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Abstract: AbstractAn accurate and fast building load prediction model is critically important for
guiding building energy system design, optimizing operational parameters, and balancing a power
grid between energy supply and demand. A physics-based simulation tool is traditionally used to
provide the building load demand; however, it is constrained by its complex model development
process and requirement for engineering judgments. Machine learning algorithms (i.e., data-driven
models) based on big data can bridge this gap. In this study, we used the massive energy data
generated by a physics-based tool (EnergyPlus) to develop three data-driven models (i.e., Light-
GBM, random forest (RF), and long-short term memory (LSTM)) and compared their prediction
performances. The physics-based models were developed using office prototype building models as
baselines, and ranges were provided for selected key input parameters. Three different input feature
dimensions (i.e., six-, nine-, and fifteen-input feature selections) were investigated, aiming to meet
different demands for practical applications. We found that LightGBM significantly outperforms
the RF and LSTM algorithms, not only with respect to prediction accuracy but also in regard to
computation cost. The best prediction results show that the coefficient of variation of the root mean
squared error (CVRMSE), squared correction coefficient (R2), and computation time are 5.25%, 0.9959,
and 7.0 s for LightGBM, respectively, evidently better than the values for the algorithms based on RF
(18.54%, 0.9482, and 44.6 s) and LSTM (22.06%, 0.9267, and 758.8 s). The findings demonstrate that a
data-driven model is able to avoid the process of establishing a complicated physics-based model for
predicting a building’s thermal load, with similar accuracy to that of a physics-based simulation tool.

Keywords: load prediction; feature engineering; machine learning; LightGBM; grid-integrated buildings

1. Introduction
1.1. Literature Study

Building thermal load prediction plays an important role in energy management
and efficiency. It has wide applications, such as in determining the capacity of heating,
ventilation, and air conditioning (HVAC) systems in the phase of building design [1];
providing operational optimization control in building energy systems for existing or
retrofitted buildings [2]; and determining the demand response baseline for grid-integrated
buildings [3–5]. In the field of building load prediction, the thermal loads for heating and
cooling are the most difficult parts to accurately predict, owing to the complex, nonlinear
relationships among the influencing factors (input feature variables), such as the weather
conditions, building physics, and different operational behaviors. Therefore, previous
studies have focused on the thermal load of buildings, especially on the loads of HVAC
systems. Prediction approaches are widely categorized into three types: physics-based
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models (white-box), data-driven models (black-box), and reduced-order models (gray-
box) [6,7], while the data-driven models have been increasingly discussed in recent years.

White-box models, such as professional software, can predict building loads with high
accuracy. Several mature software tools, including EnergyPlus, TRNSYS, and Modelica,
are widely used in the engineering industry [8]. However, developing a physics-based
model is time-consuming, and prior knowledge is required. Gray-box models simplify the
complicated functions to a resistance and capacity model. The key shortcoming of gray-box
models is that they do not consider internal heat gains and occupant behaviors [9]. A
black-box model is a data-driven model based on historical data. Nowadays, with the rapid
development of building-based big data and machine learning algorithms, developing a
black-box model is a promising approach for load prediction. A rich set of studies have
focused on machine learning algorithms, such as support vector regression (SVR) [4,10],
random forest (RF) [11,12], extreme gradient boosting (XGBoost) [13–15], long-short term
memory (LSTM) [16–18], artificial neural networks (ANNs) [19], and convolutional neural
networks (CNN) [20]. In previous studies, the two most popular fields concerned sensitivity
analyses of different dimensions of input features and hyperparameter tuning. Based on a
comprehensive literature review, Table 1 lists the papers investigating different data-driven
models. We found that LightGBM (similar to XGBoost but faster), RF, and LSTM have been
reported as the most popular algorithms for building load predictions.

Table 1. Detailed descriptions and comparisons of data-driven models to predict load demands
in papers.

Reference Input Features Data-Driven Model Prediction Results

[13]

Day of week; Hour of day;
Holiday; Outdoor dry bulb

temperature; Outdoor
relative humidity

XGBoost; RF; SVR; LSTM

Metrics CVRMSE
XGBoost: 21.1%

RF: 23.7%
SVR: 25.0%

LSTM: 20.2%

[21]

Total gross floor area; year of
build; building height; shape form
factor; vertical to horizontal ratio;
length of the building; and width

of the building;
building morphology

LightGBM; XGBoost; RF; SVR

Metrics R2

LightGBM: 0.8608
XGBoost: 0.8137

RF: 0.7959
SVR: 0.7363

[22] Historical load; weather data;
calendar rules LightGBM; XGBoost; SVM; RF

Stacking method
XGBoost and LightGBM have
obtained the higher accuracy

[23] Outdoor dry bulb
temperature; Schedules XGBoost; RF; SVR; ANN

Metrics CVRMSE
XGBoost: 62%

RF: 64%
SVR: 64%

ANN: 73%

[24]

Outdoor dry bulb temperature;
Outdoor relative humidity;

Wind speed;
Solar radiation; Hour of day

XGBoost; RF; SVR; ANN

Metrics CVRMSE
XGBoost: 4.5%

RF: 4.6%
SVR: 5.5%

ANN: 5.1%

[25]

Relative compactness; Surface
area; Wall area; Roof area;

Number of floors; Orientation;
Glazing area; Outdoor dry bulb
temperature; Outdoor relative

humidity; Solar radiation

ANN; SVM; RF; XGBoost

Metrics R2

XGBoost: 0.998
RF: 0.973

SVR: 0.972
ANN: 0.968

[26]

Aspect ratio; Relative
compactness; Glazing area; Roof

area; Surface area; Wall area;
Orientation; Number of floors;

Glazing area

ANN; SVR; RF

Metrics MAE (kW)
ANN: 1.15
SVR: 0.90
RF: 1.45
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XGBoost was first released in 2014 and has become a powerful algorithm; most Kaggle
competitions have reported it as the final winner [27,28]. XGBoost is based on a gradient
boosting algorithm for assembling weak learners into a strong learner. XGBoost can be
easily implemented using the Python, R, Julia, and Scala platforms [29]. Wang et al. [13]
predicted long-term building thermal loads using XGBoost. Five input feature variables
were considered: the day of the week, hour of the day, holiday status, temperature, and
relative humidity. They found that, in shallow machine learning, XGBoost is the best
algorithm. Yan et al. [23] obtained similar results. In the cooling season, they found that
11 input features could represent the main factors influencing cooling energy consump-
tion. The prediction performances of XGBoost (CVRMSE: 62%), RF (CVRMSE: 64%), SVR
(CVRMSE: 64%), and ANNs (CVRMSE: 73%) were not good relative to the results in [13].
Wang et al. [24] investigated models including XGBoost, RF, ANN, and SVR for predict-
ing consumption from the thermal load of a residential building in Tianjin, China. The
CVRMSE values of the prediction results from these models were as follows: RF (5.0%),
XGBoost (5.8%), SVR (6.2%), and ANN (7.0%). Although the prediction accuracy was good,
the computation cost is huge when the input feature dimensions and data size are large.
In recent years, Light Gradient Boosting Machine (LightGBM) has been proposed as a
novel and promising gradient boosting framework; it is similar to XGBoost. XGBoost and
LightGBM are various tree-boosting methods. Shi et al. [22] concluded that LightGBM
obtained a higher prediction accuracy compared to SVR in electric load forecasting. Zhang
et al. [21] proposed a model of LightGBM integrated with the Shapley Additive exPlanation
algorithm to predict energy usage and greenhouse gas emissions. The results show that the
proposed LightGBM can achieve a higher prediction accuracy compared to XGBoost, RF,
and SVR. Through the literature review, we can find that the tree-based algorithm including
LightGBM and XGBoost is a promising method to obtain a better prediction result [30].

RF is a supervised learning algorithm based on decision trees. Compared with
other algorithms, fewer parameters need to be tuned when using the RF model [31].
Ahmad et al. [11] compared three different algorithms for energy predictions. They selected
the ambient temperature and relative humidity ratio as the input feature variable, and
they found that the RF model (MAPE: 2.64%) outperforms LMSR (MAPE: 3.10%) and
NARM (MAPE: 4.21%). Except the advantages of less overfitting and higher accuracy, RF
presents the importance of the input features, which can be used in the model training
and testing processes. A feature importance analysis chooses the main features and skips
the weak features; this is critical to accelerating the computational process and ensuring
the prediction accuracy. LSTM is a type of recurrent neural network (RNN) algorithm. It
was first introduced by Hochreiter and Schnidhuber in 1997 [32]. Differing from a tradi-
tional neural network, LSTM passes the last step’s information to the next time step (i.e.,
backpropagation). With these merits, LSTM comprises an inborn network for processing
sequential data. It has advantages in solving complex and long time lag tasks, whereas
traditional RNN algorithms are not good at this. LSTM has performed better in short-term
load predictions than the linear regression, SVM, RF, and XGBoost algorithms [13,33]. The
detailed theory of LightGBM, RF, and LSTM can be seen in Section 2.2.

Different algorithms have their merits for different building energy datasets, according
to the previous studies, and the generalization performance of a prediction model is mainly
based on the quality of data. For a specific building case, the prediction accuracy of a
data-driven model is good enough now [30], while the generalization performance for
exogenous buildings is still poor in the field of building energy predictions. More papers
have investigated data-driven models using a specific building case, and these models
are usually biased and can lead to a poor generalization [34,35]. For this purpose, the
data source should cover all the possible ranges of each main variable and represent the
overall energy consumption patterns of buildings, because a data-driven model cannot
deduce the result for unseen data. To do that, previous studies had some attempts to
acquire big data from numerous buildings. For instance, 5000 residential buildings from the
Ministry of Housing Communities and Local Government (MHCLG) repository have been
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used to develop a data-driven model [36]. Meteorological variables with specific ranges
and a 5-min interval energy dataset from EnerNOC were used to develop a data-driven
interval forecasting model for building energy predictions [37]. Despite more dimensions
of information having been considered, the diversity and depth of each main variable are
still worth investigating for building a well-generalized model.

Although many studies have already investigated the prediction performances of
different data-driven algorithms, there are still two research gaps. The first gap is whether
the data-driven model is good enough to represent the physics-based tools. It is urgent
to investigate the feasibility of using a data-driven model in the field of building load
forecasting. To the best knowledge of the authors, the previous studies mostly focused on
the existing building with acquired historical data, which means that the model is well
developed on this specific building while it usually has a poor generalization for other
buildings, especially for design phase buildings. Therefore, using physics-based tools to
generate a massive dataset that covers all the common energy use scenarios could be a
promising way to develop a good generalization data-driven model. Another research gap
concerns providing a sufficient number of key input features to determine the building
energy use in data-driven models. For building owners, the difficulty in obtaining the
different dimensions of input features is not equal, and some main information might be
unavailable. Thus, presenting the prediction performance based on the number of main
feature variables is quite useful for building owners to estimate energy consumption with
a certain accuracy. Researchers have made different conclusions in the past. For instance,
Yan et al. [23] concluded that 11 input features were sufficient, whereas Wang et al. [13]
stated that 5 features were adequate. How many input features should be used in the
model to obtain a satisfying prediction result? This is still a challenge. To address these
research gaps, first, we acquired data by running massive EnergyPlus building models that
represented different buildings. Note that the data can also be acquired from any physics-
based tools or on-site data. Second, different dimensions of the key feature variables were
selected to develop three widely used models: LightGBM, RF, and LSTM in the context of
forecasting the HVAC electrical load. Notably, the HVAC electrical load was predicted as
an equivalent of a thermal load, as the electricity load is more commonly used in modern
grid-integrated buildings.

1.2. Motivations and Contributions

In practice, it is extremely difficult to measure all of the required inputs to a physics-
based building energy model. These models require thousands of input parameters derived
from prior knowledge, and their simulations are typically computationally intensive. Thus,
a data-driven model could be a promising approach to solve this problem. However,
developing a data-driven model to represent a physics-based model well is still a big
challenge. First, the value range of each input variable should fully cover the practical
situations; second, the simulation scenarios and dataset sizes should be big enough; finally,
the computational costs should be acceptable for the practical engineering applications.
According to previous studies, weather information is widely used in data-driven models;
furthermore, building physical and thermophysical variables, such as the window-to-wall
ratio and total heat transfer coefficient of the envelope, have been increasingly considered.
In data-driven models, the number of input features can influence the prediction accuracy
and computation speed. There is a tradeoff in constructing different sizes of input features
under practical conditions. Therefore, it is intriguing to conduct an overall input feature
dimension investigation when building managers can obtain different dimension building
information. In this context, developing a data-driven model by using the massive energy
data from simulation tools to represent a physics-based model is an appealing approach to
building load predictions. The main contribution of this work is developing a data-driven
model by using the massive energy data from simulation tools to represent a physics-
based model to building load predictions. These developed models are of high practical
value despite that building energy managers have enough or limited building information,
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especially for design phase buildings where the available information is lacking. The
goal of this paper is to develop a suitable data-driven model to estimate the thermal load
demand of buildings promptly and accurately, especially in the phase of building design.
For existing building, we can calibrate and evaluate the proposed model using real data.

The remainder of this paper is organized as follows. Section 2 introduces the method-
ology, the theories of the selected algorithms and evaluation indexes. Section 3 presents
the overall comparison results and discussion. Finally, the main conclusions and future
applications are presented in Section 4.

2. Methodology

Data-driven models do not require establishing thermal equilibrium equations; usu-
ally, fewer inputs are required compared to physics-based simulation tools. A data-driven
model uses data to deduce the hidden relationships between output (e.g., cooling load) and
input feature variables (e.g., weather and building physics information) using a statistical
approach. This approach is well adapted to buildings in the design phase, where detailed
input parameters may be lacking. The research outline is shown in Figure 1. The methodol-
ogy was designed with four main steps. The first step was EnergyPlus model development,
which was the main step when using the co-simulation method of Python and EnergyPlus
to obtain the required dataset. Note that the development of building energy models can
be replaced by any other physics-based simulation tools. The second step processed the
data and analyzed the key input features. The widely used input variables included these
three types: (1) time-related information, such as the day type, occupancy, and equipment
schedules; (2) weather conditions, such as the temperature, humidity, and solar radiation;
and (3) building physical parameters, such as the window-to-wall ratio and R-value of
the wall. The output targets are generally thermal loads or electricity consumption [38,39].
The third step selected the data-driven algorithm by reviewing previous studies and tuned
the selected models. Data-driven models have gained great interest in the buildings field
because of their simplicity and flexibility [40]. In this section, three promising data-driven
methods are presented, including LightGBM, RF, and LSTM. Additionally, some important
hyperparameters are tuned, and they can be seen in Tables A1–A3. The last step evaluated
the developed models and listed the future applications. It is worth noting that simulation
data was used, not real data, because we needed to change each input feature variable
within a wider range to obtain enough data points (thousands of building types and mil-
lions of data points) to train a well-generalization model, which is nearly impossible to
attain from real buildings.

2.1. Seed Model and Energy Data Source Description
2.1.1. Seed Model Description

This section describes the office building models used in EnergyPlus (Version 9.0.1)
and the ranges of the input features used in these cases to obtain energy data. Three
categories of building energy models were developed: (1) small office building, (2) medium
office building, and (3) large office building. DOE Commercial prototype building mod-
els were used as the starting point [41]. The geometry of these three building types is
shown in Table 2; all of the models have a rectangular footprint. Table 2 provides key
information on these three models. The small office building has 1 floor, the medium
office building has 3 floors, and the large office building has 12 above-grade floors and 1
basement. Furthermore, the envelope types and HVAC system types are different. Table 2
also shows the types of exterior walls, roofs, heating and cooling systems, and HVAC
system operation schedules.
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All the variables listed in Table 3 were changed respectively in different steps, and the 
total simulation time to obtain all the data was about 700 h (running on a Dell Precision 
7920 Tower, 20 kernel CPU). 

Table 3. Input variable ranges for the three types of office buildings. 

No. Input Feature Variables Unit 
Range 

Small Office Medium Office Large Office 
1 Dry Bulb  °C [−32.8, 37.0] [−32.8, 37.0] [−32.8, 37.0] 
2 Relative Humidity % [4, 100] [4, 100] [4, 100] 
3 Global Horizontal Radiation Wh/m2 [0, 964] [0, 964] [0, 964] 
4 Wind Speed m/s [0, 14.9] [0, 14.9] [0, 14.9] 

Total Floor Area 511 m2 4980 m2 46,321 m2

Exterior Wall Type Wood frame walls Steel frame walls Mass walls
Roof Type Attic roof with wood joint Built-up roof Built-up roof

Heating Type Air source heat pump with
gas furnace as backup Gas furnace One gas-fired boiler

Cooling Type Air source heat pump Packaged air conditioning

Water direct expansion
cooling coil
Two water-cooled
centrifugal chillers

HVAC Operation Schedule Weekdays: 6:00 am–7:00 pm Weekdays: 6:00 am–10:00 pm
Saturdays: 6:00 am–6:00 pm

Weekdays: 6:00 am–10:00 pm
Saturdays: 6:00 am–6:00 pm

2.1.2. Energy Data Source Description

Seventeen key input variables were changed with the appropriate steps in each En-
ergyPlus model. Notably, for each EnergyPlus model, the first four variables (No. 1–4
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in Table 3 are EnergyPlus standard TMY3 weather data) are time series data that change
for each simulation time step, whereas the other variables are constant in each step once
determined. Based on the default values provided by the office prototype building models,
we determined the ranges of these input variables. We used ±20% of the default values
as the lower and upper limits for most of the input variables [42], except for the cooling
and heating temperature set points. For these two input variables, we used ±1.11 ◦C
(±2 ◦F) of the default values as the lower and upper limits, so as to ensure that the indoor
temperature was within a preferable range. Table 3 lists the input variable ranges for these
three types of office buildings in detail. In order to simplify the data-driven model, we
selected the most important input feature variables in Table 3, and some not important
variables such as airtightness were neglected. A total of 768,000 valid data samples were
generated from the above-mentioned three EnergyPlus seed models, and the dataset and
full code to develop the data-driven model can be downloaded freely in [43]. When we
generated the dataset, the Python package named eppy was used to co-simulate with
EnergyPlus. All the variables listed in Table 3 were changed respectively in different steps,
and the total simulation time to obtain all the data was about 700 h (running on a Dell
Precision 7920 Tower, 20 kernel CPU).

Table 3. Input variable ranges for the three types of office buildings.

No. Input Feature Variables Unit
Range

Small Office Medium Office Large Office

1 Dry Bulb ◦C [−32.8, 37.0] [−32.8, 37.0] [−32.8, 37.0]
2 Relative Humidity % [4, 100] [4, 100] [4, 100]
3 Global Horizontal Radiation Wh/m2 [0, 964] [0, 964] [0, 964]
4 Wind Speed m/s [0, 14.9] [0, 14.9] [0, 14.9]
5 Total Floor Area m2 [409, 613] [3986, 5979] [37,056, 55,584]
6 Aspect Ratio - [1.2, 1.8] [1.2, 1.8] [1.2, 1.8]
7 Window-to-Wall Ratio - [0.16, 0.24] [0.26, 0.40] [0.32, 0.48]
8 Floor Height m [2.44, 3.66] [2.19, 3.29] [2.20, 3.29]
9 Exterior Wall Insulation R-value (m2·K)/W [2.46, 3.68] [2.25, 3.38] [1.31, 1.97]
10 Roof Insulation R-value (m2·K)/W [6.48, 9.72] [4.25, 6.37] [4.25, 6.37]

11 Specific Heat for Internal
Thermal Mass J/(kg·K) [968, 1452] [968, 1452] [968, 1452]

12 Cooling Temperature Set Point ◦C [22.78, 25.00] [22.89, 25.11] [22.89, 25.11]
13 Heating Temperature Set Point ◦C [20.00, 22.22] [19.89, 22.11] [19.89, 22.11]
14 Fresh air volume m3/s-m2 [0.000345, 0.000518] [0.000345, 0.000518] [0.000345, 0.000518]
15 People Density m2/person [13.27, 19.91] [14.86, 22.29] [14.86, 22.29]
16 Lighting Power Density W/m2 [6.80, 10.20] [6.80, 10.20] [6.80, 10.20]
17 Electric Equipment Power Density W/m2 [5.42, 8.14] [6.46, 9.68] [6.46, 9.68]

2.1.3. Input Feature Selection

Feature selection is critical for data-driven models. External weather conditions,
physical parameters, and operational schedules for equipment and occupant behavior are
three common input feature types [44–46]. The feature selection of each building could
be different from each other. We selected the input feature variables due to three reasons:
(1) the importance of input variables in physics-based thermal equilibrium equations,
(2) prior knowledge in building energy consumption estimation (including the literature
study and engineering experience), and (3) the difficulty to obtain in practice. Through
a literature study, we found that the outdoor dry bulb temperature, outdoor relative
humidity, solar radiation, day of the week, and hour of the day were the five most frequently
used features in data-driven models. Except for the external climate data, the physical
information of the buildings (such as the number of floors, wall area, glazing area, and
window-to-wall ratio) was used to improve the prediction accuracy. Therefore, we selected
17 widely used variables that are easier to obtain and have a great impact on building
energy consumption.
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The complexity of the input feature size influences the computational cost and predic-
tion accuracy. To study this impact, three input feature scenarios were investigated, aiming
to meet different demands for practical applications. Table 4 shows the details of these
scenarios. The key input variables represent the main weights in the machine learning
models. The use of limited input information to achieve satisfactory prediction results and
an acceptable time cost is a concern for building energy managers.

Table 4. Input feature scenarios used in our three algorithms.

Scenarios Scenario 1: Six Input Features Scenario 2: Nine Input Features Scenario 3: Fifteen Input Features

Description Weather condition Weather condition and
operational information

Weather condition, operational
information, and physical parameters

Input features

Hour of the day
Historical load data
Dry bulb temperature (◦C)
Relative humidity (%)
Global horizontal radiation
(W·h/m2)
Wind speed (m/s)

Scenario 1
Cooling temperature Set point (◦C)
Heating temperature Set point (◦C)
Fresh air volume [m3/(s·m2)]

Scenario 2
R-value of wall [m2·K/W] Internal
mass (average specific heat of the
walls) [J/(kg·K)]
Window to wall ratio
Floor height (m)
Shape coefficient (1/m)
Aspect ratio

2.2. Selected Data-Driven Algorithm Description
2.2.1. LightGBM

LightGBM is a gradient-boosting framework comprising a tree-based learning algo-
rithm, i.e., a gradient-boosting decision tree (GBDT). The GBDT is a widely used algorithm
in machine learning, owing to its efficiency and accuracy; XGBoost is a typical framework
employing this algorithm. However, when the input feature dimensions and/or data size
are large, as in modern buildings, the predictable data scale and computation speed remain
unsatisfactory. To tackle these deficiencies, LightGBM was proposed based on two novel
techniques: gradient-based one-sided sampling (GOSS) and exclusive feature bunding
(EFB). These two techniques speed up the training process by up to 20 times, with almost
the same accuracy as the traditional GBDT algorithm [47]. LightGBM was first released on
17 October 2016 as a part of Microsoft Corporation’s “Distributed Machine Learning Toolkit”
project [48]. It was designed to be distributed and efficient, with the advantages of a faster
training speed, higher efficiency, lower memory usage, parallel support, and the ability to
handle large-scale data. LightGBM is a promising algorithm for big data [47,49]. GBDT is a
mature algorithm, and the detailed theory thereof is discussed in other references [13,28];
thus, in this study, we only introduce the theories for GOSS and EFB in detail.

GOSS is a technique for balancing data information reduction and prediction perfor-
mance. GOSS reduces the computation costs by distinguishing between different gradients
of instances, retaining larger gradient instances while randomly sampling smaller gra-
dients and thereby reducing the computation memory costs. The gradient magnitude
of the instance represents the training error; thus, an instance with a small gradient can
be eliminated, as it is already well trained. To avoid large changes in the training data
distribution from the elimination of some instances, GOSS also randomly samples small
gradient instances to secure the integrity of the original data. This way, although GOSS
reduces the number of instances, the generalization error is close to that calculated using
the full data instances. To prove that, the variance gain Vj(d) of feature j at splitting point d
is defined as shown in Equation (1).

Vj|O(d) =
1
A
(

(
∑
{

xiεO : xij ≤ d
}

gi
)2

nj
l|O(d)

+

(
∑
{

xiεO : xij > d
}

gi
)2

nj
r|O(d)

) (1)
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In the above, A = ∑ I[xiεO], nj
l|O(d) = ∑ I

[
xiεO : xij ≤ d

]
, and nj

r|O(d) = ∑ I[
xiεO : xij > d

]
. x is the training set with i instances, gi is the negative gradient of the

loss function, and O is the training dataset on a fixed node of the decision tree.
The training instances are initially ranked by their absolute gradients in descending

order; next, the top a% of the larger gradients are selected as subset A; then, b% of the
remaining gradients are randomly selected as subset B. Thus, the estimated variance gain
Ṽj(d) over the subset A ∪ B can be defined as shown in Equation (2).

Ṽj(d) =
1
n
(

(
∑{xiεAl}gi +

1−a
b ∑{xiεBl}gi

)2

nj
l(d)

+

(
∑{xiεAr}gi +

1−a
b ∑{xiεBr}gi

)2

nj
r(d)

) (2)

Here, Al =
{

xi ∈ A : xij ≤ d
}

, Ar =
{

xi ∈ A : xij > d
}

, Bl =
{

xi ∈ B : xij ≤ d
}

, and
Br =

{
xi ∈ B : xij > d

}
. There is a theory for proving that GOSS would not lose much

training accuracy as compared with the full dataset [47], i.e., εGOSS
gen (d) =

∣∣∣Ṽj(d)−V∗(d)
∣∣∣ ≤∣∣∣Ṽj(d)−Vj(d)

∣∣∣+ ∣∣Vj(d)−V∗(d)
∣∣ , εGOSS(d) + εgen(d).

EFB is another technique for reducing feature dimensions to improve the compu-
tational efficiency and is based on feature bundling. Usually, the bundled features are
mutually exclusive, e.g., one feature is zero and the other is non-zero; therefore, these
two features can be bundled together without losing information. In the case where two
features are not mutually exclusive, a “conflict ratio” can be used to measure the degree of
non-exclusion. When this ratio is small, the two features can be bound without excessively
affecting the final accuracy. There are three steps in the EFB method. In Step 1, the features
are sorted according to the total number of non-zero values; in Step 2, the conflict ratio
between different features is calculated; and in Step 3, the conflict ratio is minimized by iter-
ating through each feature and then binding the features. In this way, the time complexity
is reduced from O

(
Ndata ∗ N f eature

)
to O(Ndata ∗ Nbundle), where Nbundle � N f eature.

2.2.2. Random Forest (RF)

The diagrammatic prediction process of RF is shown in Figure 2. Each decision tree is
randomly formed with different features and training samples, and the trees can be trained
in parallel. Thus, the prediction accuracy is higher than that of a single decision tree. In the
RF model, the number of trees and depth of a tree are the two key parameters that must
be tuned; therefore, fewer parameters must be set than in other algorithms [12,31,50]. The
RF algorithm includes four main processes: bootstrap resampling, bagging and out-of-bag
error (OOBE) estimation, random feature selection, and full-depth decision tree growth [51],
as shown in Figure 2. First, N samples from the training dataset Sn are randomly selected
as bootstrap samples chosen with replacements, i.e., the same sample (Xi, Yi) may appear
repeatedly. Second, the bagging technique selects samples from the bootstrap samples N;
the remaining samples comprise the out-of-bag dataset. Third, there is a random selection
of a predefined number p of total features k, and RF attempts to search for the best cutting
among these p features. Finally, the best cutting is set by minimizing the cost function until
the full-depth decision tree grows. The OOBE technique, or generalization error, is highly
effective for estimating the generalization ability of the constructed model. In view of these
technologies, the main advantage of the RF algorithm is its immunity to noise [51,52].
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2.2.3. Long Short-Term Memory (LSTM)

LSTM is a type of RNN algorithm. Figure 3 shows the principle of LSTM. It is an inborn
network capable of accurately modeling complex multivariate sequences (such as building
energy demands), although this increases its computation costs [53]. It has advantages in
solving complex and long time lag tasks that traditional RNN does not. In one study [13],
LSTM performed better for the load prediction than the SVM and XGBoost algorithms.
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Equations (3) and (4) define the architecture of the basic RNN algorithm. In this
algorithm, only the memory of the last time step t−1 can be passed to time step t. However,
the longer memory of the past time steps t−n can be passed by introducing three special
gates and two memory cells: input gate it, forget gate f t, and output gate ot are defined as
shown in Equations (5)–(7), respectively; the candidate memory cell c̃t and memory cell ct

are defined in Equations (8) and (9), respectively.

at
RNN = g

(
Wa·

[
at−1, xt

]
+ ba

)
(3)

yt
RNN = g′

(
Wa
′·at

RNN + by
)

(4)

it = σ
(

Wi·
[

at−1, xt
]
+ bi

)
(5)

f t = σ
(

W f ·
[

at−1, xt
]
+ b f

)
(6)

ot = σ
(

Wo·
[

at−1, xt
]
+ bo

)
(7)

c̃t = tan h
(

Wc·
[

at−1, xt
]
+ bc

)
(8)

ct = f t·c̃t−1 + it·c̃t (9)

at
LSTM = ot·tan h

(
ct) (10)

yt
LSTM = g′

(
Wa
′·at

LSTM + by
)

(11)

In the above, g(x) and g′(x) are two activation functions; at is the activation function
at time step t; xt and yt are the input and output at time step t, respectively; b is the bias; W
is the weight factor; σ(x) is the sigmoid function, which is defined in Equation (13); and
tanh(x) is the hyperbolic tangent function, as defined in Equation (12).

tan h(x) =
e2x − 1
e2x + 1

(12)

σ(x) =
ex

ex + 1
(13)

2.3. Data-Driven Model Development Process

The development process (i.e., Step 3 in Figure 1) of our proposed data is shown in
Figure 4. First, the massive dataset is divided into two sets, including training and test
datasets after data pre-processing. Second, feature engineering is implemented for the
model inputs, which includes the weather conditions (e.g., temperature, humidity, and solar
radiation); building physical parameters (e.g., R-value of the wall, floor height, internal
mass, and Shape coefficient); and operational information (e.g., temperature setting and
fresh air volume). The model output is the HVAC electrical load. Then, different models
can be trained, and the hyperparameters are required to tune for better results. Last is using
the test dataset to test and evaluate the developed model.

2.4. Prediction Performance Indices

To evaluate the prediction performances of different algorithms, three indices are gener-
ally used: the CVRMSE, root mean squared error (RMSE), and squared correlation coefficient
(R2). The CVRMSE is a scale-independent indicator that is normalized by averaging the RMSE.
The CVRMSE has been used in studies [13,54] and is recommended by the American Society
of Heating, Refrigerating and Air-conditioning Engineers’ (ASHRAE) Guidelines 14 [55];
the RMSE is a scale-dependent indicator and thus maintains the same scale as the original
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data; and R2 is the coefficient of determination, which ranges from 0 to 1 and can reflect the
goodness of fit. These three indices are defined in Equations (14)–(16), respectively.

CVRMSE =

√
∑n

i=1(y̌i − yi)
2/n

∑n
i=1 yi/n

(14)

RMSE =

√
n

∑
i=1

(y̌i − yi)
2/n (15)

R2 = 1− ∑n
i=1(yi − y̌i)

2

∑n
i=1(yi − y)2 (16)

where y̌i, yi, and y represent the predicted value of sample i, the actual value of sample i,
and the mean value of all sample datasets, respectively; n denotes the number of samples.
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3. Results and Discussion

The prediction performances were calculated and compared under the above-mentioned
scenarios, and the prediction granularity is 1 h. For each scenario, it is worth noting that
we first split the 768,000 data samples into training and test sets at a ratio of 99:1 because
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of the big size of the dataset [56], although the commonly used ratio is 80:20 or 70:30 for
normal-sized datasets [36] Second, different feature scenarios were selected as the inputs,
and the hourly predicted HVAC electrical load was the output. Finally, we applied the
five-fold cross-validation approach implemented in the scikit-learn Python package for the
hyperparameter tuning in our models. The hyperparameter searching range and optimum
results are shown in Tables A1–A3. All of the models were trained and tested on identical
datasets. We compared three different machine learning algorithms (LightGBM, RF, and
LSTM) under these three scenarios. To address cases with (such as existing buildings) and
with no (such as buildings in the design phase) historical energy load data available, the
input features were applied with and without the historical HVAC electricity load. In this
paper, we obtained all the required HVAC electricity loads at the stage where we simulated
all the seed models mentioned in Section 2.1. It is worth noting that we categorized the
cases in the next three scenarios by distinguishing the use of historical load data or not. In
all scenarios, three prediction performance indices were used to evaluate the prediction
performance on the testing dataset: RMSE, CVRMSE, and R2.

3.1. Scenario 1: Six Input Features

The simplified scenario used only six key input features to develop the model. As
shown in Table 5, LightGBM has the highest prediction accuracy (CVRMSE: 7.14%) and
fastest computational speed (5.4 s); the results from LSTM are the worst, not only in regard
to accuracy (CVRMSE: 26.15%) but also to computational cost (716.5 s). If the CVRMSE is
below 30% when the prediction step is hourly, the model is considerably acceptable and
sufficiently close to physical reality for engineering purposes [57]. By this criterion, the
LSTM result without the historical load is unacceptable. Additionally, the computation cost
of the LSTM is more than a hundred times larger than that of LightGBM; this is consistent
with our theoretical analysis in Section 2 and corresponds to the conclusions from the
literature, i.e., that LSTM is recommended for small datasets and short-term predictions.
Figure 5 presents the hourly predicted and actual HVAC electrical load profiles on the
testing dataset; ten days are randomly selected from the testing data for visualization
purposes. It is evident that the prediction performance of the LSTM algorithm is quite poor.
All the models provide better prediction results when the historical load data is considered.
The LSTM algorithm that does not use historical load data performs the worst, and the
prediction deviation is large during the peak and valley load times.

Table 5. Comparison results of Scenario 1 with and without historical load data.

Scenario 1
Long Short-Term
Memory (LSTM)

(with)

LSTM
(without)

LightGBM
(with)

LightGBM
(without)

Random Forest
(RF)

(with)

RF
(without)

Root mean square
error (RMSE) 1.07 2.26 0.29 0.71 0.76 1.02

Coefficient of
variance of

RMSE (CVRMSE)
26.15% 55.32% 7.14% 17.40% 18.59% 24.85%

R2 0.896968 0.538813 0.992327 0.954380 0.947891 0.906964
Computation

Time(s) 716.5 719.4 5.4 6.1 19.1 10.7
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Figure 5. Hourly prediction performances using six input features. 

3.2. Scenario 2: Nine Input Features 
As mentioned in Section 1, HVAC energy consumption is influenced by multiple fac-

tors, such as weather conditions, building physics, and operational parameters. Only six 
input features were used in Scenario 1, and the prediction results might not be convincing. 
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3.2. Scenario 2: Nine Input Features

As mentioned in Section 1, HVAC energy consumption is influenced by multiple
factors, such as weather conditions, building physics, and operational parameters. Only six
input features were used in Scenario 1, and the prediction results might not be convincing.
Therefore, we added operational parameters (room temperature setting and fresh air
volume) to boost the knowledge learning level in the training models. From comparing
Tables 5 and 6, it can be seen that the prediction accuracy is slightly improved in all
three models, although the computation cost also increases. By adding these operational
parameters, the mean improvement percentages in the CVRMSE are approximately 10.9%,
17.6%, and 0.5% for LSTM, LightGBM, and RF, respectively. This improvement is evident in
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the LightGBM and LSTM models. As shown in Figure 6, the prediction deviation remains
large during the peak and valley load times for the LSTM.

Table 6. Comparison results of Scenario 2 with and without historical load data.

Scenario 2 LSTM
(with)

LSTM
(without)

LightGBM
(with)

LightGBM
(without)

RF
(with)

RF
(without)

RMSE 1.04 1.83 0.25 0.57 0.76 1.01
CVRMSE 25.42% 44.79% 6.04% 13.94% 18.58% 24.61%

R2 0.902582 0.697689 0.994506 0.970706 0.947979 0.908734
Computation Time(s) 765.0 780.0 6.5 5.7 29.2 22.6
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3.3. Scenario 3: Fifteen Input Features

In addition to the features in Scenario 2, the physical information of the building can
be used to improve the prediction accuracy. We used 15 key input features to train the
models in Scenario 3; three physical aspects (building shape, R-values of walls, and building
thermal mass) were considered. Table 7 shows the hourly results from the different models
with and without the historical load data. The best result for the CVRMSE was 5.25%
in LightGBM, a promising result for the field of thermal load prediction. Furthermore,
the computation time was only 7 s. The best results from the LSTM and RF approaches
were 22.06% and 18.54%, respectively, i.e., close to the results from the previous study
discussed in the Introduction. By adding six more building physical parameters, the mean
improvement percentage of the CVRMSE was approximately 12.2%, 30.3%, and 1.6% for
the LSTM, LightGBM, and RF approaches, respectively. The CVRMSE values of all three
models were lower than 30%, indicating that they were all acceptable and sufficiently
close to physical reality for engineering purposes. Figures 5–7 show that the prediction is
gradually improved by employing additional input features.

Table 7. Comparison results of Scenario 3 with and without historical load data.

Scenario 3 LSTM
(with)

LSTM
(without)

LightGBM
(with)

LightGBM
(without)

RF
(with)

RF
(without)

RMSE 0.90 1.63 0.21 0.3 0.76 0.98
CVRMSE 22.06% 39.75% 5.25% 7.31% 18.54% 23.88%

R2 0.926666 0.761820 0.995854 0.991937 0.948189 0.914036
Computation Time(s) 756.8 751.4 7.0 7.4 44.6 36.5
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3.4. Discussion

Generally, the prediction accuracy can be improved when more information of the
building is used in the data-driven models. As shown in Figure 8, the CVRMSE of scenario
3 with the historical HVAC load data is the best in these three models, although the
improvement is higher in LightGBM and LSTM. In the model of RF, different scenarios
have a close prediction accuracy that means additional building information is not necessary
to improve its accuracy. We can also find that the historical HVAC load data is important to
improve the accuracy of the models. All in all, a CVRMSE of 7.1% can be achieved when
only the weather information is used, and the highest accuracy of 5.3% reached when the
weather and operational and physical information of the building structure are considered.
Except for these fifteen input features, adding more information such as the occupant’s
behavior is worthwhile as a further study in the future.

As shown in Figure 8, LightGBM is the best algorithm in building thermal energy
prediction. Generally, the more data samples trained in the model training process, the
better the prediction accuracy, as more hidden knowledge between the inputs and outputs
can be learned. We investigated this effect by increasing the size of the training dataset
sample in LightGBM, and Figure 9 shows the results. When we used 76,800 data samples,
the prediction was the worst; the prediction accuracy generally improved as the sample
size increased from 76,800 to 768,000. Additional data samples improved the prediction
accuracy but also increased the computation cost.

A quantified investigation of the feature importance is also interesting for researchers.
Therefore, we investigated the feature importance in the LightGBM model. Figure 10 ranks
the importance of these fifteen input features. In our building’s case, the results showed
that the day of hours, outdoor dry bulb temperature, historical load data, global horizontal
radiation, and relative humidity are the five most important features for building thermal
load prediction. However, other features that have lower importance values can still be
used to further improve the prediction accuracy.
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Figure 10. Feature importance ranking in LightGBM. (HOD: Hour of the day, DB: Dry bulb tempera-
ture, EL: Electrical load, GHR: Global horizontal radiation, RH: Relative humidity, WS: Wind speed,
HTS: Heating temperature set point, FH: Floor height, CTS: Cooling temperature set point, SC: Shape
coefficient, FAV: Fresh air volume, WWR: Window-to-wall ratio, AR: Aspect ratio, RW: R-value of
wall, and IM: Internal mass.)

As using more features can improve the predictive accuracy, we investigated the effect
of the number of features on the accuracy and computation speed in these three algorithms.
The computational expense comparison of this study was performed on Windows 10 with
a 2.6 GHz processor (Intel Corporation Core i7-10700) and 16 GB RAM memory. The
Spyder scientific Python-integrated development environment was used to implement the
prediction tasks. As shown in Figure 11, LightGBM requires the least computation time
for model training and testing. In contrast, LSTM spends much more time. Generally, the
computation expense increases with the input feature size. The model development time
reaches the maximum when all 15 input features are considered. The LSTM model takes
much longer time than the other two models, which is not suitable for a real-time energy
management control system. The computational time of LightGBM is very short (several
seconds), which makes LightGBM a suitable model for a real-time control system. Note that
the acquisition of the original massive dataset is time-consuming, as we spent about 700 h
to obtain the dataset using a power machine (Dell Precision 7920 Tower, 20 kernel CPU).
The acquisition of the dataset process is time-consuming; however, this developed model
achieves higher prediction accuracy, and it can be easily generalized for various energy use
scenarios and building types once it is well trained. In this way, the model developers do
not need to develop a specific model for different buildings and energy use scenarios.
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4. Conclusions

A well-developed data-driven model to represent the physics-based tools is a challenge
in both academic and practical fields. Traditionally, well-designed physics-based models,
i.e., white-box models, have been widely applied. However, a white-box model requires
a massive amount of detailed input parameters, which can be troublesome and difficult
for engineers, especially for a building in the design phase. A fast and accurate building
thermal load prediction method is critically important for optimal HVAC control, energy
demand-side management, smart building management, and other tasks. In this study,
therefore, we ran a big amount of EnergyPlus simulations to obtain massive energy data
that covers the common energy use scenarios to develop a good generalization data-
driven model. Using this data source, three machine learning models were developed and
compared in three different input feature scenarios. Upon completion of the investigation,
the following conclusions were reached.

(1) LightGBM is the most accurate and fastest prediction model. In the best scenario, the
CVRMSE and R2 of LightGBM are 5.25% and 0.99, respectively. Compared with the
results of the other two algorithms and those in the existing literature, LightGBM is
the most promising and best algorithm for building thermal load prediction.

(2) By training with the large amount of energy data generated by physics-based tools
or on-site data, a data-driven model is able to represent a physics-based tool with
comparable accuracy.

(3) The dimensions of the input features influence the prediction performance. Compared
with a scenario using only weather information, the CVRMSE can be further improved
when physical and operational information are considered. Although better accuracy
is achieved with bigger dimensions of input features, it impacts the computational
speed. Therefore, there will always be a tradeoff between the prediction accuracy
demand and prediction speed tolerance.

The findings and the proposed models in this study are useful for real applications,
such as smart building energy management, baseline calculation of demand response
programs, and grid-integrated efficient building improvements. LightGBM is strongly
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recommended when dealing with large amounts of data, as it is faster and more robust.
Building managers and engineers do not need to build a sophisticated physical model
(such as the EnergyPlus model) to calculate the energy demand. Several basic inputs are
able to reduce the tiresome tasks ordinarily required beforehand and can be used to obtain
the energy demand with acceptable accuracy. In the early design phases of buildings with
a lack of building information, only basic building and weather information are required to
implement the prediction task. For existing buildings, not only considering the 17 variables
mentioned above but more detailed building physics information, the operational schedule,
and more historical load data can be used to rebuild the data-driven model and further
improve the prediction performance.
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Nomenclature

ANN Artificial neural networks
AR Aspect ratio
CTS Cooling temperature set point
CV Coefficient of variation
CVRMSE Coefficient of variation of root mean square error
DB Dry bulb temperature
EL Electrical load
ELM Extreme learning machine
FAV Fresh air volume
FH Floor height
GHR Global horizontal radiation
HOD Hour of the day
HTS Heating temperature set point
IM Internal mass
MAPE Mean absolute percentage error
MARS Multivariate adaptive regression splines
MLP Multilayer layer perceptron
NARM Nonlinear autoregressive model
RF Random forest
RH Relative humidity
RNN Recurrent neural networks
RW R-value of wall
SC Shape coefficient
SVM Support vector machine
SVR Support vector regression
WS Wind speed
WWR Window to wall ratio
XGBoost Extreme gradient boosting

https://github.com/Bob05757/Key-inputs-setting-and-Energy-Data
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Appendix A

Hyperparameter tuning information with five-fold cross-validation in LSTM, Light-
GBM, and RF.

Table A1. Hyperparameter grid search and tuning results in LSTM.

Hyperparameter Description Grid Searching Range Selected

�activation Activation functions Sigmoid; Tanh; Relu Relu
�optimizer Optimization algorithms Adam; RMSprop; Adagrad; SGD RMSprop

�loss Loss function
Mean Square Error; Mean Absolute
Error; Mean Squared
Logarithmic Error

Mean Square Error

�units Number of memory cells range (20, 200, 20) 60
�epochs Number of epochs range (20, 200, 20) 100
�batch_size Number of batch size [20, 32, 60, 100, 500] 60

Table A2. Hyperparameter grid search and tuning results in LightGBM.

Hyper-Parameters Description Grid Searching Range Selected

learning_rate Step size shrinkage used in the update to
prevent overfitting range (0.02, 0.12, 0.02) 0.1

n_estimators Number of estimators range (50, 400, 50) 350
max_depth The depth of tree model range (3, 10, 1) 9

num_leaves the main parameter to control the
complexity of the tree model range (5, 500, 5) 65

max_bin the maximum number of bins stored
in feature range (5, 256, 10) 95

Table A3. Hyperparameter grid search and tuning results in RF.

Hyperparameters Description Grid Searching Range Selected

n_estimators The number of trees in the forest range (10, 110, 10) 20
max_depth The maximum depth of the tree range (2, 20, 2) 8

min_sample_split The minimum number of samples
required to split an internal node range (1, 11, 1) 6

max_features The number of features to consider when
looking for the best split [‘auto’, ‘sqrt’, ‘log2’] ‘auto’
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