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Abstract: Indoor air quality is a crucial factor when evaluating habitability, especially in developed
countries, where people spend most of their time indoors. This paper presents a novel double
skin façade (DSF) system that combines physical and photocatalytic filtering strategies. The air
purification system is made up of fixed slats that are both solar protection and air purification system.
The objective of this work is to determine the thermal behaviour of the proposed system, so that its
suitability for use in various environments may be assessed. This was carried out using a physical 1:1
scale model and a computational fluid dynamics (CFD) model. The maximum temperature inside
the scale model cavity was 17–20 ◦C higher than outdoor air. Additionally, it was discovered that
the airflow through the DSF would require forced ventilation. To determine the emissivity values of
the photocatalytic coating, additional experimental measurements were made. The CFD model was
tested for summer and winter conditions in Barcelona, Chicago, and Vancouver. The average increase
in the intake air temperature was around 14.5 ◦C in winter and 12 ◦C in summer, finding that the
system has its main use potential in temperate or cold areas with many hours of solar radiation.

Keywords: indoor air quality; integrated façade systems; active filtering façade; façade thermal
performance; computational fluid dynamics

1. Introduction

Indoor air quality in buildings is an issue of growing importance, which unfortunately
has become more evident due to the pandemic caused by SARS-CoV-2. However, apart
from this exceptional situation that we are currently experiencing, some studies estimate
that, on average, people in developed countries spend about 90% of their time indoors [1].
This makes it vital to boost improvements in indoor conditions, which become essential for
ensuring a healthy environment for building users [2].

The concept of “habitability”, as defined by the United Nations [3], considers several
parameters and conditions that buildings must comply with in order to guarantee the
safety, comfort, and security of their inhabitants. Ventilation and indoor air quality (IAQ)
are of central importance [4], as they can keep temperature, humidity, and CO2, as well
as air pollutants/contaminants, within the ranges defined by building regulations and
certifications [5]. They also reduce the possibility of inner wall condensation, which can
be responsible for wall deterioration, mould growth, and unhealthy living conditions. In
this respect, there are studies that claim that about 84 million Europeans live in damp or
wet houses, which can increase their risk of developing asthma, influenza, bronchitis, or
migraines by up to 40% [6].
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When dealing with building ventilation, one possibility is to use passive systems that
do not consume energy. Natural ventilation, performed through operable windows that
can be controlled by users, guarantee the intake of fresh air, as well as the possibility for
the user to interact with the building, improving their wellbeing [7–10]. Other systems
that could be implemented in buildings in order to improve ventilation rates include, for
example, double skin strategies, atriums, different types of façade, and rooftop openings,
as well as mechanical ventilation systems [11,12]. Among these systems, ventilated double
skin façades (VDSF) are noteworthy. This type of façade basically consists of two layers
(usually fully glazed) separated by an air cavity (ranging from a few centimetres to up to
2 m in width); this cavity can be ventilated (naturally or mechanically) or not [13,14].

VDSF have multiple advantages when compared to a conventional curtain wall (or
single skin façade). Among others, they improve the acoustic performance of the façade,
increase the thermal insulation of the building envelope, and allow the user to interact with
the façade (as openings in the inner layer may also be operable). They make it possible to
reuse the exhaust air of the building, directly or with heat exchangers, as preheated air for
the air conditioning units leading to reduced energy consumption. They also enable solar
protection to be installed within the cavity, thereby extending its lifespan [14–19]. However,
depending on the building location, the naturally ventilated VDSF can lead to overheating
inside the building. This occurs mainly under summer conditions in the Mediterranean or
other mild or warm climates [20–22]. Under these circumstances, solar protection, as well
as mechanical ventilation of the façade cavity, may be needed in order to reduce the solar
radiation entering the building and to maximize heat extraction through the façade [23–25].

Nevertheless, despite the possibilities of VDSF for natural ventilation, when exterior
air conditions are inadequate, outdoor air intake can become a problem. Air pollution,
caused by volatile organic compounds (VOCs), suspended particles (dust, pollen, spores),
or chemical compounds (NOx, O3, CO, SO2), is directly connected to health conditions
such as allergies and asthma, among others [26,27]. Thus, in a context where periods of
intense air pollution become increasingly common in our cities, measures are needed to
ensure that the air entering buildings is free of contaminants.

Natural ventilation systems usually operate with no external air filtration. On the
other hand, mechanical ventilation systems incorporate air treatment units (AHUs) that,
among other functions, include physical filtering stages. These filters reduce or eliminate
suspended particles, but they do not eliminate harmful chemical compounds present in the
outdoor air. Chemical reactions are required in order to remove small-sized particles and
chemicals that are difficult to retain using physical filters [28].

Chemical reactions for purifying air can be classified into two groups: organic, using
photosynthesis or photobioreaction (e.g., by means of green roofs or green façades); and
inorganic, using photocatalysis [29]. Photocatalytic systems comprise a chemical com-
pound (such as titanium dioxide, TiO2) that separates out polluting elements when in
contact with the oxygen present in the air and with UV solar radiation, which is needed to
activate the chemical process [30,31]. When used as an air-cleaning system in buildings,
the photocatalytic element is applied as a coating to an exposed surface [32,33].

The tendency in the development of façade construction systems points towards
prefabrication and standardization. Integrated façade components combinate different
industries and materials in a single construction system, while modern technologies allow
complex designs of façade components [34,35], which fulfil all the functional requirements
of the enclosure [36,37].

In this paper, an innovative façade system combining both physical and photocatalytic
filtering strategies is presented. The façade consists of a fully glazed, ventilated double
skin façade component. The cavity contains a set of fixed slats that constitute the air
purification system, with both physical filtering and photocatalytic elements. The slats also
provide solar protection to the building interior, while allowing the view to the outside.
However, given that the façade surfaces are glazed to ensure the photocatalytic reaction,
overheating problems can occur in some situations [38]. This potential problem makes
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it necessary to determine the thermal performance of the system in order to evaluate its
application in different outdoor environmental conditions. In certain contexts, and with
adequate configuration, this system can provide valuable heat gains during cold periods
by preheating the intake ventilation air [38,39]. Thus, the main goal of this research lies in
determining the thermal character of the proposed façade system.

This thermal analysis was performed using a mixed approach. A 1:1 scale model of a
part-section of the façade system was built and its thermal performance measured. This
full-scale model was used as a first approach to the new façade system. Next, some of its
parameters were rethought and improved in subsequent stages of the design and analysis
process. In parallel to these tests, experimental measurements were carried out in order
to obtain the values of emissivity for the photocatalytic coating used on the slats. At the
same time, a computational fluid dynamics (CFD) digital twin of the façade was built and
validated against the experimental results previously obtained. This digital model was
used first to check and improve the internal aerodynamics of the slats, as some parameters
of the scale model relating to airflow performance were found to be improvable. Once the
operating conditions were established, they were used to test the system under different
environmental conditions in order to evaluate its application range. The results obtained
show that the geographical areas where the proposed façade system would be best able to
exploit the full potential of filtering and passive preheating of intake air would be temperate
or cold areas with many hours of solar radiation. The system can incorporate add-ons and
modifications that would enable it to be used to advantage even during warm periods.

2. Model Thermal Performance Tests
2.1. Methodology for Thermal Model

In order to evaluate the thermal performance of the façade system, a physical model
of the double skin façade (DSF) was built. The model was 50 cm wide with prismatic
geometry. Two 6 mm glass layers were used for the front and rear faces enclosing a 20 cm
deep ventilated air cavity, as shown in Figure 1. The lateral enclosure walls consisted of a
19 mm softwood layer covered with expanded polystyrene (EPS) 40 mm thick. The thermal
resistance of the enclosing walls was significantly higher than the glazing, so they can be
considered as adiabatic surfaces. Table 1 shows the thermal and optical characteristics of
these external walls.

Table 1. Physical characteristics of the model’s envelope materials. Source: provided by Ariño
Duglass [40] and from CTE [41].

Front Glazing Rear Glazing Opaque Surfaces

Extra-clear Colourless Softwood + EPS
Thickness 6 mm 6 mm 19 mm + 40 mm

Light transmission 91% 20% -
Exterior light reflection 8% 32% -

U value 5.7 W/m2K 5.2 W/m2K 0.68 W/m2K
Solar factor 27% 27% -

UV transmission 69% 11% -
UV reflection 8% 32% -

The air inlet opening (2.5 cm height) is located in the lower front side of the model,
while the outlet (4 cm height) is in the upper rear side. In the case of a real façade, the air
expelled through this outlet would enter the building to ventilate the interior living space,
while in the case of the model, it was discharged into the atmosphere (Figures 1 and 2).

Inside the double skin cavity, five louvres were placed as shown in Figure 1 (marked as
L1 to L5). These louvres (Figure 3) consisted of two overlapping sheets of balsa wood each
1.5 mm thick and cardboard slats with openings in the front and rear ends, so the airflow is
forced to circulate through the slats. All the joints with the perimeter walls and glazing
were sealed with silicone sealant and compressible foam bands in order to prevent air
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leakage. ProClean-Air photocatalytic coating [42] was applied to the upper slat’s exterior
face, with an estimated solar absorption of 0.20 [43].
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The model was placed on the terrace of the Escola Tècnica Superior d’Arquitectura de
Barcelona (UPC-ETSAB; Barcelona, Spain), with the front glazing facing south (Figure 1),
thus guaranteeing the photocatalytic coating’s exposure to solar radiation. Nearby build-
ings would cast shade on the model in the early morning and late afternoon hours. Direct
sunlight exposure and shaded periods during the test dates are shown in Table 2.

Table 2. Sunlight exposure periods during the tests.

Date Indirect Sunlight Direct Sunlight Indirect Sunlight

3 October 2019 (UTC + 2 h) 7:45–9:00 9:00–17:00 17:00–19:30
15 January 2020 (UTC + 1 h) 8:15–9:30 9:30–15:15 15:15–17:45

The model was tested under free convection regime for warm and cold outdoor
temperature conditions. From these periods, 2 days with clear sky were selected—3 October
2019 and 15 January 2020. The outdoor conditions were obtained from the Barcelona
Zona Universitària XEMA weather station (at 300 m from the model), whose registers are
accessible through the Generalitat de Catalunya Open Data Portal [44].

Temperatures were measured and recorded using NTC 100K 3950 Thermistors con-
nected to an Arduino UNO board [45]. The set was previously calibrated for the expected
measured temperature range (0 ◦C to 75 ◦C), with an accuracy of 1% and 0.25 ◦C and
a resolution of 0.1 ◦C. The location of these sensors is shown in Figure 1; ST* sensors,
graphed in black, measured surface temperatures (ST-L louvre surface temperatures and
ST-G glass surface temperatures), while AT* sensors, graphed in grey, measured airstream
temperatures.

2.2. Results and Discussion of the Thermal Model

The temperatures measured on the model were registered every 30 s, but, in order to
analyse the temperature variation across the whole day, these readings were converted to
15-min moving averages in order to reduce fluctuations, as shown in Figures 4 and 5.

As can be seen, the maximum temperature inside the ventilated cavity is around 44 ◦C
and 32 ◦C in warm and cold outdoor temperature conditions respectively. Comparing the
highest internal temperature with external air temperature gives temperature differences
of about 20 ◦C in October and 17 ◦C in January. While this overheating is not desirable for
operation in summer, during winter it would appreciably pre-heat the intake ventilation air.
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The fact that the air temperature under louvre 2 and under louvre 5 are so similar, as
can be seen in Figures 4 and 5, (1.0 ◦C average of absolute difference during the depicted
period in October and 0.8 ◦C in January) suggests that the air inside the cavity practically
stagnates, which means very low air circulation. This is due to the frictional and dynamic
pressure losses related to the intricate path that the air has to follow through the louvres.
These results indicate that, under these experimental conditions, natural ventilation with
thermal buoyancy is the dominating force, but this alone might be unable to overcome the
pressure losses inside the cavity. Therefore, forced ventilation would be necessary to move
the air through the DSF.

The recordings were taken under free convection regime; the terrace floor surround-
ings, balustrade, and nearby façades (Figure 2) are clad with thin, red ceramic brick with
an estimated short-wavelength absorptance higher than 0.5 [46,47]. Considering that the
recorded surface temperature of slat L1 is higher than that of slat L5, this indicates the
presence of irregular diffuse and reflected radiation on the model: the lower slat receives
more reflected and emitted radiation from the surroundings than slat L5. Slat L5 is located
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above the level of the balustrade (which is 105 cm high) and oriented upwards, it therefore
does not receive radiation reflected and emitted from the balustrade.

These experimental considerations lead to the definition of a CFD model for analysing
the performance of the cavity airflow under different external conditions and forced airflow.
This CFD model is useful for evaluating the façade system viability, as well as improving
the slat geometry, according to the airflow in the cavity.

3. Photocatalytic Coating Emissivity Tests

In order to perform the thermal characterization of the façade system through a CFD
model, it is necessary to know the values of its characteristic parameters. Among them, the
long-wave emissivity of the photocatalytic coating used in the façade slats was unknown:
this value is not provided on the manufacturer’s datasheet [42]. The literature consulted
showed disperse, and in some cases, contradictory, composition-dependent data for this
kind of coating, so this could not be used as a reliable source [48–50]. For this reason, a test
was carried out to measure the long-wave emissivity of the coating.

3.1. Methodology for Emissivity Tests

Four ceramic samples (10 × 10 × 0.5 cm) were prepared by applying two layers of
ProClean-Air photocatalytic coating [42], with a 24-h activation period, according to the
manufacturer’s instructions. Samples were then exposed to direct sunlight while recording
their surface temperatures using both surface thermistors and a thermographic camera.
Measurements were taken at an outdoor terrace at the Escola d’Enginyeria Barcelona
Est (UPC-EEBE; Barcelona, Spain) on 20 July 2020 around 4:00 pm. During the test, the
ambient temperature was 27 ◦C, and the global radiation on horizontal surfaces was
823 W/m2, obtained from XEMA weather station Badalona-Museu, located 4 km north of
the experimental testing site [51].

The samples were laid on a 30 mm thick XPS panel to minimize heat transfer to and
from the support surface. The upper surfaces of the samples were exposed to direct and
diffuse solar radiation and were in contact with air at ambient temperature (Figure 6).
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Surface temperatures of the samples were measured with NTC 100K 3950 thermistors
connected to an Arduino UNO board [45], previously calibrated for the expected temper-
ature range (0 ◦C to 75 ◦C); two sensors were placed on each sample (Figures 6 and 7a).
Simultaneously, thermographic photographs were taken with the thermographic camera
PCE-TC 3 [52]. The technical specifications of these elements are detailed in Table 3.
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Table 3. Technical specifications of the measuring devices used [52,53].

Device Model Accuracy Measuring Range Resolution

Thermistor NTC 100K 3950 ±1%
±0.25 ◦C

−50 ◦C to 260 ◦C
(max. expected measuring range 0 ◦C to 75 ◦C) 0.1 ◦C

Thermographic camera PCE-TC 3 ±2%
±2 ◦C −10 to 250 ◦C 0.15 ◦C

After synchronizing the clocks of the thermographic camera and the Arduino UNO
board, a series of thermographic pictures of the samples were taken in order to estimate the
emissivity of the photocatalytic coating at ambient temperature. At the same time, surface
temperatures measured by the thermistors were recorded by the Arduino UNO board. The
time stamp on the thermographic pictures was used to retrieve the corresponding measured
temperature data. The NTC recorded temperature data was used to adjust the sample’s
emissivity reading using the camera’s data processing software (e.g., Figure 7b), until the
average temperature fell within the measured range. The effects of reflected temperature
were accounted for in the camera’s processing software [52].

3.2. Results and Discussion for Emissivity Tests

Ten different thermographic pictures (Experiments E01 to E10) were taken in order to
guarantee the fairness of the results. Table 4 shows the obtained surface temperatures for
the thermistors, numbered according to Figure 7a.

Table 4. Temperatures (in ◦C) recorded by the NTC sensors (S1–S8) at the same moment of every
thermographic picture (E01–E10).

Sensors Average and Standard
DeviationS1 S2 S3 S4 S5 S6 S7 S8

Ex
pe

ri
m

en
ts

E01 29.90 30.36 30.05 29.94 30.35 30.48 30.64 30.37 30.26 ± 0.27
E02 29.62 30.35 29.53 29.53 30.08 30.14 30.13 29.90 29.91 ± 0.32
E03 29.71 30.35 30.45 29.90 30.17 30.44 30.49 30.18 30.21 ± 0.28
E04 29.19 29.71 29.62 29.25 29.80 30.03 29.73 29.73 29.63 ± 0.28
E05 29.30 29.99 29.07 29.16 29.62 29.71 29.62 29.53 29.50 ± 0.31
E06 29.36 30.08 29.35 29.25 29.80 29.82 29.76 29.44 29.61 ± 0.30
E07 29.17 29.43 29.53 29.07 29.67 29.80 29.62 29.62 29.49 ± 0.25
E08 29.86 30.26 30.08 30.17 30.17 30.56 30.61 30.45 30.27 ± 0.26
E09 29.89 30.64 30.16 29.62 30.26 30.45 30.36 30.18 30.20 ± 0.32
E10 29.49 30.26 29.52 29.34 29.90 30.05 29.89 29.72 29.77 ± 0.31
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Table 5 shows the results obtained for the emissivity of the photocatalytic coating in
every experiment, together with the calculation of the uncertainty of the average value:
average emissivity of 0.59 with an uncertainty of 0.13.

Table 5. Obtained long-wave emissivity for the samples.

Exp. εTG εavg Deviation Average
Deviation

Sensor
Precision

Maximal
Deviation

Standard
Deviation Uncertainty

E01 0.43

0.59

0.16

0.10 0.01 0.18 0.13 0.13

E02 0.49 0.10
E03 0.60 0.01
E04 0.50 0.09
E05 0.62 0.03
E06 0.43 0.16
E07 0.79 0.20
E08 0.70 0.11
E09 0.74 0.15
E10 0.57 0.02

4. Façade System CFD Model

CFD has proved to be a powerful tool for understanding the flow dynamics and
heat/mass transfer phenomena in the built environment [54–57], and it has been widely
applied to the study of VDSF [58]. Previous experiments on the subject by this research
group include the validation of numerical sub-models for CFD VDFS simulations [21,59–61]
and parametric and operating studies of VDSF with louvres [23,24].

A CFD model of the experimental setup described in Section 2 was built in order to
improve the aerodynamic performance and to test the thermal behaviour of the façade
module. First, a 3-stage grid refinement study was performed in order to ensure the
numerical independence of the results. The independent grid obtained was validated
against the experimental results shown in Section 2.

In order to reduce the model size and thus the computational cost of the simulations,
some geometric simplifications were made. The computational model has a differen-
tial width of 5 mm and symmetrical boundary conditions on its lateral faces, effectively
simplifying the geometry to a thin central slice of the experimental model (Figure 8).

4.1. Mesh Independency

For this study, the grid convergence index (GCI) was estimated for a series of succes-
sive, systematic grid refinements, following the method introduced by Roache [62], until
the solution was found to be within the asymptotic range of convergence.

For all cases, a hexahedral-dominant mesh (Figure 8) was built and tested under
flow and thermal steady-state conditions. The flow was taken to be incompressible and
in turbulent regime (Re ∼= 4500 in the inter-louver channel). The ventilation flow rate at
the inlet opening was set to 18.25 l/s per meter of façade [63], and the outlet opening
was set to atmospheric pressure. Outdoor temperature and irradiance were set to the
experimental values measured on 3 October 2019 at 11:00 h (shown in Section 2). The
long-wave emissivity of the photocatalytic coating found in Section 3 was assigned to
the corresponding surfaces of each louvre, and the thermal and optical properties of the
different elements of the system were assigned, as indicated in Table 1.

The Navier–Stokes equations and the energy conservation equation, together with
the surface-to-surface (S2S) radiation model and the SST k − ω turbulence model, were
solved in the computational domain by means of CFD. Second order discretization schemes
were used for all computed variables, and residuals ≤1 × 10−3 were used in all cases as
convergence criteria. The computational simulations were carried out on Ansys Fluent 2020
R2 [64] on a 64-bit, Intel core i7 processor (6 core|12 thread) at 3.3 GHz and 32GB RAM.
The thermophysical properties of the air were set to be temperature-dependent, using the
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ideal gas law for density, the power law for viscosity, and the temperature-dependent
polynomial for heat capacity and thermal conductivity. Solar irradiance was imposed to
the model by means of the software’s solar calculator [64].
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A grid refinement study was performed first for the solid volumes (glazing, louvres,
bases). Once a solid mesh size was selected, a second study was carried out for the fluid
volumes (interior air), and, lastly, the mesh size in the perpendicular direction of the section
was also studied, as the 3D mesh was created as an extrusion of a 2D surface mesh. Table 6
shows the grid refinement studies and the selected mesh sizes (highlighted in grey). The
resulting mesh had 3.16 million hexahedral elements and 14.1 million nodes.

Table 6. Results of the grid refinement studies.

MESH SENSITIVITY ANALYSIS

Solid mesh size
ratio 1.4142

Mesh
Element size (mm) Average temperatures (K) GRID REFINEMENT STUDY

Fluid Solid z-axis Inner
glass Slat 1 Slat 5 Int.

air ε |p| GCI Asymptotic range of
convergence (R = 1)

1

1.000

0.250

1.250

309.14 306.28 315.47 309.71
2 0.354 309.24 306.28 315.64 309.73 0.0001 2.00 0.0001

0.633 0.500 309.21 306.26 315.61 309.70 0.0001 2.00 0.0001
1.00

0.384 0.707 308.88 304.61 315.06 309.61 0.0003 2.74 0.0002

5 1.000 309.29 306.30 315.58 310.05 0.0014 4.74 0.0004
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Table 6. Cont.

MESH SENSITIVITY ANALYSIS

Fluid mesh size
ratio 1.4142

Mesh
Element size (mm) Average temperatures (K) GRID REFINEMENT STUDY

Fluid Solid z-axis Inner
glass Slat 1 Slat 5 Int.

air ε |p| GCI Asymptotic range of
convergence (R = 1)

1 0.500

0.354 1.250

308.54 306.30 314.76 309.46
2 0.707 308.88 304.64 314.49 309.97 0.0017 2.19 0.0039

2.203 1.000 309.24 306.28 315.64 309.73 0.0008 2.19 0.0018
1.00

0.014 1.414 308.96 304.54 315.32 309.43 0.0010 0.62 0.0050
5 2.000 308.66 305.81 314.36 309.34 0.0003 3.59 0.0001

z-axis mesh size
ratio 2.0000

Mesh
Element size (mm) Average temperatures (K) GRID REFINEMENT STUDY

Fluid Solid z-axis Inner
glass Slat 1 Slat 5 Int.

air ε |p| GCI Asymptotic range of
convergence (R = 1)

1

0.707 0.354

0.313 308.60 304.73 313.93 309.52
2 0.625 308.61 304.74 313.96 309.53 0.0001 2.32 0.0001

0.043 1.250 308.62 304.74 313.96 309.53 0.0000 2.32 0.0000
1.00

24.634 2.500 308.59 304.74 313.93 309.50 0.0001 9.05 0.0000
5 5.000 308.60 304.73 313.93 309.51 0.0000 6.46 0.0000

4.2. Model Validation

Once mesh independency was established, a CFD model replicating the external and
operating conditions of the experiment performed on 3 October 2019 (discussed in Section 2)
was configured with the purpose of validating the model setup. The obtained numerical
results were compared against the recorded experimental data.

The case was taken to be transient, incompressible, and in laminar free convection
flow regime (Ra ∼= 4 × 107 in the air chamber). A similar model configuration as explained
in Section 4.1 was used, the only difference being that in order to model the free convection
operating conditions of the experiment, both inlet and outlet were set as atmospheric
openings in the computational model. Temperature was limited to a max value of 52 ◦C,
per the recorded experimental data (Figure 4). A time step of 150 s was selected for the
transient simulations, after a time step refinement study was performed on the mesh
independent model selected in Section 4.1.

Temperature monitors were set in order to compare the numerical results with the
aforementioned experimental data. Results are shown in Figures 9 and 10. In both cases, the
CFD model reproduces to a good extent the experimental thermal behaviour measured. For
the photocatalytic slats (Figure 9), the CFD model reproduces the experimental behaviour
observed for the lower slat (ST-L1), while for the upper slat (ST-L5), the model predicts a
behaviour similar to the lower slat. The software’s solar calculator distributes the diffuse
radiation evenly between all the surfaces of the model, being then unable to reproduce the
diffuse radiation asymmetry conditions the experimental setup experienced.

Larger temperature differences are observed on the inner glazing temperature predic-
tion (Figure 10). When these results are observed together with the electrical output of a
5 V 0.15 A photovoltaic (PV) cell installed next to the experimental model, it is noticeable
that the underperformance of the PV cell observed after 1:00 pm corresponds in time with
the larger differences in the inner glazing temperature prediction, as the computational
model does not account for changing atmospheric conditions.
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4.3. Model Evolution

The validated CFD model was then used to understand the shortcomings of the
experimental setup and to propose and test geometry evolutions that would improve the
interior aerodynamics and overall performance of the system.
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Figure 11 shows a vector plot for the ventilated cavity under free convection regime. It
can be observed that a low-speed (≈20 cm/s) convective flow forms in the cavity between
the photocatalytic slats due to the temperature difference between the inner and outer
glazing. It can also be noticed that there’s no significant flow in the inter-louver channel,
becoming clear that the free convection, density-driven flow cannot overcome the energy
losses imposed by the photocatalytic slats, remaining then stagnant in the air cavity.
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The first evolution of the experimental setup included then mechanical ventilation,
which was implemented in the CFD model by imposing a negative gauge pressure at the
outlet opening (simulating the operation of a centralized air extractor). Moreover, a physical
filtering stage was incorporated at the back groove of the photocatalytic slats and modelled
as a porous zone. These filters were assumed to be a RESPILON®® nanofiber anti-smog
window membrane RWM, with an efficiency of 95% at PM2.5, for whom pressure drop
information was available [65,66]. A coupled acoustics model was also added to check for
aerodynamic noise levels.

The shape of the photocatalytic slats was designed in such a way that, due to the
difference of pressure generated by the high-speed flow that leaks through their front
groove with respect to the air cavity, the flow would attach to the curved surface, according
to the so-called Coanda effect [61,67,68]. This attached flow would favour the photocatalytic
chemical reaction and therefore the decontaminating effect of the proposed façade solution.
Up to 6 evolutions of the original concept were tested until satisfactory results for head
losses, flow rate, aerodynamic noise levels, and flow adherence to the photocatalytic
surface were reached; Table 7 summarizes the main differences between evolutions and
also presents a comparison of their key operating parameters. As it can be seen, when
compared to the original setup, the improved interior aerodynamics of evolution 6 reduce
head losses (thus mechanical ventilation energy consumption) by 25% while increasing the
ventilation flow rate (+32%) and reducing the aerodynamic noise (from 24.8 to 10.8 dB).
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Table 7. Key performance indicators of the façade system.

Evolution Ventilation
Flow Rate

Gauge
Pressure Head Loss Aerodynamic

Noise
Coanda
Effect?

l
m f acade ·s Pa m dB

1
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5. Range of Application of the Façade System for Different Climatic Zones
5.1. Methodology for the Range of Application Study

The improved CFD model presented in the previous section was used to test the
thermal performance of the façade component under different environmental conditions in
order to evaluate its range of application. It was tested under summer and winter conditions
for three different climatic zones in the Northern Hemisphere: Barcelona (41.4◦ N), Chicago
(41.9◦ N), and Vancouver (49.3◦ N); classified as Csa, Dfa, and Cfb climates, respectively,
according to Köppen-Geiger climate classification [69].

For each of the cities, a representative summer and winter day were simulated. The
temperatures of the representative day were obtained from open climate data for building
performance simulation [70], which provides typical meteorological data derived from
hourly weather data, with a historical time sequence. Individual year files were created
using the general principles from the IWEC (International Weather for Energy Calculations)
and TMY/ISO 15927-4:2005 methodologies. Among them, the specific sources chosen for
our studies in Barcelona, Chicago, and Vancouver are ASHRAE/IWEC, ASHRAE/TMY3,
and WYEC2, respectively. For choosing each representative day, the initial and final
temperatures were confirmed to be similar. The solar radiation values were defined using
the ASHRAE fair weather conditions method [71].

The simulated 24 h day cycle starts at 6:00 am to adapt to the solar cycle and to
verify if the solar radiation load is given off during the night or if it is stored through
the thermal inertia of the system until the following day. In all cases, the initial flow
conditions at 6:00 am were set according to a prior steady-state simulation. After that, a 24 h
transient simulation was run, using a 150 s time step. The flow was taken to be turbulent,
incompressible, and in transient regime. A gauge pressure of −120 Pa was set at the outlet
opening in order to guarantee a minimum flow rate of 15 l/m2·s. Mesh dimensions and all
other computational parameters for the model were imposed, as explained in Section 4.1.

5.2. Results and Discussion for the Applicable Range Study

As may be seen in the following graphs in Figure 12, in every one of the simulated
scenarios, the temperature of the air increases while circulating through the DSF. Thus, air
will be warmer when it reaches the indoor building space (outlet temperature in Figure 12)
than the exterior air (inlet temperature in Figure 12), resulting in a preheated air inlet for
ventilation. The fact that the initial and final temperatures at 6:00 am are very similar in all
scenarios verifies that the thermal inertia of the system over the daily cycle is minimal.

In the three summer cases, it can be seen that during the daylight hours there is a great
difference between inlet and outlet temperatures (Figure 13). The maximum difference
(25.6 ◦C for Barcelona, 27.8 ◦C for Chicago, and 30.5 ◦C for Vancouver) is reached between
14:00 and 16:00, when the solar radiation and the external air temperature are at their
highest. On the contrary, during the night hours, as the system is not affected by the
incident solar radiation, the difference between inlet and outlet temperatures is mainly
low and constant (an average difference of 4.0 ◦C for Barcelona, 2.4 ◦C for Chicago, and
5.6 ◦C for Vancouver, from 22:00 to 6:00). These trends can be seen in Figure 13, where these
differences are represented graphically for the three cities analysed.

The temperature increase in the intake air during daylight hours might not be desirable
in summer conditions, especially for warmer climates (Barcelona and Chicago), where it
can lead to overheating of internal building spaces. For colder climates, as, for example,
the case of Vancouver (where the average temperature of the representative day in summer
is 15.7 ◦C, about 8 ◦C lower than Barcelona 23.1 ◦C and Chicago 24.7 ◦C), this preheating of
the intake air has thermal benefits for the building—mainly early in the morning, at the
end of the afternoon, and at night. We can therefore estimate that passive preheating might
be desirable throughout the year for locations above 50◦ N.
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Nevertheless, the undesirable preheating of the air in warm climates does not imply
that the system should be discarded, since, during these periods, the system can be given a
slightly different function to take full advantage of it: mechanically filtered free-cooling at
night, solar protection to reduce the radiative heat loads and reduce the cooling demand,
or even the use of this heat to assist hot water production.

By comparison, regarding the three winter cases, it may be seen that the system is
thermally efficient 24 h per day. When the outdoor air temperature is lower than the
indoor comfort temperature, the passive preheating of the air in the façade cavity is highly
desirable, as it always represents an energy savings for the building’s AHU system. As
shown in Figure 14 and Table 8, the maximum temperature differences between inlet and
outlet in all three winter cases are higher than for summer scenarios, reaching a peak of
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31.9 ◦C for Barcelona, 34.5 ◦C for Chicago, and 35.0 ◦C for Vancouver. On a daily average,
the estimated preheating for the calculated winter days is between 13.6 ◦C and 15.6 ◦C, as
shown in Table 8.
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Table 8. Maximum, average, minimum, and fluctuation of the difference of temperatures between
inlet and outlet air.

Summer Winter

BCN CHI VAN BCN CHI VAN

MAX. 25.6 ◦C 27.8 ◦C 30.5 ◦C 31.9 ◦C 34.5 ◦C 35.0 ◦C
Avg. 11.1 ◦C 10.7 ◦C 13.1 ◦C 13.6 ◦C 15.6 ◦C 15.6 ◦C
min. 1.2 ◦C 0.8 ◦C 3.1 ◦C 3.3 ◦C 6.4 ◦C 5.1 ◦C

fluct. MAX–min 24.4 ◦C 27.0 ◦C 27.4 ◦C 28.6 ◦C 28.1 ◦C 29.9 ◦C

In winter, the temperature differences between inlet and outlet at night are higher
than in the summer; this trend is more remarkable in the most critical cases, where outdoor
temperatures are lower (Chicago in the example). In Figure 14, the winter temperature
differences represented for the three cities can be observed (an average difference of 6.9 ◦C
for Barcelona, 8.6 ◦C for Chicago, and 6.6 ◦C for Vancouver, from 20:00 to 6:00). The night-
time difference highlights another beneficial effect of this system: the reduction of thermal
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losses. The energy that passes through the inner glazing heats the air in the cavity, which is
once again reintroduced to the interior space, thus, reducing the thermal losses through
the façade.

Apart from the air temperatures in the cavity, the surface temperature for the five slats
has also been analysed for all the simulated cases.

As with the rest of the façade components, the louvres are heated by solar radiation.
The slats in the upper section of the cavity (L5) reach higher temperatures than the ones
located in lower positions (L1) (Figures 15 and 16), as they are surrounded by warmer air.
This performance is observed in the three cities studied, for climatic conditions during both
summer and winter.
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Figure 16. Temperature of the louvres on each winter day calculated.

Regarding the maximum surface temperature differences, Table 9 shows the daily
average temperature range affecting the louvres for the three cities under summer and
winter conditions. The case with the most extreme daily conditions is Vancouver in winter,
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which presents a 43.8 ◦C daily temperature range, while Chicago shows the greatest annual
difference (61.2 ◦C).

Table 9. Maximum thermal fluctuations and thermal expansion of louvres.

Daily Annual

Summer Winter

BCN CHI VAN BCN CHI VAN BCN CHI VAN

max. thermal fluctuation (◦C) 38.2 37.9 40.1 38.2 33.8 43.8 48.9 61.2 48.2
thermal exp. (mm/m) 0.9 0.9 0.9 0.9 0.8 1.0 1.2 1.4 1.1

The surface temperature of the slats (and also its temperature variability) is not a
significant parameter in terms of the system’s thermal performance, but it can be a critical
factor regarding the constructional aspects of the system. The thermal fluctuations can
lead to a thermal expansion phenomenon affecting the louvres, which might be made of
aluminum-6061 (a common material in this type of façade element), with a linear thermal
expansion coefficient of 23.4 × 10−6 ◦C−1 [72,73]. This fact must be considered when
defining how the louvres are incorporated into the DSF module and how the differen-
tial movements are allowed without compromising airtightness. Although it would be
advisable to study this particular aspect in detail for the final development of each build-
ing project, the following approximate calculation may help to understand the order of
magnitude of this movement. The calculated daily thermal fluctuations are about 44 ◦C
maximum, with an annual maximum of about 61 ◦C. These thermal fluctuations result in a
daily movement of approximately 1 mm/m and an annual movement of 1.4 mm/m, as can
be seen in Table 9. This means that, for a two-meter-wide module, the thermal expansion
would be less than 3 mm, which is a tolerance that can be easily achieved by the system.

6. Conclusions

The proposed module is a double skin façade system that filters part of the pollutants
from the ventilation intake air without the user losing the sense of freedom to open the
window at will. The air purification system consists of a set of fixed slats housed within
the cavity, which provide both physical and photocatalytic filtering. The slats also provide
solar protection for the interior of the building.

In order to evaluate the thermal performance of the façade system, a 1:1 scale model of
a DSF under free convection regime was built and tested for warm and cold outdoor tem-
perature conditions in Barcelona. It was found that, under these experimental conditions,
using natural ventilation alone with thermal buoyancy as the dominating driving force, it
might not be possible to overcome the frictional and dynamic losses through the louvres.
Consequently, forced ventilation would be necessary to move the air through the DSF.

The long-wave emissivity of the ProClean-Air photocatalytic coating used in the
façade slats was an unknown characteristic parameter, but it was required in order to study
the thermal performance of the façade system. For this reason, a test was carried out to
estimate the emissivity of the coating. Four ceramic samples coated with ProClean-Air
were analysed at ambient temperature, resulting in an average value of 0.59 ± 0.13.

A CFD model of the experimental setup was built in order to improve its aerodynamic
performance and to test the façade module under different climatic conditions. An indepen-
dent mesh was validated against the experimental results in order to ensure the numerical
independence of the results. The validated mesh was then used to improve the interior
aerodynamics of the module in order to reduce frictional losses, reduce aerodynamic noise,
and to ensure the Coanda flow so as to improve the photocatalytic reaction.

The thermal performance of the improved system was then computed under out-
door conditions in summer and winter for three different climatic zones in the northern
hemisphere (Barcelona, Chicago, and Vancouver) to study the appropriate climatic range
of application.
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The increase in air temperature as the air circulates through the double skin making
contact with the photocatalytic slats supposes the preheating of the intake air, which can
be very positive in cold and mild periods or climates. On a daily average, the estimated
preheating for the calculated days in cold periods is between 13.6 ◦C and 15.6 ◦C, while in
warm days it is between 10.7 ◦C and 13.1 ◦C.

Thermal fluctuations can lead to thermal expansion phenomena affecting the louvres,
which must be taken into account when designing the system for each specific situation.
Within the situations studied, these thermal expansions are less than 1.5 mm/m, or less than
3 mm for a two-metre-wide module, which is a tolerance that the system may easily achieve.

In cold climates, passively preheating the filtered air would be positive throughout
most of the year, but, in temperate climates, this might be undesirable during some periods
of the year. The system can incorporate add-ons and modifications that would enable it to
be used to advantage even during warm periods: mechanically filtering night-time intake
air ventilation, solar protection, and thus the reduction of the cooling demand, or support
for hot water production.

Although the potential use of this system is broad, the geographical areas where it
would be best to exploit the full potential of filtering and passive preheating of the intake
air would be in temperate or cold areas with many hours of solar radiation: central Europe
and low latitude areas that are high above sea level.

7. Patents

A patent and a utility model were registered related to this project [74,75].
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Acronyms and Abbreviations
AHU Air Handling Unit (Air Treatment Unit)
CFD Computational Fluid Dynamics
CTE Código Técnico de la Edificación (Spanish building regulation)
DSF Double Skin Façade
EPS Expanded Polystyrene
GCI Grid Convergence Index
IAQ Indoor Air Quality
NTC sensor Negative Temperature Coefficient sensor
UPC-EEBE Universitat Politècnica de Catalunya—Escola d’Enginyeria Barcelona Est

UPC-ETSAB
Universitat Politècnica de Catalunya—Escola Tècnica Superior d’Arquitectura
de Barcelona

UV Ultraviolet
VDSF Ventilated Double Skin Façades
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VOCs Volatile Organic Compounds
XPS Extruded Polystyrene
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