. Under the same shear strain, the stresses of specimens with different sealant
thicknesses were nearly the same in the elastic stage. However, in the plastic stage, as the
sealant layer width increased, the shear stress of the specimens decreased.

According to the stress–strain curve of the SPPJ, it could be seen that the change in
thickness of the sealant layer did not affect the distribution trend of shear stress at the
bonding interface. However, its change had a certain impact on the magnitude of shear
stress. As the thickness of the sealant layer increased from 6 mm to 10 mm, the shear yield
strain, shear yield stress, and shear failure strength of the specimen all decreased. Compared
with SA-6-10-T, the shear failure strengths of SA-10-10-T and SA-8-10-T decreased by
32.6% and 2.7%, respectively. The shear failure strengths of SB-10-10-T and SB-8-10-T
decreased by 20.9% and 9.6%, respectively, compared with SB-6-10-T. This indicated that
as the thickness of the sealant layer increased, the likelihood of cracks or pores forming
within the sealant increased, which led to a decrease in the cohesive strength of the sealant.

3.3. The Influence of the Loading Mode

In order to investigate the influence of different loading methods on the shear perfor-
mance of SPPJs, monotonic and cyclic loading tests were conducted on specimens with the
sealant layer width of 10 mm and the Young’s modulus of 1.079 MPa under different thick-
nesses of sealant. From Figure 8, it could be concluded that a slight decrease in the failure load
was found to occur with increasing sealant layer thickness. This is due to the higher bending
moments introduced to the SPPJ ends with the thickness increase of the sealant. The cyclic
loading caused cumulative damage to the specimens. In particular, when the sealant thickness
decreased, the cumulative damage caused by cyclic loading on specimens became more
obvious. Compared with the monotonic loading test, the peak loads of SB-6-10-T, SB-8-10-T,
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and SB-10-10-T under the cyclic loading test decreased by 18%, 15%, and 11%, respectively,
and the failure displacements decreased by 31%, 40%, and 29%, respectively.
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Under the cyclic loading test, the failure displacement of SB-10-10-T and SB-8-10-T
increased by 28% and 17%, respectively, compared with SB-6-10-T. This also explained that
in practical engineering, when the inter-story drifts of the main structure were the same, a
smaller spacing set between adjacent panels led to an earlier failure of the SPPJs in the stone
claddings. In addition, under monotonic or cyclic loading, as the thickness of the sealant
layer increased, the ultimate bearing capacity of the specimen showed a decreasing trend.

In order to better analyze the differences in deformation characteristics of specimens
from yield to failure under different loading methods, the normalization method was used
to perform dimensionless treatment on the stress–strain curves of the specimens, and the
curve of τ/τmax–γ was obtained. τ represented stress, τmax was maximum stress, and γ
was strain. Figure 9 shows the curves of τ/τmax–γ for specimens with the sealant layer
width of 10 mm and the Young’s modulus of 1.079 MPa under different thicknesses of
sealant. Compared with the stress–strain curves, normalized data exhibited more obvious
regularity. The results showed that the plastic part of the specimens under monotonic load-
ing were more pronounced than that under cyclic loading, which indicated that different
loading methods had a significant impact on the plastic deformation of the specimens.
During the monotonic loading process, as the sealant layer thickness decreased, the plastic
part of the specimens showed an increasing trend.
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3.4. Stiffness Degradation

Figure 10 shows the variation of stiffness of specimens with the sealant layer width
of 10 mm and the sealant Young’s modulus of 1.079 MPa under different shear strains.
As the shear strain increased, the stiffness of the specimens gradually decreased, and
the rate of this decrease showed an increasing trend. At the initial stage of monotonic
loading and cyclic loading, there was a difference in the initial stiffnesses of the specimens
corresponding to forward loading and negative loading. However, in the later elastic
stage, the stiffnesses of the specimens corresponding to these two loading directions tended
to be the same, which indicated that no permanent damage occurred to the specimens
during this stage. When the shear strain was 1.6, the stiffnesses of the specimens decreased
significantly, and the magnitudes of the decrease in stiffnesses corresponding to cyclic
loading were greater than that corresponding to monotonic loading. The variation trends
of stiffnesses of specimens with different sealant thicknesses were the same. The specimens
with larger sealant thickness exhibited lower stiffness. In addition, the stiffness degradation
rate of SB-6-10-T was the fastest, followed by SB-8-10-T and SB-10-10-T. It indicated that the
stiffness degradation rate of the specimen would decrease as the thickness of the sealant
layer in the SPPJ increased.
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3.5. Energy Dissipation Capacity

In order to investigate the effect of the thickness of the sealant under cyclic loading
on the energy consumption capacity of the specimen, the cumulative energy consump-
tions of the specimens with the sealant layer width of 10 mm and the sealant Young’s
modulus of 1.079 MPa were calculated under different sealant thicknesses. Based on
JGJ/T 101–2015 [29], the equation for calculating the cumulative energy consumption of
the specimen could be expressed as:

Ed =
SABC + SCDA

SOBE + SODF
, (1)

where Ed is the energy consumption capacity; SABC and SCDA represent the areas enclosed
by the hysteretic loop; SOBE and SODF are the areas of the two dotted line triangles in
Figure 11a.
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Figure 11 shows the cumulative energy consumption of specimens under different
shear displacements and shear strains. From Figure 11a, it could be seen that under
the same shear displacement, the cumulative energy consumption of the specimen
increased with the decrease of the thickness of the sealant. For instance, when the
loading displacement was 10 mm, the cumulative energy dissipation of SB-10-10-T and
SB-8-10-T was 0.52 times and 0.74 times that of SB-6-10-T, respectively. As the loading
displacement increased to 20 mm, the cumulative energy consumption of SB-10-10-
T and SB-8-10-T decreased by 46% and 17%, respectively, compared with SB-6-10-T.
Figure 11b shows the energy consumption of specimens under different shear strains.
As the shear strain increased, the cumulative energy consumption of each specimen
increased. Under the same shear strain, with the thickness of the sealant increased, the
cumulative energy consumption of the specimen showed an increasing trend. When
the shear strain was less than 1, the cumulative energy consumptions of specimens
with different sealant thicknesses were similar. It indicated that when the shear strain
was small, the change in sealant thickness had little effect on the cumulative energy
consumption of the specimen. However, when the shear strain reached 1, the cumulative
energy consumption of SB-10-10-T and SB-8-10-T was 2.02 times and 1.63 times higher
than that of SB-6-10-T, respectively. As the shear strain continued to increase to 2, the
cumulative energy consumption of SB-10-10-T and SB-8-10-T increased by 2.10 and
1.75 times, respectively, compared with SB-6-10-T. The results showed that as the shear
strain increased, the change in the thickness of the sealant had a more significant impact
on its energy dissipation ability, which further indicated that the sealant of the stone
cladding had a certain energy dissipation ability.

4. Finite Element Analysis
4.1. Finite Element Modeling of SPPJs

In order to investigate the numerical modeling strategy for predicting the shear
performance of SPPJs in the stone cladding, the three-dimensional finite element models
of double-shear specimens with the Young’s modulus of 0.5 MPa were established based
on ABAQUS. The correctness of the established finite element models was verified based
on experimental results, and the strain distributions of specimens with different sealant
layer widths under monotonic loading were analyzed. The effect of the number of
sealant layers in the unilateral SPPJ on the strain of the SPPJ was investigated. Figure 12
shows the finite element model of the double-shear specimen. The face-to-face contact
was applied to the contact between the stone panel and the sealant in this model. The
penalty function was used to define the tangential mechanical behavior of the contact
interface, and the friction coefficient was considered to be 0.3. The normal behavior
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was considered as “hard” contact. Once the contact surface separated, the pressure
dropped to 0 and the contact constraint also disappeared. The boundary conditions
of the lower surfaces of the bilateral stone panels were considered to be completely
fixed. The reference point RP-1 was defined at the center of the upper surface of the
intermediate stone panel. Then, the motion coupling constraint was established between
the reference point RP-1 and the upper surface of the intermediate stone panel, which
was to prepare for subsequent displacement loading. In addition, the displacement
loading system in the model was consistent with the displacement loading system in
Section 2.2. The stone panel was simulated by adopting the eight-noded hexahedral
elements with reduced integration (C3D8R), and the sealant layer was modeled using
the hybrid uniform-strain hexahedron with reduced integration and enhanced hourglass
stabilization element (C3D8RH). Based on mesh sensitivity analysis, the element sizes of
the stone panel and sealant were considered to be 10 mm and 1 mm respectively. The
mesh density through the thickness of the sealants was kept the same for all the different
sealant layer thicknesses modeled.
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According to the test results, the stone panel did not deform. Therefore, in the
simulation of the stone panel, only the elastic stage was considered. The elastic modulus
value of the stone panel was consistent with the result of the material performance test,
which was 45GPa. The Poisson’s ratio of the stone panel was set to 0.125. The sealant
was a nonlinear material, which belonged to the category of super elastic materials.
This meant that the sealant would encounter significant deformation under external
force and could be restored to its original state after the external force was removed.
The commonly used constitutive models for hyperelastic materials included the Neo
Hookean model, Mooney Rivlin model [30], and Ogden model [31]. Therefore, in order
to determine the constitutive model of the sealant used in this paper, based on the tensile
test results of typical specimen SA-6-75-O, the material behavior evaluation function in
ABAQUS 2019 software was used to fit the constitutive model of the sealant. Figure 13
shows the fitting results of the stress–strain curve of SA-6-75-O with the commonly used
constitutive models of hyperelastic materials. The results indicated that the stress–strain
curve of the sealant was very similar to the third-order Ogden model. Therefore, in
subsequent simulations, the third-order Ogden model was used as the constitutive model
for the sealant.
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4.2. Validation of the Model

In order to verify the correctness of the established finite element models, the finite
element analysis results and experimental results of SA-6-10-T, SA-8-10-T, SA-10-10-T, SA-
6-75-O, SA-8-75-O, and SA-10-75-O under monotonic loading were compared. As shown in
Figure 14, the finite element analysis results are in good agreement with the experimental
results, which verified the accuracy of the finite element model established in this paper. It
also demonstrated the rationality of using finite element technology to analyze the shear
performance of SPPJs in the stone cladding.
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Figure 14. Comparison between calculation results of finite element method (FEM) and test results:
(a) SA-6-10-T, (b) SA-8-10-T, (c) SA-10-10-T, (d) SA-6-75-O, (e) SA-8-75-O and (f) SA-10-75-O.



Buildings 2023, 13, 3079 13 of 17

4.3. The Strain Field in the SPPJs with Various Sealant Layer Widths

In order to further investigate the strain distribution of SPPJs filled with different
sealant layer widths, four finite element models corresponding to specimens with two
sealant layers in unilateral SPPJs and three finite element models corresponding to
specimens with one sealant layer in the unilateral SPPJ were established. For the three
finite element models of specimens with two sealant layers in unilateral SPPJs, the width
of each sealant layer was considered to be 10 mm, 20 mm, and 30 mm, respectively.
Based on the naming method of the specimens in Section 2.1, the names of the specimens
corresponding to the three finite element models were defined as SA-6-10-T, SA-6-20-T,
and SA-6-30-T. For the four finite element models of specimens with one sealant layer
in the unilateral SPPJ, the width of each sealant layer was set to 20 mm, 40 mm, 60
mm, and 70 mm, respectively. These specimens were named as SA-6-20-O, SA-6-40-O,
SA-6-60-O, and SA-6-75-O. Furthermore, the effect of the number of sealant layers in the
unilateral SPPJ on the strain distribution of the SPPJ under the same total sealant content
was investigated.

Figure 15 shows the strain distribution of each specimen at a shear displacement
of 8 mm. For the sealant that was parallel to the length direction of the SPPJ, the strain
distribution at both ends was more concentrated than the strain distribution in the
middle. From Figure 15a–c, it could be seen that for the models corresponding to
specimens with two sealant layers in the unilateral SPPJ, as the width of the sealant
increased, the deformation of the sealant edge increased, resulting in an increase in
the area where the strain of the sealant parallel to the length direction of the SPPJ was
greater than 1. When the width of the sealant layer was 30 mm, the zone area with
the strain greater than 1 almost ran through the surface of the sealant (Figure 15c). It
indicated that when the width of the sealant ranged from 0 to 30 mm, the main damage
of the SPPJ occurred in the sealant. Figure 15d–g show the stress distribution of the
specimens with one sealant layer in the unilateral SPPJ under different sealant widths.
With the increase of sealant width, the difference in strain distribution among the
specimens with one sealant layer in unilateral SPPJs was relatively small. In addition,
by comparing Figure 15c,f, it could be seen that when the total sealant content was the
same, the change in the number of sealant layers in the unilateral SPPJ changed the
strain distribution of the specimen and even caused changes in the failure mode of
the SPPJ.

Figure 16 shows the top view of the strain distribution of the specimens when the
shear displacement is 12 mm. For the sealant that was parallel to the width direction
of the SPPJ, the strain at both ends was greater than that at the middle. Furthermore,
there was a significant concavity in the sealant, which was caused by the Poisson’s ratio
effects at the free edges of the sealant. For the strain distribution of the sealant parallel
to the thickness direction of the SPPJ, the strain near the loaded stone was greater than
that of the fixed stone. As shown in Figure 16a–c, the strain at the sealant–stone interface
of the specimens with two sealant layers in the unilateral SPPJs did not significantly
change with the increase of sealant width. However, in contrast to specimens with two
sealant layers in unilateral SPPJs, the increase of sealant width resulted in a higher strain
at the sealant-stone interface in specimen with one sealant layer in the unilateral SPPJ
(Figure 16d–g. It demonstrated that the increase in the width of the sealant exacerbated
the damage of the sealant–stone interface in the specimen with one sealant layer in the
unilateral SPPJs.
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5. Conclusions

In this paper, based on monotonic and cyclic loading tests, the shear performance
of the double-shear specimen with SPPJs, which was made of three stone panels and the
sealant, was investigated. The influence of the Young’s modulus and dimension of the
sealant on the failure characteristics, stress–strain characteristics, stiffness degradation,
and energy dissipation capacity of the SPPJ was analyzed. Furthermore, the difference in
shear performance of the SPPJs under different loading methods was investigated. In order
to investigate the numerical modeling strategy for predicting the shear performance of
the SPPJ in the stone cladding, the finite element models of double-shear specimens were
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established by using ABAQUS. The strain distribution of the SPPJ under the monotonic
loading was analyzed for different sealant widths and the number of sealant layers in the
unilateral SPPJ. The following conclusions are drawn:

• In the shear tests of double-shear specimens with SPPJs, the specimens corresponding
to the silicone sealant with different Young’s modulus exhibited good deformation
ability and similar failure phenomena. As the thickness of the sealant increased, the
failure mode of the SPPJ in the specimen gradually shifted from cohesive failure to a
mixed failure of both adhesive and cohesive failures.

• Under the same shear strain, the increase of the sealant thickness led to the reduction in
shear yield strain, shear yield stress, and shear failure strength of the SPPJ. For example,
for specimens with the sealant width of 10 mm and the sealant Young’s modulus of
0.5 MPa under different thicknesses of the sealant, the shear failure strength of the
SPPJ decreased by 32.6% when the thickness of the sealant increased from 6 mm to
8 mm. Compared to the specimen with the sealant Young’s modulus of 0.5 MPa, the
sealant width of 10 mm and the sealant thickness of 10 mm, and the shear failure
strength and shear yield strain of the specimen with the sealant Young’s modulus of
1.079 MPa, the sealant width of 10 mm and the sealant thickness of 10 mm increased
by 43.3% and 22.6%, respectively.

• Compared with cyclic loading, the plastic part reflected in the SPPJ under monotonic
loading was more pronounced. As the thickness of the sealant decreased, the stiffness
degradation of the SPPJ increased. Based on the same shear strain, the increase in the
thickness of the sealant enhanced the cumulative energy consumption of the specimen.
For specimens with the sealant width of 10 mm and the sealant Young’s modulus
of 1.079 MPa under different thicknesses of the sealant, when the shear strain was 2,
the cumulative energy consumptions of SPPJs with sealant thicknesses of 10 mm and
8 mm were 2.10 and 1.75 times higher than that of the SPPJ with the sealant thickness
of 6 mm, respectively.

• By comparing experimental data and finite element analysis data, the correctness of
the finite element model of the specimen with SPPJs established in this paper had been
verified. When the total sealant content was the same, the change in the number of
unilateral sealant layers resulted in the variation of the SPPJ’s strain distribution. The
strain concentration zone of the specimen with two sealant layers in the unilateral SPPJ
became larger with the increase of the sealant width. For specimens with one sealant
layer in the unilateral SPPJ, the difference in strain distribution between specimens
with different sealant widths was relatively small.

• In this paper, the influence of the dimension and the Young’s modulus of sealant on
the shear performance of SPPJs was studied based on experiments and finite element
analysis. However, there are still some limitations to this work. The limitation of this
article is that it is difficult to obtain the shear performance and other properties of
SPPJs under dynamic loads and different environmental conditions. Therefore, in
subsequent research, the performance analysis of SPPJs under dynamic loads and the
durability analysis of SPPJs under different environments will be comprehensively
investigated. Moreover, the effects of temperature, humidity, and the type of stone or
sealant on the shear performance of SPPJs will be more comprehensively quantified.
In addition to finite element numerical analysis, the SPPJ strength damage prediction
model based on the Weibull distribution will be further analyzed. The operability
and related issues of SPPJs in practical engineering applications will be the focus of
subsequent research.

• In summary, the quantification of the influence of the size of the sealant and the Young’s
modulus on the shear performance of SPPJs can provide a comprehensive reference
for the evaluation and prediction of the shear performance of SPPJs in the stone
claddings. In addition, from the analysis of data, it can be concluded that the selection
of sealant size in practical engineering needs to consider the design requirements,
required deformation capacity, and tolerable failure modes of SPPJs. When designing
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the size of the sealant, it is necessary to balance the performance requirements and
cost-effectiveness of SPPJs to ensure that they exhibit good performance and reliability
under various conditions.

Author Contributions: Test conduction, writing—original draft preparation, and formal analysis,
S.Y.; conceptualization, methodology, and resources, Z.G.; software and writing—review and editing,
Y.Y.; validation and supervision, Y.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by National Natural Science Foundation of China (Grant No.
52178485), the Science and Technology Project of Fujian Province, China (Grant No. 2020Y4011) and
the Natural Science Foundation of Fujian Province, China (Grant No. 2021J01284). The support is
highly appreciated.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are notpublicly available due to the project privacy.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
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