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Abstract: A steel damper column is an energy-dissipating member that is suitable for reinforced
concrete (RC) buildings and multistory housing. To assess the seismic performance of buildings with
steel damper columns, the peak displacement of the whole building and the energy dissipation de-
mand of the dampers must be evaluated. This article proposes an energy-based prediction procedure
for the peak and cumulative response of an RC frame building with steel damper columns. The
proposed procedure considers two energy-related seismic intensity parameters, namely the maximum
momentary input energy and the total input energy. The peak displacement is predicted considering
the energy balance during a half cycle of the structural response, using the maximum momentary
input energy. The energy dissipation demand of the dampers is then predicted considering the energy
balance during a whole response cycle using the total input energy. The local responses (e.g., peak
drift, maximum plastic rotation of beams, maximum shear strain, and energy dissipation demand of
dampers) are predicted using pushover analysis. Numerical analysis results for 8- and 16-story RC
buildings show that the proposed prediction method achieves satisfactory accuracy.

Keywords: reinforced concrete moment-resisting frame; steel damper column; peak response; cumulative
response; passive control structure; momentary energy input; pushover analysis

1. Introduction
1.1. Background

In earthquake-prone countries such as Japan, controlling the seismic damage suf-
fered by a structure is an important issue in building design. Since the beginning of the
21st century, a dual system in which sacrificial members absorb the seismic energy prior to
the beams and columns (e.g., the damage-tolerant structure proposed by Wada et al. [1])
has become a popular solution for creating structures with superior seismic performance.

Steel damper columns are energy-dissipating sacrificial members [2]. They are suitable
for reinforced concrete (RC) housing because they minimize the obstacles in architec-
tural planning. The authors have previously investigated the application of steel damper
columns to RC building structures [3–7]. The nonlinear seismic response of existing
moment-resisting frames (MRFs) retrofitted with steel damper columns was first inves-
tigated [3,4], and then a simplified displacement-based seismic design procedure for RC
MRFs with steel damper columns was presented [5]. The influence of the strength balance
between the steel damper columns and the surrounding beams in RC MRFs on the nonlin-
ear response has also been investigated [6]. The nonlinear response of RC MRFs with steel
damper columns designed according to the simplified design procedure described in [5]
subject to seismic sequences was recently examined [7].

The peak deformation and cumulative hysteresis energy are essential parameters
in assessing the seismic performance of structural members. The cumulative hysteresis
energy is widely used to represent the low-cycle fatigue effect. For RC members, the
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Park–Ang damage model [8] defines the structural damage index as a linear combination
of the damage caused by the peak displacement and cumulative hysteresis energy. In
addition, the effect of low-cycle fatigue is essential in evaluating the damage suffered by
steel dampers [9]. Therefore, to assess the seismic performance of RC buildings with steel
damper columns, the peak displacement of the whole building and the cumulative energy
dissipation demand must be evaluated.

There have been many studies of the energy responses of structures [10–31]. Energy-
based seismic engineering was recently investigated by Benavent-Climent and Mollaioli [24].
The total input energy [10,11] is a seismic intensity parameter related to the cumulative
energy. Several studies have investigated the total input energy spectra [12–16], whereas
other studies have focused on predicting the structural damage to frame buildings via
nonlinear static (pushover) analysis [17–19]. Specifically, Fajfar and Gaspersic [17] proposed
a procedure for evaluating the seismic damage of RC MRFs based on the N2 method [32]:
in their procedure, the Park–Ang damage index of each member is evaluated in terms of
a dimensionless energy parameter γ proposed by Fajfar [20]. D’Ambrisi and Mezzi [21]
have proposed an energy-based method of nonlinear static analysis for predicting the peak
response of a planar RC MRF; however, the cumulative energy of the structural members
cannot be evaluated using their method. Ucar [22] has derived the theoretical formulation
of the energy input to multi-degree-of-freedom systems based on modal contributions.
Yalçın et al. [23] proposed an energy-based design approach for RC ductile frame structures.
However, there are few studies concerning the procedures for predicting the peak displace-
ment and the cumulative energy dissipation demands of buildings with hysteresis dampers:
although the procedure proposed by Fajfar and Gaspersic [17] is capable of predicting the
peak and cumulative response of a whole building, its applicability is limited to a ductile
RC frame without dampers.

Inoue et al. [25–27] proposed the maximum momentary input energy as an intensity
parameter related to the peak displacement. The prediction procedure for the nonlinear
peak displacement of RC structures subjected to strong unidirectional ground motion has
been verified by analytical [25] and experimental research [26,27]. In these studies, the peak
displacement is predicted by equating the maximum momentary input energy and cumu-
lative hysteresis energy during a half cycle of the structural response. The present authors
investigated the relationship between the maximum momentary input energy and the total
input energy of an elastic single-degree-of-freedom (SDOF) model [28], and extended the
concept of the momentary input energy to bidirectional horizontal excitation [29,30]. The
bidirectional momentary input energy was then used to predict the peak response of an
irregular base-isolated building subjected to bidirectional excitation [31].

The authors believe that the use of two energy-related seismic intensity parameters,
namely the maximum momentary input energy and the total input energy, is optimal
for evaluating the seismic performance of RC MRFs with steel damper columns. This is
because the peak displacement can be predicted using the maximum momentary input
energy, while the cumulative energy dissipation demand can be predicted using the total
input energy. As shown in previous studies [28,30], both energy-related seismic intensity
parameters can be accurately evaluated using a time-varying function of the momentary
energy input. Therefore, the application of this function of the momentary input energy
to the seismic response evaluation of RC MRFs with steel damper columns represents a
promising solution.

1.2. Objectives

Against the above background, the following questions are addressed in this article.

• Is the time-varying function formulated in our previous study [28] applicable for
predicting the seismic energy input to RC MRFs with steel damper columns?

• Can the peak response of RC MRFs with steel damper columns be accurately estimated
from the predicted maximum momentary input energy?
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• After evaluating the total input energy to the whole building, how can the cumula-
tive strain energy of each member be evaluated? Is pushover analysis applicable in
determining the distribution of the cumulative strain energy?

The present article proposes a nonlinear static procedure for predicting the seismic
demand of regular RC ductile MRFs with steel damper columns. Unlike the procedure
investigated in previous studies [3,4], the proposed approach predicts both the peak and
the cumulative responses. The updated procedure enables the implementation of a time-
varying function of the momentary energy input [28]. The maximum momentary input
energy and the total input energy of an equivalent single-degree-of-freedom (SDOF) model
representing the first modal response are predicted from this time-varying function. The
peak response of the building is then predicted from the maximum momentary input
energy considering the energy balance during a half cycle of the structural response, while
the cumulative response is predicted from the total input energy considering the energy
balance during a whole seismic event.

In this study, it is assumed that the building oscillates predominantly in the first mode;
the influence of higher modal responses is not considered for the simplicity of discussion.
Several studies have applied pushover analysis to planar frames considering higher-mode
responses [33–40]. However, the application of multimodal pushover analysis is beyond
the scope of the current study. Ucar [22] has shown that most of the input energy comes
from the fundamental mode and that the contribution of higher modes is generally small.
Therefore, in this study, the cumulative energy dissipation demand of RC MRFs with steel
damper columns is predicted based only on the fundamental modal response. Because this
study is focused on the seismic response of RC MRFs with steel damper columns, we do
not consider the capability of the presented procedure for a bare RC MRF or an RC MRF
with buckling-restrained braces.

The remainder of this article is organized as follows. Section 2 outlines the proposed
procedure, before Section 3 presents two RC MRFs with steel damper columns and in-
troduces the ground acceleration data used in the nonlinear time-history analysis. The
predictions of seismic demand are validated in Section 4. Section 5 discusses the applicabil-
ity of the time-varying function of the momentary energy input for predicting the energy
response and analyzes the relationship between the peak equivalent displacement and the
maximum momentary input energy of the first modal response. The conclusions to this
study and future directions for research are discussed in Section 6.

2. Description of the Proposed Procedure

Figure 1 shows the outline of the proposed procedure.
In this procedure, the following assumptions are made.

• The building oscillates predominantly in the first mode.
• All RC MRFs are designed according to the strong-column/weak-beam concept, except

at the foundation level beam and in the case of the steel damper columns installed in
an RC frame. In the latter case, at the joints between an RC beam and a steel damper
column, the RC beam is designed to be sufficiently stronger than the yield strength of
the steel damper column considering strain hardening. Sufficient shear reinforcement
of all RC members is provided to prevent premature shear failure. The failure of
beam–column joints is not considered, as it is assumed that sufficient reinforcement
is provided.

• The hysteresis behavior of the RC members is assumed to follow the stiffness-degrading
rule, which is typical in the case of ductile RC members dominated by flexural behav-
ior. The influences of pinching behavior [41] and stiffness degradation after yielding
as a result of cyclic loading are neglected. In addition, the hysteresis behavior of
the damper panel is assumed to be elastic–perfectly-plastic. The influence of the
strain-hardening effect observed in low-yield-strength steel is not considered.
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The proposed procedure consists of three stages. In the first stage, the properties
of the equivalent SDOF model are calculated using the pushover analysis results of the
building model. The peak and cumulative responses of the equivalent SDOF model are
then evaluated. In this stage, the maximum momentary input energy per unit mass
(∆E1

∗
max/M1

∗) and the cumulative input energy per unit mass (EI1
∗/M1

∗) are calculated
based on the time-varying function of the momentary energy input, as formulated in
our previous study [28]. The peak equivalent displacement of the first modal response
(D1
∗

max) is evaluated using ∆E1
∗

max/M1
∗. In the third stage, the local seismic demand of

the building model is predicted using the peak and cumulative response of the equivalent
SDOF model (e.g., D1

∗
max and EI1

∗/M1
∗) and the results of the pushover analysis.
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2.1. Stage 1: Calculation of the Equivalent SDOF Model Properties
2.1.1. Stage 1-1: Pushover Analysis of the Building Model

A pushover analysis of the N-story frame building model is first carried out. The
equivalent displacement and acceleration at loading step n (nD1

∗ and n A1
∗, respectively)

are calculated from Equations (1) and (2), assuming that the displacement vector at loading
step n (nd) is proportional to the first mode vector at loading step n (nΓ1nϕ1):

nD1
∗ = nΓ1nϕ1

TMnd

n M1
∗ = ndTMnd

ndTM1
, (1)

n A1
∗ = nΓ1nϕ1

T
nfR

n M1
∗ = ndT

nfR

ndTM1
, (2)

n M1
∗ = nΓ1nϕ1

TM1 =

(
ndTM1

)2

ndTMnd
, (3)

nd =
{

ny1 · · · nyN
}T, (4)

nfR =
{

n fR1 · · · n fRN
}T, (5)

M =

m1 0
. . .

0 mN

, (6)

1 =
{

1 · · · 1
}T. (7)

In Equations (1)–(7), mj is the mass of the jth floor and nfR is the restoring force vector
at step n. The contributions of the RC MRFs and the steel damper columns to the equivalent
acceleration at step n (n A1 f

∗ and n A1d
∗, respectively) are calculated from

n A1 f
∗ = nΓ1nϕ1

T
nfRf

n M1
∗ = ndT

nfRf

ndTM1
, (8)

n A1d
∗ = nΓ1nϕ1

T
nfRd

n M1
∗ = ndT

nfRd

ndTM1
, (9)

nfRf =
{

n fR f 1 · · · n fR f N

}T
, (10)

nfRd =
{

n fRd1 · · · n fRdN
}T. (11)

In Equations (8)–(11), nfRf and nfRd denote the restoring forces of the RC MRFs and
steel damper columns, respectively. The restoring force vector nfR is equal to the sum
of nfRf and nfRd, which are calculated from the shear forces of the RC columns and steel
damper columns, respectively.

For simplicity, the n A1 f
∗-nD1

∗ and n A1d
∗-nD1

∗ relationships are idealized by bilinear
curves, where the “yield” point of the idealized A1 f

∗-D1
∗ relationship is YF (D1y f

∗, A1y f
∗)

and that of the idealized A1d
∗-D1

∗ relationship is YD (D1yd
∗, A1yd

∗).

2.1.2. Stage 1-2: Calculation of the Capacity Curve of the Equivalent SDOF Model

Next, the capacity curve of the equivalent SDOF model is calculated. In this procedure,
the relation between the equivalent velocity of the maximum momentary input energy
(V∆E1

∗) and the equivalent displacement D1
∗ is referred to as the capacity curve.

The energy dissipated in half a cycle per unit mass of the equivalent SDOF model
(∆E1

∗
max/M1

∗) is calculated as
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n∆E∗1max

n M1
∗ =

n∆Eµ1 f
∗

n M1
∗ +

n∆Eµ1d
∗

n M1
∗ + n∆ED1

∗

n M1
∗ . (12)

In Equation (12), n∆Eµ1 f
∗/n M1

∗ and n∆Eµ1d
∗/n M1

∗ are the contributions from the
hysteretic dissipated energies of the RC MRFs and steel damper columns, respectively,
while n∆ED1

∗/n M1
∗ is the contribution from viscous damping.

The contribution from the hysteretic dissipated energy of the RC MRFs is calculated as

n∆Eµ1 f
∗

n M1
∗ = A1y f

∗D1y f
∗ f̃F

(
nµ f

)
, (13)

f̃F

(
nµ f

)
=

{
1
3 nµ f

2 : 0 ≤ nµ f ≤ 1

nµ f −
2
3
√

nµ f : nµ f ≥ 1
, (14)

nµ f = nD1
∗/D1y f

∗. (15)

In Equations (13)–(15), nµ f is the global ductility of the RC MRFs. The contribution
from the hysteretic dissipated energy of the steel damper columns is calculated as

n∆Eµ1d
∗

n M1
∗ = A1yd

∗D1yd
∗ f̃D(nµd), (16)

f̃D(nµd) =

{ 1
3 nµd

2 : 0 ≤ nµd ≤ 1
1
6

(
9nµd − 12 + 5

nµd

)
: nµd ≥ 1

, (17)

nµd = nD1
∗/D1yd

∗. (18)

In Equations (16)–(18), nµd is the global ductility of the steel damper columns. The
contribution from viscous damping is calculated as

n∆ED1
∗

n M1
∗ =

7πh1 f

12
nω1 f

1ω1 f
n A1 f

∗
nD1

∗, (19)

nω1 f =
√

n A1 f
∗/nD1

∗, (20)

where h1 f is the viscous damping ratio of the RC MRFs for the first modal response in the
elastic range. The formulation of Equations (12)–(20) is described in Appendix A.

The equivalent velocity of the maximum momentary input energy corresponding to
nD1

∗ (nV∆E1
∗) is calculated as

nV∆E1
∗ =

√
2n∆E1

∗
max/n M1

∗. (21)

The effective period of the first modal response at step n (nT1e f f ) is calculated as

nT1e f f = 2π

√
4 + 7πβ

6
nD1

∗
max

nV∆E1
∗ , (22)

where β is the complex damping ratio of the equivalent linear system considered for
the calculation of the V∆E and VI spectra. The formulation of Equation (22) is described
in Appendix B.

2.2. Stage 2: Prediction of the Seismic Demand of the Overall Building

The schemes for predicting the peak and cumulative responses of the equivalent SDOF
model are shown in Figure 2.
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The capacity curve obtained in stage 1 is shown in Figure 2a: the secant slope of
the capacity curve at point n (nD1

∗, nV∆E1
∗) corresponds to the effective period of the

equivalent SDOF model (nT1e f f ). The demand curve (V∆E(T)-D(T) relationship) shown in
Figure 2b is calculated in stages 2-1 and 2-2. The peak response point P (D1

∗
max, V∆E1

∗) is
at the intersection of the capacity and demand curves, as shown in Figure 2c. The velocity
of the cumulative input energy in the equivalent SDOF model (VI1

∗) is obtained from the VI
spectrum calculated in stage 2-1 and the effective period, corresponding to point P (T1e f f ),
as shown in Figure 2d.

2.2.1. Stage 2-1: Calculation of V∆E and VI Spectra

The V∆E and VI spectra are calculated from the time-varying function proposed in our
previous study [28]. A discrete time-history of the ground motion (ag(t)), defined within
the range [0, td], can be expressed as

ag(t) =
NG

∑
k=−NG

ck exp(iωkt), (23)

where ck and ωk(=2πk/td) are the complex Fourier coefficients of the ground motion and
the circular frequency of the kth harmonic, and i is the imaginary unit. The coefficient c0
is assumed to be zero. For a given natural period T and complex damping ratio β, the
displacement and velocity transfer function of the equivalent linear system is calculated as

HD(iωk) =
1

ω02 −ωk
2 + 2βω02sgn(ωk)i

, HV(iωk) = iωk HD(iωk). (24)

sgn(ωk) =

{
1 : ωk > 0
−1 : ωk < 0

. (25)
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In Equation (24), ω0 (= 2π/T) is the natural circular frequency of the equivalent linear
system. The duration of a half cycle of the response (∆t) is calculated as

∆t = π

√√√√ NG

∑
k=1
|HD(iωk)|2|ck|2/

NG

∑
k=1
|HV(iωk)|2|ck|2. (26)

The time-varying function of the momentary energy input can then be calculated as

1
∆t

∆̂E(t)
m

=
NG−1

∑
k=−NG+1

E∆,k
∗ exp(iωkt), (27)

E∆,k
∗ =



sin(ωk∆t/2)
ωk∆t/2

NG
∑

l=k+1
{HV(iωl) + HV(−iωl−k)}clc−(l−k) : k > 0

2
NG
∑

l=1
Re{HV(iωl)}|cl |2 : k = 0

E∆,−k
∗ : k < 0

. (28)

In Equation (28), the overbar indicates the complex conjugate. Note that the time-
varying function in Equation (27) is shown in the middle of Figure 1. The momentary input
energy per unit mass at time t is calculated as

∆E(t)
m

=

t+∆t/2∫
t−∆t/2

1
∆t

∆̂E(t)
m

dt. (29)

The maximum momentary input energy per unit mass (∆Emax/m) can be evaluated as
the maximum value calculated by Equation (29) over the course of the seismic event. The
total input energy per unit mass (EI/m) can be calculated as

EI
m

=

td∫
0

1
∆t

∆̂E(t)
m

dt = tdE∆,0
∗. (30)

The equivalent velocities of the maximum momentary input energy (V∆E) and the
total input energy (VI) are calculated as

V∆E =
√

2∆Emax/m, VI =
√

2EI/m. (31)

2.2.2. Stage 2-2: Calculation of Demand Curve

The demand curve (Figure 2b) is calculated from the V∆E spectrum as follows. The
equivalent displacement of the equivalent linear system (natural period T, complex damp-
ing ratio β) is calculated as

D(T) =

√
6

4 + 7πβ

T
2π

V∆E(T). (32)

2.2.3. Stage 2-3: Determination of the Peak and Cumulative Response of the Equivalent
SDOF Model

The peak response point P is shown in Figure 2c: in this figure, the peak response point
P (D1

∗
max, V∆E1

∗) is obtained as the intersection of the capacity curve and the demand
curve. The effective period corresponding to point P is then calculated as

T1e f f = 2π

√
4 + 7πβ

6
D1
∗

max

V∆E1
∗ . (33)
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2.2.4. Stage 2-4: Calculation of the Cumulative Energies of the Overall Building

The equivalent velocity of the cumulative input energy of the first modal response
(VI1

∗) is obtained from the VI spectrum as

VI1
∗ = VI

(
T1e f f

)
. (34)

The cumulative dissipated energy of the equivalent SDOF model is calculated as
follows. The cumulative input energy of the first modal response per unit mass (EI1

∗/M1
∗)

is calculated as
EI1
∗

M1
∗ =

1
2

(
M

M1
∗

)
VI1
∗2, (35)

where M1
∗ is the effective first modal mass corresponding to the peak response point and

M is the total mass. Note that EI1
∗/M1

∗ is factored by (M/M1
∗). This is because the total

input energy of the whole building is greater than the cumulative input energy of the first
modal response. Therefore, in this study, EI1

∗/M1
∗ is factored by the ratio (M/M1

∗) to
give a conservative prediction of the cumulative dissipated energy.

The cumulative strain energies of the RC MRFs and steel damper columns are calcu-
lated as follows. The ductility factors of the RC MRFs and steel damper columns (µ f and
µd, respectively) are given by

µ f = D1
∗

max/D1y f
∗, µd = D1

∗
max/D1yd

∗. (36)

Next, the dissipated strain energy of the RC MRFs per unit mass under monotonic
loading (∆ES1 f m

∗/M1
∗) and under cyclic loading (∆ES1 f c

∗/M1
∗) are calculated as

∆ES1 f m
∗

M1
∗ = A1y f

∗D1y f
∗gFm

(
µ f

)
,

∆ES1 f c
∗

M1
∗ = A1y f

∗D1y f
∗ g̃Fc

(
µ f

)
. (37)

gFm

(
µ f

)
=

{
0 : 0 ≤ µ f ≤ 1

1
2

(
2µ f −

√
µ f − 1

)
: µ f > 1

. (38)

g̃Fc

(
µ f

)
=

{
0 : 0 ≤ µ f ≤ 1

µ f − 4/√µ f + 3/µ f : µ f > 1
. (39)

Similarly, the dissipated strain energy of the steel damper columns per unit mass
under monotonic loading (∆ES1dm

∗/M1
∗) and under cyclic loading (∆ES1dc

∗/M1
∗) are

calculated as

∆ES1dm
∗

M1
∗ = A1yd

∗D1yd
∗gDm(µd),

∆ES1dc
∗

M1
∗ = A1yd

∗D1yd
∗ g̃Dc(µd). (40)

gDm(µd) =

{
0 : 0 ≤ µd ≤ 1

µd − 1 : µd > 1
. (41)

g̃Dc(µd) =

{
0 : 0 ≤ µd ≤ 1

2(µd − 2 + 1/µd) : µd > 1
. (42)

The dissipated damping energy per unit mass over each cycle of the structural response
(∆ED1c

∗/M1
∗) is calculated as

∆ED1c
∗

M1
∗ (D1

∗
max) = 2πh1 f

npeak
ω1 f

1ω1 f
A1 f

∗
maxD1

∗
max. (43)

npeak
ω1 f =

√
npeak

A1 f
∗/npeak

D1
∗ =

√
A1 f

∗max/D1
∗max (44)
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In Equation (43), npeak is the loading step of the pushover analysis, corresponding to
the peak equivalent displacement D1

∗
max. The formulation of Equations (38)–(44) is given

in Appendix C.
From the energy balance of the cumulative energy for the whole seismic event, the

equivalent number of cycles neq is calculated as

neq =
(EI1

∗/M1
∗)−

{(
∆ES1 f m

∗/M1
∗
)
+ (∆ES1dm

∗/M1
∗)
}

(
∆ES1 f c

∗/M1
∗
)
+ (∆ES1dc

∗/M1
∗) + (∆ED1c

∗/M1
∗)

. (45)

From neq, the cumulative strain energies of the RC MRFs and steel damper columns
over the whole seismic event (ES1 f

∗ and ES1d
∗, respectively) are calculated as

ES1 f
∗ = ∆ES1 f m

∗ + neq · ∆ES1 f c
∗ = M1

∗A1y f
∗D1y f

∗
{

gFm

(
µ f

)
+ neq g̃Fc

(
µ f

)}
. (46)

ES1d
∗ = ∆ES1dm

∗ + neq · ∆ES1dc
∗ = M1

∗A1yd
∗D1yd

∗{gDm(µd) + neq g̃Dc(µd)
}

. (47)

2.3. Stage 3: Prediction of the Local Seismic Demand of the Building Model
2.3.1. Stage 3-1: Determination of Peak Local Seismic Demand

Pushover analysis is applied until the equivalent displacement nD1
∗ reaches the peak

equivalent displacement obtained in stage 2-3 (D1
∗

max). The peak local seismic demand
(e.g., relative displacement, story drift, plastic rotation of member ends, strain energy of
dampers) is obtained as a quantity corresponding to D1

∗
max.

2.3.2. Stage 3-2: Calculation of Cumulative Response Demand of Each Damper Column

The cumulative strain energy of a damper panel (ESd,j) is calculated as

ESd,j =

(
ESd0,j/∑

j
ESd0,j

)
ES1d

∗, (48)

ESd0,j = QyDLjγyDLjhd0j g̃Dc

(
µdj

)
, (49)

µdj = γDmax,j/γyDLj. (50)

In Equations (49) and (50), µdj, γDmax,j, γyDLj, and hd0j denote the ductility, peak shear
strain, initial yield shear strain, and height of the jth damper panel, respectively. In this
study, for simplicity, ESd,j is assumed to be proportional to the average dissipated strain
energy under cyclic loading (ESd0,j).

The cumulative strain energy of a damper panel (ESd,j) is normalized as follows
for simplicity:

NESd,j =
ESd,j

QyDLjγyDLjhd0j
. (51)

In this version of the procedure, the cumulative response demand of each RC member
is not calculated. Elwood et al. [42] have studied the impact of prior shaking on the
earthquake response and repair requirements of ductile RC MRFs. They concluded that
simple (or no) repairs are sufficient provided that the story drift did not exceed 2.0%,
because “cyclic loading up to 2% drift had a limited impact on the deformation capacity of
column specimens with up to 0.1 axial load ratio” [42]. Therefore, for ductile RC members,
the prediction of the peak response demand is sufficient unless the story drift exceeds 2.0%.

3. Model Structures and Ground Motions
3.1. Model Structures

Figure 3 shows a simplified structural plan and elevation of the MRF building models
with steel damper columns considered in this study. Eight- and sixteen-story building
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models are designed using the simplified procedure [5]. In the seismic design of these
two frames, the displacement limit D1

∗
limit is assumed to be 1/75 of the equivalent height:

D1
∗

limit is 0.252 m for the 8-story model and 0.479 m for the 16-story model. Both models
have the same structural plan. The unit mass per floor is assumed to be 1.2 t/m2. The story
height is assumed to be 4.2 m for the first story and 3.2 m for upper stories. Details of the
members are given in Appendix D.
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All MRFs are modeled as planar frames; the MRF with steel damper columns is
modeled as in previous studies [5,7]. In this study, only half of the frame is modeled
considering the symmetry of the structure. All RC members are modeled as elastic beams
with nonlinear flexural springs at both ends. The steel damper columns are modeled as
elastic columns with nonlinear damper panels in the middle. The beam–column joints
are assumed to exhibit rigid behavior. For RC beam–RC column joints, it is assumed that
proper reinforcement is provided to prevent premature failure. In addition, appropriate



Buildings 2023, 13, 401 12 of 41

dimensions for the steel beam embedded in the RC beams and suitable reinforcement are
assumed in the RC beam–damper column joints, to prevent premature failure before the
damper panels reach their ultimate stage.

It should be mentioned that the influence of higher modes on the whole response of a
building would be especially pronounced in case of taller buildings. Therefore, the authors
intentionally chose 8-story and 16-story building models. The contribution of the higher
modes will be smaller in the case of the 8-story building model, while they will be larger
in case of the 16-story building model. The authors think that, by comparing the results
for the 16-story building model and those for the 8-story building model, the influence of
the higher modal response on the accuracy (and inaccuracy) of the current procedure will
be clearer.

The nonlinear behavior of the RC members and steel damper columns is modeled
as in previous studies [5,7]. The envelope of the force–deformation relationship at the
potential hinge of the RC members is modeled as a trilinear curve, considering the cracking
and yielding of the section. The non-hinges of RC members are modeled as bilinear
curves, considering only the cracking of the section. The behavior of the beam at the
foundation level is assumed to be linearly elastic. The same hysteresis model (stiffness
degradation model) is used for the flexural springs in the RC members. Pinching behavior
is not considered in this study. The shear behavior of the RC members is assumed to be
linearly elastic. The axial force–moment interaction of the columns is not considered for
simplicity. Similarly, the same hysteresis model (normal bilinear model neglecting the
strain-hardening effect for pushover analysis, trilinear model with strain-hardening effect
for nonlinear time-history analysis) is used for the damper panels. Details of the modeling
can be found in previous studies [5,7]. For simplicity, the stiffness degradation of the RC
members after yielding under cyclic loading, which was considered in a previous study [7],
is not considered in this paper.

Table 1 presents the natural periods of the first three modes in the initial stage for each
model. The natural period of the 16-story model is longer than that of the 8-story model.

Table 1. Natural period of the models at the initial stage.

8-Story Model 16-Story Model

T1e (s) 0.5611 1.1163
T2e (s) 0.1869 0.3693
T3e (s) 0.1053 0.2062

In this study, the damping matrix is assumed to be proportional to the tangential
stiffness of the RC MRFs.

3.2. Ground Motions

Two groups of artificial ground motions are generated. The target spectrum is the
code-specific spectrum (soil condition: type-2 (normal)) of the Building Standard Law of
Japan [43], defined as

pSA(T) =


4.8 + 45T m/s2 : T ≤ 0.16 s
12.0 : 0.16 s < T ≤ 0.864 s
12.0(0.864/T) : T > 0.864 s

. (52)

The phase angle is given by a uniform random value. To consider the time-dependent
amplitude of the ground motions, a Jenning-type envelope function (e(t)) is assumed. In
this study, two envelope functions are considered. In Art-L-00, the envelope function is set
as in Equation (53), whereas, in Art-S-00, the envelope function is set as in Equation (54).
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e(t) =


(t/5)2 : 0 ≤ t ≤ 5 s
1 : 5 s ≤ t ≤ 35 s
exp{−0.027(t− 35)} : 35 s ≤ t ≤ 120 s

, (53)

e(t) =


(t/2.5)2 : 0 ≤ t ≤ 2.5 s
1 : 2.5 s ≤ t ≤ 17.5 s
exp{−0.054(t− 17.5)} : 17.5 s ≤ t ≤ 60 s

. (54)

Figure 4 shows the time-histories of the artificial ground accelerations of Art-L-00 and
Art-S-00, respectively.
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Eleven artificial ground motions are generated from Art-L-00 and Art-S-00 by shifting
the phase angle. The generated artificial ground motion ag(t, ∆φ0) is expressed as

ag(t, ∆φ0) =
NG

∑
k=−NG

ck exp[i{ωkt− sgn(ωk)∆φ0}], (55)

where ∆φ0 is the constant used to shift the phase angle of all harmonics. As in previous
studies [28,30,31], ∆φ0 varies from π/12 to 11π/12 at intervals of π/12. The generated
artificial ground motions are numbered from 01 to 11 accordingly. A total of 2 × 12 = 24
artificial ground motions are used in this study.

Figure 5 shows the elastic pseudo-acceleration spectra (damping ratio: 0.05) of the
generated ground motions. As shown in this figure, the difference in pSA(T) caused by
changes in the phase angle is very limited.
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3.3. Analysis Cases

The following parameters are considered for the validation of the proposed procedure.

• The complex damping ratio of the equivalent linear system (β): the complex damping
ratio of the equivalent linear system is the key parameter in obtaining better predictions
of the energy response. Therefore, three different values of β are considered: 0.05, 0.10,
and 0.15.

• The viscous damping ratio of the first modal response of the RC MRFs in the elastic
range (h1 f ): the accuracy of the cumulative energy depends on the viscous damping
of the RC MRFs. Therefore, three different values of h1 f are considered: 0.00, 0.03,
and 0.05.

4. Analysis Results

In Section 4.1, the process of predicting the seismic demand of the overall building
using the equivalent SDOF model is presented. The predicted results are then compared
with the nonlinear time-history analysis results for the frame models in Section 4.2.

4.1. Prediction of the Seismic Demand of the Equivalent SDOF Model

Figure 6 shows the capacity curve of the building models (stage 1 in Figure 1). The
calculation results for the 8-story model are shown in Figure 6a, whereas those for the
16-story model are shown in Figure 6b. In this study, displacement-based mode-adaptive
pushover analysis [44] is applied to obtain the relationship between the equivalent ac-
celeration (whole building: n A1

∗, RC MRF: n A1 f
∗, and damper column: n A1d

∗) and the
equivalent displacement nD1

∗. The n A1 f
∗-nD1

∗ and n A1d
∗-nD1

∗ relationships are idealized
as bilinear curves following a previous study [7].

The dissipated energy in a half cycle per unit mass of the equivalent SDOF model is
calculated according to the procedure described in Section 2.1.2. The calculated results are
shown in the middle part of Figure 6. The contribution of the RC MRFs (n∆Eµ1 f

∗/n M1
∗)

is calculated using Equations (13)–(15). The contribution from the steel damper columns
(n∆Eµ1d

∗/n M1
∗) is calculated using Equations (16)–(18). The contribution of viscous damp-

ing (n∆ED1
∗/n M1

∗) is calculated from Equations (19) and (20). Note that the calculated
n∆ED1

∗/n M1
∗ depends on the viscous damping ratio of the first modal response of the

RC MRFs in the elastic range (h1 f ):n∆ED1
∗/n M1

∗ for h1 f = 0.00 is not shown because
n∆ED1

∗/n M1
∗ is zero in this case.

The calculated capacity curves (V∆E1
∗-D1

∗ relationship) are shown at the bottom
of Figure 6. In this figure, the differences between the capacity curves as h1 f varies is
almost negligible.

Figure 7 shows the calculated V∆E spectrum and demand curve (V∆E(T)-D(T) rela-
tionship). The V∆E spectrum calculated using the time-varying function in Equation (27)
is independent of the phase shift ∆φ0, as described in previous studies [28,30]. Figure 7a
shows the results calculated from the Art-L series, whereas Figure 7b shows the results for
the Art-S series.

On the left of Figure 7a, the calculated V∆E spectrum is largest when β = 0.05 and
smallest when β = 0.15. The demand curves are compared on the right of Figure 7a.
The three demand curves are almost identical when V∆E(T) is less than 0.9 m/s. Similar
observations can be made for the Art-S series in Figure 7b.

Figure 8 shows the predicted peak response points for each model using the three de-
mand curves. In this figure, the predicted results are presented for h1 f = 0.05. As described
in Section 2.2.3, the intersection of the capacity and demand curves is the predicted peak
response point.

In Figure 8a, the largest equivalent displacement (D1
∗

max) occurs when β = 0.05,
while the smallest D1

∗
max is obtained with β = 0.15. Similar observations can be made in

Figure 8b,d. However, in case of the 8-story model, the smallest D1
∗

max is obtained with
β = 0.10 for the Art-S series, as shown in Figure 8c. Note that the difference in the predicted
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values of D1
∗

max for the Art-L and Art-S series depends on the model: a comparison of
Figure 8a,c indicates that the predicted D1

∗
max for the Art-L series is larger than that for the

Art-S series in the case of the 8-story model, while the opposite conclusion can be reached
for the 16-story model.

Figure 9 shows the predicted equivalent velocity of the cumulative input energy for
the first modal response. The predictions shown in this figure are for h1 f = 0.05. The spectra
for both V∆E and VI are shown. The vertical lines indicate the effective period (T1e f f ) at the
predicted peak response point. The predicted equivalent velocity (VI1

∗) is obtained as the
intersection of the VI spectra and the vertical lines.

A comparison of Figure 9a,c indicates that the predicted VI1
∗ for the Art-L series is

larger than that for the Art-S series in the case of the 8-story model. The same conclusion
can be obtained for the 16-story model by comparing Figure 9b,d.
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4.2. Comparisons with the Time-History Analysis Results

In this section, the predicted seismic demands are compared with the nonlinear time-
history analysis results.

4.2.1. Energy Demand of the Overall Building

Figures 10 and 11 compare the predicted energy demand of the overall building
with the nonlinear time-history analysis results. These figures show the mean nonlinear
time-history analysis results. All quantities have been normalized by the total mass M. In
addition, the total input energy is the sum of the cumulative strain energies of the RC MRF
and the damper columns, and the cumulative energy of viscous damping.

The following observations can be made based on these figures.

• For the 8-story model shown in Figure 10, the relationships between the predicted total
input energies and the nonlinear time-history analysis results depend on the ground
motion series and the value of β: the predicted total input energy with β = 0.15 is
unconservative for all cases. For the 16-story building model shown in Figure 11,
the predicted total input energy agrees well with that obtained from the nonlinear
time-history analysis results for all cases.

• The predicted cumulative strain energy of the RC MRFs is larger than that obtained
from the nonlinear time-history analysis results for both models.

• The predicted cumulative strain energy of the steel damper columns is close to that of
the nonlinear time-history analysis results for both models.

• The predicted cumulative energy of viscous damping is smaller than that of the
nonlinear time-history analysis results, except when h1 f = 0.00.

Buildings 2023, 13, x FOR PEER REVIEW 18 of 47 
 

The calculated capacity curves (
*

1E
V

 –
*

1
D  relationship) are shown at the bottom of Fig-

ure 6. In this figure, the differences between the capacity curves as 1 f
h  varies is almost negli-

gible. 

Figure 7 shows the calculated 
E

V  spectrum and demand curve ( ( )E
V T


– ( )D T  re-

lationship). The 
E

V  spectrum calculated using the time-varying function in Equation 

(27) is independent of the phase shift 
0
, as described in previous studies [28,30]. Figure 

7a shows the results calculated from the Art-L series, whereas Figure 7b shows the results 

for the Art-S series. 

 

Figure 7. Demand curve of input ground motions: (a) Art-L series; (b) Art-S series. 

On the left of Figure 7a, the calculated 
E

V  spectrum is largest when   = 0.05 and 

smallest when   = 0.15. The demand curves are compared on the right of Figure 7a. The 

three demand curves are almost identical when ( )E
V T


 is less than 0.9 m/s. Similar ob-

servations can be made for the Art-S series in Figure 7b. 

Figure 8 shows the predicted peak response points for each model using the three 

demand curves. In this figure, the predicted results are presented for 1 f
h  = 0.05. As de-

scribed in Section 2.2.3, the intersection of the capacity and demand curves is the predicted 

peak response point. 

Figure 7. Demand curve of input ground motions: (a) Art-L series; (b) Art-S series.



Buildings 2023, 13, 401 17 of 41Buildings 2023, 13, x FOR PEER REVIEW 19 of 47 
 

 

Figure 8. Prediction of the peak response point (
1 f

h  = 0.05): (a) 8-story model (Art-L series); (b) 16-

story model (Art-L series); (c) 8-story model (Art-S series); (d) 16-story model (Art-S series). 

In Figure 8a, the largest equivalent displacement (
*

1 max
D ) occurs when   = 0.05, 

while the smallest 
*

1 max
D  is obtained with   = 0.15. Similar observations can be made 

in Figure 8b,d. However, in case of the 8-story model, the smallest 
*

1 max
D  is obtained with 

  = 0.10 for the Art-S series, as shown in Figure 8c. Note that the difference in the pre-

dicted values of 
*

1 max
D  for the Art-L and Art-S series depends on the model: a compari-

son of Figure 8a,c indicates that the predicted 
*

1 max
D  for the Art-L series is larger than 

that for the Art-S series in the case of the 8-story model, while the opposite conclusion can 

be reached for the 16-story model. 

Figure 9 shows the predicted equivalent velocity of the cumulative input energy for 

the first modal response. The predictions shown in this figure are for 1 f
h  = 0.05. The spec-

tra for both 
E

V  and 
I

V  are shown. The vertical lines indicate the effective period ( 1eff
T

) at the predicted peak response point. The predicted equivalent velocity ( *

1I
V ) is obtained 

as the intersection of the 
I

V  spectra and the vertical lines. 

Figure 8. Prediction of the peak response point (h1 f = 0.05): (a) 8-story model (Art-L series);
(b) 16-story model (Art-L series); (c) 8-story model (Art-S series); (d) 16-story model (Art-S series).

Therefore, we believe that the predicted energy demand of the whole building is
acceptable, although the predicted cumulative energy of viscous damping is small. Consid-
ering the energy balance of the whole seismic event, smaller predicted values of the energy
of viscous damping lead to larger (more conservative) predictions of the strain energy
demands of the RC MRFs and damper columns. In addition, the contribution of viscous
damping to the whole energy response is small, as shown in Figures 10 and 11. Therefore,
the smaller predicted values of the viscous damping energy will not be critical.

4.2.2. Local Seismic Demand

In this section, the following local response quantities are compared: (i) peak story
drift, (ii) peak plastic rotation at the beam end, (iii) peak shear strain of the damper panels,
and (iv) normalized cumulative strain energy of the damper panels. The mean, maximum,
and minimum values of the nonlinear time-history analysis results for the 12 ground
motions are compared with the predicted results.

Figure 12 compares the predicted peak story drift with the nonlinear time-history
analysis results for the Art-L and Art-S ground motion series.

The following observations can be made based on Figure 12.
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• For the 8-story model, the predicted peak drift with β = 0.05 is larger than the mean
of the nonlinear time-history analysis results, whereas the predicted peak drift with
β = 0.10 is slightly smaller than the mean of the nonlinear time-history analysis results.
When β = 0.15, the predicted peak drift is smaller than the mean of the nonlinear
time-history analysis results.

• For the 16-story model, the predicted peak story drift with β = 0.10 is in good agreement
with the nonlinear time-history analysis results below the mid-story level (7th or 8th
story). However, the predicted peak story drift above this level is lower than that of the
nonlinear time-history analysis results. This tendency is noticeable when h1 f = 0.00.

Figure 13 compares the predicted peak plastic hinge rotation at the beam end (θpmax)
with the nonlinear time-history analysis results. This figure shows θpmax for the beam end
at the right of column X2.
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dition, the total input energy is the sum of the cumulative strain energies of the RC MRF 

and the damper columns, and the cumulative energy of viscous damping. 

Figure 9. Prediction of the equivalent velocity of the cumulative input energy for the first modal
response (h1 f = 0.05): (a) 8-story model (Art-L series); (b) 16-story model (Art-L series); (c) 8-story
model (Art-S series); (d) 16-story model (Art-S series).
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Figure 12. Comparisons of the peak story drift: (a) 8-story model (h1 f = 0.00); (b) 16-story model
(h1 f = 0.00); (c) 8-story model (h1 f = 0.03); (d) 16-story model (h1 f = 0.03); (e) 8-story model
(h1 f = 0.05); (f) 16-story model (h1 f = 0.05).

The following observations can be made based on Figure 13.

• For the 8-story model, the predicted θpmax with β = 0.05 is slightly larger than the mean
of the nonlinear time-history analysis results. The predicted θpmax are unconservative
when β = 0.10 or β = 0.15.

• For the 16-story model, the predicted θpmax with β = 0.05 is too conservative below the
mid-story level (7th or 8th story). The predicted θpmax with β = 0.10 agrees well with
the mean of the nonlinear time-history analysis results below the mid-story level. For
β = 0.15, the predicted θpmax is unconservative for all floors.

Figure 14 compares the predicted peak shear strain of the damper panels (γDmax) with
the nonlinear time-history analysis results. The following observations can be made based
on Figure 14.

• For the 8-story model, the predicted γDmax with β = 0.05 is larger than the mean of
the nonlinear time-history analysis results. The predicted γDmax for the cases where
β = 0.10 and β = 0.15 are closer to the mean of the nonlinear time-history analysis results.

• For the 16-story model, the predicted γDmax with β = 0.05 is too conservative below
the mid-story level (9th or 10th story). The predicted γDmax when β = 0.10 is also
conservative below the mid-story level, but is closer to the mean of the nonlinear
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time-history analysis results. The predicted γDmax with β = 0.15 is the closest to the
mean of the nonlinear time-history analysis results.
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Figure 13. Comparisons of the peak plastic hinge rotation of the beam: (a) 8-story model (h1 f = 0.00);
(b) 16-story model (h1 f = 0.00); (c) 8-story model (h1 f = 0.03); (d) 16-story model (h1 f = 0.03);
(e) 8-story model (h1 f = 0.05); (f) 16-story model (h1 f = 0.05).

Figure 15 compares the predicted normalized cumulative strain energy of the damper
panels (NESd) with the nonlinear time-history analysis results. The following observations
can be made based on Figure 15.

• For the 8-story model, the predicted NESd is larger than that of the nonlinear time-
history analysis results above the second story. However, the predicted NESd at the
first story underestimates the nonlinear time-history analysis results.

• For the 16-story building model, the predicted NESd is in good agreement with the
nonlinear analysis results below the mid-story level (9th or 10th story). However, the
predicted NESd above the mid-story level underestimates the nonlinear time-history
analysis results. This is noticeable when h1 f = 0.00.
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Figure 14. Comparisons of the peak shear strain of the damper panels: (a) 8-story model (h1 f = 0.00);
(b) 16-story model (h1 f = 0.00); (c) 8-story model (h1 f = 0.03); (d) 16-story model (h1 f = 0.03);
(e) 8-story model (h1 f = 0.05); (f) 16-story model (h1 f = 0.05).

4.3. Summary of the Analysis Results

This section has demonstrated the procedure for predicting the seismic demand of the
equivalent SDOF model. The predicted seismic demands were then compared with the
nonlinear time-history analysis results. The analysis results can be summarized as follows.

• The accuracy of the predicted energy demand of the whole building is acceptable,
although the predicted cumulative energy of viscous damping is small.

• The accuracy of the predicted local peak seismic demands (story drift, plastic rotation
of the beam end, and shear strain of the damper panels) is acceptable, although some
quantities are unconservative.

• The accuracy of the predicted cumulative energy strain energy demand of the damper
panels is acceptable, although some values are unconservative.

It is important to mention that the underestimations of the local seismic demand
observed at some points occur because of higher modal responses: in this procedure, only
the contribution of the first modal response is considered.
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Figure 15. Comparisons of the normalized cumulative strain energy of the damper panels: (a) 8-story
model (h1 f = 0.00); (b) 16-story model (h1 f = 0.00); (c) 8-story model (h1 f = 0.03); (d) 16-story model
(h1 f = 0.03); (e) 8-story model (h1 f = 0.05); (f) 16-story model (h1 f = 0.05).

5. Discussion

The accuracy of the proposed procedure strongly relies on the prediction of the seismic
demand of the equivalent SDOF model in stage 2 (Figure 1). In this section, the discussion
focuses on (i) the applicability of the time-varying function of the momentary energy input
for predicting the energy response and (ii) the relationship between the peak equivalent
displacement and the maximum momentary input energy of the first modal response.
The equivalent velocities of the maximum momentary input energy and the cumulative
energy (V∆E1

∗ and VI1
∗), and the peak equivalent displacement D1

∗
max, are calculated

from the nonlinear time-history analysis results according to the procedure presented in a
previous study [7].

5.1. Applicability of the Time-Varying Function of the Momentary Energy Input for Predicting the
Energy Response

Figure 16 shows the time-history and hysteresis of the first modal response of the
16-story model as an example. In this figure, the results obtained with h1 f = 0.05 are
shown for the Art-L-06 and Art-L-11 ground accelerations. The dashed lines in Figure 16b
indicate the predicted peak equivalent displacement (D1

∗
max) for three values of β. In
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Figure 16c, η is the ratio of the local peak equivalent displacement (in the positive and
negative directions), defined as

η = |D1
∗(t∆Emax + ∆t∆Emax)/D1

∗(t∆Emax)|, (56)

where t∆Emax and t∆Emax +∆t∆Emax are the start and end times, respectively, of the half cycle
in which the maximum momentary input energy of the first modal response (∆E1

∗
max)

occurs. The time-history and the hysteresis loop during the half cycle (from t∆Emax to
t∆Emax + ∆t∆Emax) are denoted by the red curves.

The following observations can be made based on Figure 16.

• Although the time-histories of the ground accelerations are very similar, the time-
histories of the equivalent displacement D1

∗(t) are different. The equivalent displace-
ment does not exceed the predicted D1

∗
max in the case of Art-L-06, but does exceed

the predicted D1
∗

max in the case of Art-L-11.
• The hysteresis loop is almost symmetric in the case of Art-L-06 (left of Figure 16c),

but is notably asymmetric in the case of Art-L-11 (right of Figure 16c). The ratio η is
1.086 for Art-L-06 and 0.209 for Art-L-11.

The results shown in Figure 16 imply that the difference in the peak equivalent
displacement D1

∗
max is caused by the asymmetry of the hysteresis loop, which is affected

by the phase shift of the ground acceleration.
The time-history of the momentary input energy of the first modal response per

unit mass (∆E1
∗/M1

∗) is compared with that calculated from the time-varying function
in Figure 17. In Figure 17a, the time-histories of the momentary input energy of the 16-
story model (h1 f = 0.05, Art-L-06 and Art-L-11) calculated from the nonlinear time-history
analysis results are shown. In Figure 17b, the time-histories calculated from the time-
varying function in Equation (27) are shown for each assumed complex damping ratio β:
in the calculation of Equation (27), the natural period T is taken as the effective period of
the first modal response corresponding to the predicted peak response point T1e f f .

The following observations can be made based on Figure 17.

• The time-histories of the momentary input energy are very similar for Art-L-06 and Art-
L-11, although ∆E1

∗
max/M1

∗ is different, being larger for Art-L-11 than for Art-L-06.
• The time-varying functions calculated assuming β = 0.05 (shown at the top of Figure 17b)

are notably different from the nonlinear time-history analysis results shown in
Figure 17a: the variations in the time-varying functions are too large in compari-
son with the nonlinear time-history analysis results.

• The time-varying functions calculated assuming β = 0.10 and 0.15 (shown in the
middle and bottom of Figure 17b) are closer to the nonlinear time-history analysis
results than those for β = 0.05. In addition, the value of ∆E1

∗
max/M1

∗ calculated
from the time-varying function is between the values for Art-L-06 and Art-L-11. The
calculated ∆E1

∗
max/M1

∗ for β = 0.10 is larger than that for β = 0.15.

This result implies that the accuracy of the maximum momentary input energy from
the time-varying function strongly depends on the assumed complex damping ratio β.

Figure 18 compares the V∆E spectrum and the equivalent velocities of the maximum
momentary input energy (V∆E1

∗) obtained from the nonlinear time-history analysis results.
In this figure, the effective period T1e f f is calculated from Equation (33). In addition, the
V∆E spectrum is calculated using the time-varying function as described in Section 2.2.1.
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Figure 16. Time-history and hysteresis of the first modal response (16-story model, h1 f = 0.05, Art-L):
(a) time-history of ground acceleration; (b) time-history of equivalent displacement of the first modal
response; (c) hysteresis of the first modal response.
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Figure 17. Comparisons of the time-history of the momentary energy input of the first modal
response (16-story model, Art-L): (a) momentary energy input obtained from the time-history analysis;
(b) momentary energy input calculated using time-varying function.

The following observations can be made based on Figure 18.

• In the case of β = 0.05 (shown at the top of Figure 18), the nonlinear time-history
analysis results are below the V∆E spectrum.

• In the case of β = 0.10 (shown in the middle of Figure 18), the nonlinear time-history
analysis results are in good agreement with the V∆E spectrum.

• In the case of β = 0.15 (shown at the bottom of Figure 18), some of the nonlinear
time-history analysis results are above the V∆E spectrum.

The results shown in Figure 18 imply that the most suitable value of β is 0.10 for the
prediction of V∆E1

∗ using the V∆E spectrum.
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Figure 18. Comparisons of the V∆E spectrum and V∆E1
∗ obtained from the time-history analysis:

(a) Art-L series; (b) Art-S series.

The VI spectrum and the equivalent velocities of the cumulative input energy of the
first modal response (VI1

∗) obtained from the nonlinear time-history analysis results are
compared in Figure 19. The VI spectrum shown in this figure is calculated using the time-
varying function as described in Section 2.2.1. This figure confirms that the most suitable
value for β is 0.10.
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Figure 19. Comparisons of the VI spectrum and VI1
∗ obtained from the time-history analysis:

(a) Art-L series; (b) Art-S series.

Therefore, the equivalent velocities of the maximum momentary input energy and the
cumulative energy (V∆E1

∗ and VI1
∗) can be accurately predicted using the time-varying

function, an appropriate effective period T1e f f , and β = 0.10. For the calculation of T1e f f ,
Equation (33) is suitable.

5.2. Relationship between Maximum Momentary Input Energy of the First Modal Response and
the Peak Equivalent Displacement

The relationship between the equivalent velocity of the maximum momentary input
energy of the first modal response (V∆E1

∗) and the peak equivalent displacement D1
∗

max
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is now examined in reference to the capacity curve (V∆E1
∗-D1

∗ relationship) described in
Section 2.1. Figures 20 and 21 compare the capacity curve and the nonlinear time-history
analysis results.
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Figure 21. Comparisons between the capacity curve and the V∆E1
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from the time-history analysis results (16-story model): (a) Art-L series; (b) Art-S series.

The following observations can be made based on these figures.

• Most of the nonlinear history analysis results are slightly below the capacity curve.
The scatter of the nonlinear time-history analysis results is noticeable in the case of the
Art-S series for the 8-story model and the Art-L series for the 16-story model.

• In most cases, the predicted peak response point with β = 0.05 gives the most conser-
vative D1

∗
max. The predicted D1

∗
max with β = 0.10 is slightly unconservative, and the

predicted D1
∗

max with β = 0.15 is unconservative.

Therefore, for better predictions of the peak response, it is essential to calculate the
capacity curve properly. Evaluating the dissipated energy during a half cycle of the
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structural response is very important, as are better predictions of the maximum momentary
input energy.

5.3. Summary of Discussions

The above discussions can be summarized as follows.

• The equivalent velocities of the maximum momentary input energy and the cumu-
lative energy (V∆E1

∗ and VI1
∗) can be properly predicted using the time-varying

function, an appropriate effective period T1e f f , and β = 0.10. For the calculation of
T1e f f , Equation (33) is suitable.

• For better predictions of the peak response, the capacity curve should be properly cal-
culated. It is also very important to evaluate the dissipated energy during a half cycle
of the structural response, in addition to better predicting the maximum momentary
input energy.

6. Conclusions

This article has proposed a nonlinear static procedure for predicting the seismic
demand of regular RC ductile MRFs with steel damper columns. The main results and
conclusions can be summarized as follows.

• The time-varying function of the momentary energy input provides sufficiently accu-
rate predictions of the maximum momentary input energy and the cumulative input
energy of RC MRFs with steel damper columns. The time-history of the momentary
input energy calculated using the time-varying function is close to the nonlinear time-
history analysis results. An equation for calculating the effective period of the first
modal response from the peak equivalent displacement and the equivalent velocity
of the maximum momentary input energy has been developed. Based on the cases
considered in this study, the recommended value of the complex damping ratio is 0.10.

• The accuracy of the predicted local peak seismic demand (e.g., story drift, plastic
rotation of the beam end, and shear strain of the damper panel) is acceptable, although
some values are unconservative.

• The accuracy of the predicted cumulative energy strain energy demand of the damper
panel is acceptable, although some values are unconservative.

• For better predictions of the peak response, the capacity curve must be properly
calculated. It is also very important to evaluate the energy dissipated during a half
cycle of the structural response, and to obtain better predictions of the maximum
momentary input energy.

The main advantage of the proposed procedure is that both the peak and the cumula-
tive seismic demands of RC MRFs with steel damper columns can be predicted. In addition,
as shown in previous studies [28,30], the time-varying function can be directly calculated
from the Fourier amplitude and Fourier phase difference of the ground motion. Therefore,
the peak and cumulative seismic demands of RC MRFs with steel damper columns can
be evaluated without knowing the time-history of the ground motion. This means that re-
searchers and analysts can eliminate otherwise unavoidable fluctuations from the nonlinear
time-history analysis results. Note that the results and conclusions presented in this study
are only valid for two RC MRFs with steel damper columns subjected to artificial ground
motions. It should be mentioned that the current version of this procedure should be
applied carefully when considering high-rise buildings. The analysis results for the 16-story
model shown herein indicates that the predicted global response (e.g., the peak equivalent
displacement of the first modal response, the energy demand of the overall building) would
be reliable: however, the predicted local response should be carefully assessed, because
the influence of the higher modal response would be pronounced. Therefore, apart from
further verification using additional building models and ground motions, the following
questions remain.
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• The ground motions used in this study are non-pulsive artificial ground accelerations.
In the case of RC MRFs with damper columns subjected to near-fault pulsive ground
motions, how accurate is the proposed procedure? Does it offer the same performance
as in this study?

• In this study, the cumulative strain energy was only evaluated for the damper columns.
The influence of cyclic loading on the damage to RC members may not be signifi-
cant in the case of ductile RC members within a certain drift limit (e.g., less than
0.02 radians [42]). However, in the case of RC members with larger drift demands, the
cumulative strain energy demand would be needed. How can the cumulative strain
energy of the RC members be evaluated in a simple manner?

• Several studies on the applicability of pushover analysis to planar frames [33–40]
have shown that the contribution of higher modes is notable in the case of mid- to
high-rise buildings. We believe that, according to the peak response, the proposed
procedure can be applied in such cases without difficultly. However, there is room
for discussion in terms of predicting the cumulative response of each member. How
can the contribution of higher modal responses be considered for the prediction of the
local cumulative response?

• In the hysteresis of RC members, pinching behavior [41] is observed in cyclic loading
tests. This behavior may affect the hysteretic energy dissipation of RC MRFs with
damper columns. Specifically, the pinching behavior of the RC beams surrounding
damper columns may reduce the energy absorption of the damper panel. Is this a
negligible effect in predicting the seismic demand of ductile RC MRFs with damper
columns? If not, how can the influence of pinching behavior be considered in modeling
the hysteretic energy dissipation in a half cycle of the structural response?

• The response of RC MRFs with damper columns subjected to sequential ground mo-
tions has previously been investigated [7]. It is expected that the proposed procedure
may be applicable to such sequential ground motions if the influence of prior damage
to each member can be included when calculating the dissipated hysteretic energy
during a half cycle of the structural response. How can models for the calculation of
dissipated energies be extended to the case of sequential ground motions?

The above questions will be investigated in subsequent studies. However, they do not
constitute a comprehensive list of all the issues requiring further research.
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Appendix A. Formulation of the Dissipated Energy in a Half Cycle

The dissipated energy in a half cycle of the equivalent SDOF model is formulated as
follows. Figure A1 shows simplified models for the calculation of the dissipated energy
during a half cycle of the structural response. Here, ∆Eµ1 f

∗/M1
∗ and ∆Eµ1d

∗/M1
∗ are

the contributions of the hysteretic dissipated energies of the RC MRFs and steel damper
columns, respectively, while ∆ED1

∗/M1
∗ is the contribution of viscous damping.
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Considering the energy balance of the first modal response in a half cycle of the
structural response, the maximum momentary input energy per unit mass (∆E1

∗
max/M1

∗)
is calculated as

∆E1
∗

max
M1
∗ (D1

∗
max, η) =

∆Eµ1 f
∗

M1
∗ (D1

∗
max, η) +

∆Eµ1d
∗

M1
∗ (D1

∗
max, η) + ∆ED1

∗

M1
∗ (D1

∗
max, η), (A1)

∆Eµ1 f
∗

M1
∗ (D1

∗
max, η) = A1y f

∗D1y f
∗ fF

(
µ f , η

)
, (A2)

∆Eµ1d
∗

M1
∗ (D1

∗
max, η) = A1yd

∗D1yd
∗ fD(µd, η), (A3)

∆ED1
∗

M1
∗ (D1

∗
max, η) =

π

4
h1 f max A1 f

∗
maxD1

∗
max(1 + η)2. (A4)

In Equation (A1), η is the ratio of displacements in the positive and negative directions.
According to a previous study [7], fF

(
µ f , η

)
and fD(µd, η) are calculated as



Buildings 2023, 13, 401 34 of 41

fF

(
µ f , η

)
=


1
2 µ f

2(1− η2) : 0 ≤ µ f ≤ 1

µ f − 1
2

{
1 +

(
ηµ f

)2
}

: µ f ≥ 1 and 0 ≤ η ≤ 1/µ f

µ f −
√

ηµ f : µ f ≥ 1 and 1/µ f ≤ η ≤ 1

, (A5)

fD(µd, η) =


1
2 µd

2(1− η2) : 0 ≤ µd ≤ 1
µd − 1

2

{
1 + (ηµd)

2
}

: µd ≥ 1 and 0 ≤ η ≤ 1/µd

(1 + η)µd − 2 : µd ≥ 1 and 1/µd ≤ η ≤ 1

. (A6)

In this study, the energy dissipation in a half cycle is simplified by calculating the
average in the range 0 ≤ η ≤ 1. The functions f̃F

(
µ f

)
and f̃D(µd) are defined as

f̃F

(
µ f

)
=

1∫
0

fF

(
µ f , η

)
dη, (A7)

f̃D(µd) =

1∫
0

fD(µd, η)dη. (A8)

By substituting Equation (A5) into Equation (A7), f̃F

(
µ f

)
is calculated as

f̃F

(
µ f

)
=

1∫
0

fF

(
µ f , η

)
dη =

{
1
3 µ f

2 : 0 ≤ µ f ≤ 1
µ f − 2

3
√

µ f : µ f ≥ 1
. (A9)

Similarly, f̃D(µd) is calculated as

f̃D(µd) =

1∫
0

fD(µd, η)dη =

{ 1
3 µd

2 : 0 ≤ µd ≤ 1
1
6

(
9µd − 12 + 5

µd

)
: µd ≥ 1

. (A10)

In addition, the average of the contribution from viscous damping is calculated as

1∫
0

∆ED1
∗

M1
∗ (D1

∗
max, η)dη =

7π

12
h1 f max A1 f

∗
maxD1

∗
max. (A11)

Therefore, the maximum momentary input energy per unit mass (∆E1
∗

max/M1
∗)

corresponding to the peak equivalent displacement (D1
∗

max) is calculated as

∆E1
∗

max
M1
∗ (D1

∗
max) = A1y f

∗D1y f
∗ f̃F

(
µ f

)
+ A1yd

∗D1yd
∗ f̃D(µd) +

7π
12 h1 f max A1 f

∗
maxD1

∗
max. (A12)

In the proposed procedure, the peak equivalent displacement (D1
∗

max) and the contri-
bution of the RC MRFs to the equivalent acceleration at the peak equivalent displacement
(A1 f

∗
max) are replaced by the values obtained from the pushover analysis at step n (nD1

∗

and n A1 f
∗, respectively). In addition, the damping ratio at the peak equivalent displace-

ment (h1 f max) is approximated as

h1 f max =
nω1 f

1ω1 f
h1 f , (A13)

nω1 f =
√

n A1 f
∗/nD1

∗. (A14)
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In Equation (A13), nω1 f is the secant circular frequency of the first modal response at
step n. Therefore, Equation (A12) can be rewritten as

n∆E1
∗

max

n M1
∗ = A1y f

∗D1y f
∗ f̃F

(
nµ f

)
+ A1yd

∗D1yd
∗ f̃D(nµd) +

7πh1 f

12
nω1 f

1ω1 f
n A1 f

∗
nD1

∗. (A15)

Appendix B. Formulation of the Effective Period

The effective period of the equivalent linear SDOF model is formulated as follows.
Figure A2 shows the scheme of the linearization of the equivalent SDOF model. As shown
in Figure A2a, the nonlinear SDOF model is converted to the equivalent linear SDOF model.

Let us consider the case in which the peak equivalent displacement of the nonlinear
SDOF model is D1

∗
max and the maximum momentary input energy per unit mass is

∆E1
∗

max/M1
∗, as shown on the left of Figure A2a. The effective period and damping of

the corresponding linear SDOF model are T1e f f and β, respectively. The peak equivalent
displacement of the linear SDOF model is D1

∗
max when the maximum momentary input

energy per unit mass is the same as in the nonlinear SDOF model (∆E1
∗

max/M1
∗), as shown

on the left of Figure A2a.
The ratio of the displacements in the positive and negative directions (η) is assumed to

be the same in both the nonlinear and equivalent linear SDOF models. From Figure A2b,c,
the energy balance in a half cycle of the structural response can be expressed as

∆E1
∗

max

M1
∗ =

1
2

(
2π

T1e f f

)2

D1
∗

max
2
{(

1− η2
)
+

π

2
(1 + η)2β

}
. (A16)

As discussed in Appendix A, Equation (A16) can be simplified by calculating the
average in the range 0 ≤ η ≤ 1. On the right-hand side of Equation (A16),

1∫
0

{(
1− η2

)
+

π

2
(1 + η)2β

}
dη =

4 + 7πβ

6
. (A17)

Using Equation (A17), Equation (A16) can be simplified as

∆E1
∗

max

M1
∗ =

1
2

4 + 7πβ

6

(
2π

T1e f f

)2

D1
∗

max
2. (A18)

Therefore, the effective period T1e f f can be calculated from the equivalent velocity of
the maximum momentary input energy of the equivalent SDOF model (V∆E1

∗) and the
peak equivalent displacement D1

∗
max as

T1e f f = 2π

√
4 + 7πβ

6
D1
∗

max

V∆E1
∗ . (A19)
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Appendix C. Formulation of the Cumulative Dissipated Energy

The cumulative dissipated energy of the equivalent SDOF model is formulated as
follows. Figure A3 shows simplified models for calculating the cumulative dissipated
energy during a whole seismic event. Here, ∆ES1 f m

∗/M1
∗ and ∆ES1 f c

∗/M1
∗ are the

hysteretic dissipated energy of the RC MRFs per unit mass under monotonic and cyclic
loading, respectively. ∆ES1dm

∗/M1
∗ and ∆ES1dc

∗/M1
∗ are the hysteretic dissipated en-

ergy of the damper columns per unit mass under monotonic and cyclic loading, respec-
tively. ∆ED1c

∗/M1
∗ is the damping dissipated energy per unit mass over a cycle of the

structural response.
Given the peak equivalent displacement D1

∗
max, the dissipated strain energy of RC

MRFs under monotonic loading per unit mass (∆ES1 f m
∗/M1

∗) can be calculated from the
left of Figure A3a as

∆ES1 f m
∗

M1
∗ = A1y f

∗D1y f
∗gFm

(
µ f

)
, (A20)

gFm

(
µ f

)
=

{
0 : 0 ≤ µ f ≤ 1

1
2

(
2µ f −

√
µ f − 1

)
: µ f > 1

. (A21)

Next, let us consider one loop of steady vibration (displacement amplitude: γD1
∗

max,
where 0 ≤ γ ≤ 1 is the amplitude ratio), as shown on the right of Figure A3a. The function
gFc

(
µ f , γ

)
is calculated as

gFc

(
µ f , γ

)
=

{
0 : 0 ≤ µ f ≤ 1 or γ ≤ 1/µ f

2
(

γµ f − 1/√γµ f

)
: µ f > 1 and γ ≥ 1/µ f

. (A22)
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Figure A3. Simplified models for calculation of the cumulative dissipated energy during a whole
seismic event: (a) contribution of RC MRFs; (b) contribution of steel damper columns; (c) contribution
of viscous damping.

In this study, gFc

(
µ f , γ

)
is simplified by calculating the average in the range 0 ≤ γ ≤ 1.

The function g̃F

(
µ f

)
is defined as

g̃Fc

(
µ f

)
=

1∫
0

gFc

(
µ f , γ

)
dγ. (A23)

Substituting Equation (A22) into Equation (A23), g̃Fc

(
µ f

)
is written as

g̃Fc

(
µ f

)
=

{
0 : 0 ≤ µ f ≤ 1

µ f − 4/√µ f + 3/µ f : µ f > 1
. (A24)
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Therefore, the dissipated strain energy of RC MRFs under cyclic loading per unit mass
(∆ES1 f c

∗/M1
∗) can be calculated as

∆ES1 f c
∗

M1
∗ (D1

∗
max) = A1y f

∗D1y f
∗ g̃Fc

(
µ f

)
. (A25)

Similar to RC MRFs, the dissipated strain energy of the damper columns under
monotonic and cyclic loading per unit mass (∆ES1dm

∗/M1
∗ and ∆ES1dc

∗/M1
∗) can be

calculated from Figure A3b as

∆ES1dm
∗

M1
∗ = A1yd

∗D1yd
∗gDm(µd), (A26)

gDm(µd) =

{
0 : 0 ≤ µd ≤ 1

µd − 1 : µd > 1
(A27)

∆ES1dc
∗

M1
∗ (D1

∗
max) = A1yd

∗D1yd
∗ g̃Dc(µd), (A28)

g̃Dc(µd) =

1∫
0

gDc(µd, γ)dγ. (A29)

From the right of Figure A3b, gD(µd, γ) is calculated as

gDc(µd, γ) =

{
0 : 0 ≤ µd ≤ 1 or γ ≤ 1/µd

4(γµd − 1) : µd > 1 and γ ≥ 1/µd
. (A30)

By substituting Equation (A30) into Equation (A29), g̃Dc(µd) is written as

g̃Dc(µd) =

{
0 : 0 ≤ µd ≤ 1

2(µd − 2 + 1/µd) : µd > 1
. (A31)

Finally, the dissipated damping energy per unit mass over one cycle of the structural
response (∆ED1c

∗/M1
∗) is calculated from Figure A3c and Equation (A13) as

∆ED1c
∗

M1
∗ (D1

∗
max) = 2πh1 f

npeak
ω1 f

1ω1 f
A1 f

∗
maxD1

∗
max, (A32)

npeak
ω1 f =

√
npeak

A1 f
∗/npeak

D1
∗ =

√
A1 f

∗max/D1
∗max. (A33)

Appendix D. Model Properties

The properties of the members of the two models analyzed in this study are now
described. Table A1 presents the properties of sections at potential hinges of the RC
members in the 8-story model. Note that the cross-sections of all of the RC columns have
dimensions of 800 mm × 800 mm, which are the same as those of the cross-section at the
bottom of the first story. The cross-sections of the RC beams at the foundation level (Z0) have
dimensions of 800 mm × 2900 mm. The yield strength of the longitudinal reinforcement is
assumed to be 1.1 × 390 = 429 N/mm2. The assumed compressive strength of the concrete
is 45 N/mm2 for the stories 1–4, and 36 N/mm2 at and above the 5th story.

Table A2 presents the properties of selected damper columns in the 8-story model.
The initial normal yield stress of the steel used for the damper panels is assumed to be
205 N/mm2, whereas the normal yield stress after appreciable cyclic loading is assumed to
be 300 N/mm2.
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Table A1. Sections at potential hinges of RC members for 8-story model.

Member Location Width
(mm)

Depth
(mm)

Longitudinal
Reinforcement

Z4 to Z8 500 900 5-D29 (Top and bottom)
Beam Z2 to Z3 500 900 5-D32 (Top and bottom)

Z1 550 900 5-D35 (Top and bottom)

Column 1st Story (Bottom) 800 800 16-D29 (Total)

Table A2. Steel damper columns for 8-story model.

Story
Yield Strength Panel

Thickness
(mm)

Panel
Height
(mm)

Panel
Sectional Area

(mm2)

Column
(mm ×mm ×mm ×mm)QyDL

(kN)
QyDU
(kN)

6 to 8 438 641 6 600 3700 H-600 × 200 × 12 × 25
4 to 5 626 916 9 600 5290 H-600 × 250 × 16 × 32
1 to 3 755 1105 9 700 6380 H-700 × 300 × 16 × 28

Table A3 presents the properties of sections at potential hinges of the RC members in
the 16-story model. Note that the cross-sections of all of the RC columns have dimensions
of 900 mm × 900 mm, which are the same as those of the cross-section at the bottom of the
first story. The cross-sections of the RC beams at the foundation level (Z0) have dimensions
of 800 mm × 2900 mm. The yield strength of the longitudinal reinforcement is assumed to
be 429 N/mm2. The assumed compressive strength of concrete is 60 N/mm2 for stories
1–5, 54 N/mm2 for stories 6–9, 45 N/mm2 for stories 10–12, and 36 N/mm2 at and above
the 13th story.

Table A4 presents the properties of selected damper columns in the 16-story model.
The properties of the steel used for the damper panel are the same as those for the
8-story model.

Table A3. Sections at potential hinges of RC members for 16-story model.

Member Location Width
(mm)

Depth
(mm)

Longitudinal
Reinforcement

Z7 to Z16 500 900 5-D29 (Top and bottom)
Beam Z2 to Z6 500 900 5-D32 (Top and bottom)

Z1 550 900 5-D35 (Top and bottom)

Column 1st Story (Bottom) 900 900 16-D32 (Total)

Table A4. Steel damper columns for 16-story model.

Story
Yield Strength Panel

Thickness
(mm)

Panel
Height
(mm)

Panel
Sectional Area

(mm2)

Column
(mm ×mm ×mm ×mm)QyDL

(kN)
QyDU
(kN)

11 to 16 438 641 6 600 3700 H-600 × 200 × 12 × 25
7 to 10 626 916 9 600 5290 H-600 × 250 × 16 × 32
1 to 6 755 1105 9 700 6380 H-700 × 300 × 16 × 28
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