Damage Model of Basalt-Fiber-Reinforced Cemented Soil Based on the Weibull Distribution
Abstract
:1. Introduction
2. Material Properties and Test Procedure
2.1. Test Materials
2.1.1. Soil Properties
2.1.2. Basalt Fibers
2.1.3. Cement
2.2. Specimen Preparation
2.3. Test Design
2.4. Testing Apparatus and Procedure
3. Experimental Results and Discussion
3.1. Effect of the Fiber Length on the Mechanical Properties
3.2. Effect of the Fiber Content on Mechanical Properties
3.3. Reinforcement Mechanism of Fibers in Cemented Soil
4. Damage-Theory-Based Constitutive Model
- The number of damaged microelements in relation to the pore area and effective bearing area of BFRCS obeys the Weibull distribution.
- Under the action of an external load, the material comprises damaged and undamaged parts; the undamaged part bears the load on any microelements of the material.
- The damage evolution of microelements during loading is a continuously changing process.
- The material is an isotropic damage material, and the stress-strain relationship of undamaged microelements is in accordance with Hooke’s law.
4.1. Establishment of the Constitutive Model
4.2. Calculation of the Damage Variables at Different Stages
4.3. Calculation of the Damage Variables in the Compression Phase
4.4. Calculation of the Damage Variables in the Damage Phase
5. Results and Discussion
5.1. Weibull Parameters
5.2. Stress–Strain Relationship Based on Statistical Damage
5.3. Constitutive Model Validation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayeldeen, M.; Kitazume, M. Using fiber and liquid polymer to improve the behaviour of cement-stabilized soft clay. Geotext. Geomembr. 2017, 45, 592–602. [Google Scholar] [CrossRef]
- Boz, A.; Sezer, A.; Özdemir, T.; Hızal, G.E.; Azdeniz Dolmacı, Ö. Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian J. Geosci. 2018, 11, 122. [Google Scholar] [CrossRef]
- Baldovino, J.d.J.A.; Moreira, E.B.; Carazzai, É.; Rocha, E.V.d.G.; dos Santos Izzo, R.; Mazer, W.; Rose, J.L. Equations controlling the strength of sedimentary silty soil-cement blends: Influence of voids/cement ratio and types of cement. Int. J. Geotech. Eng. 2019, 15, 359–372. [Google Scholar] [CrossRef]
- Chen, D.; Liao, Y.; Jiang, C.; Feng, X. The mechanical properties of coastal soil treated with cement. J. Wuhan Univ. Technol. 2013, 28, 1155–1160. [Google Scholar] [CrossRef]
- Xu, L.; Deng, H.; Niu, L.; Zheng, J.; Qian, Y. Experimental study on mechanical properties of fiber-reinforced cemented soil with the low temperature curing condition subjected to effect of salt and drying-wetting cycles. J. Civil EE. 2022, 44, 10–19. [Google Scholar] [CrossRef]
- Xu, L.; Niu, L. Effect of polypropylene fiber on frost resistance of cemented soil. Mater. Plast. 2019, 57, 78–86. [Google Scholar] [CrossRef]
- Liu, J.; Bai, Y.; Song, Z.; Wang, Y.; Chen, Z.; Wang, Q.; Kanungo, D.P.; Qian, W. Debi Prasanna Kanungo, and Wei Qian, Effect of basalt fiber on the strength properties of polymer reinforced sand. Fibers Polym. 2018, 19, 2372–2387. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, X.; Lv, J.; Zou, X. 3D numerical model to investigate the rheological properties of basalt fiber reinforced asphalt-like materials. Constr. Build. Mater. 2017, 138, 185–194. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, X.; Lv, J.; Zhu, Z.; Zou, X. Numerical analysis of the rheological behaviors of basalt fiber reinforced asphalt mortar using ABAQUS. Constr. Build. Mater. 2017, 157, 392–401. [Google Scholar] [CrossRef]
- Shi, F.J. A study on structure and properties of basalt fiber. Appl. Mech. Mater. 2012, 238, 17–21. [Google Scholar] [CrossRef]
- Yang, K.; Wei, S.; Adilehou, W.M.; Ho, H. Fiber-reinforced internally unstable soil against suffusion failure. Constr. Build. Mater. 2019, 222, 458–473. [Google Scholar] [CrossRef]
- Otieno Owino, A.; Nahar, N.; Hossain, Z.; Tamaki, N. Dimensional influence of basalt fiber reinforcements on the consolidation behaviour of rice husk ash stabilized soils. Constr. Build. Mater. 2022, 339, 127686. [Google Scholar] [CrossRef]
- Ma, Q.; Gao, C. Effect of basalt fiber on the dynamic mechanical properties of cement-soil in SHPB test. J. Mater. Civ. Eng. 2018, 30, 04018185. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, Q.; Wang, H. Effect of basalt fiber addition on static-dynamic mechanical behaviors and microstructure of stabilized soil compositing cement and fly ash. Adv. Civ. Eng. 2019, 0401815, 821453. [Google Scholar] [CrossRef]
- Shen, Y.; Tang, Y.; Yin, J.; Li, M.; Wen, T. An experimental investigation on strength characteristics of fiber-reinforced clayey soil treated with lime or cement. Constr. Build. Mater. 2021, 294, 12357. [Google Scholar] [CrossRef]
- Zhu, H.-H.; Zhang, C.-C.; Tang, C.-S.; Shi, B.; Wang, B.-J. Modeling the pullout behavior of short fibers in reinforced soil. Geotext. Geomembr. 2014, 42, 329–338. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, Z.; Ju, J.; Liu, J.; Wang, X. The research on compaction characteristics of cement soil. In Proceedings of the Fourth International Conference on Digital Manufacturing Automation, Qindao, China, 29–30 June 2013; Volume 2, pp. 1521–1524. [Google Scholar] [CrossRef]
- Wang, D.; Wang, H.; Larsson, S.; Benzerzour, M.; Maherzi, W.; Amar, M. Effect of basalt fiber inclusion on the mechanical properties and microstructure of cement-solidified kaolinite. Constr. Build. Mater. 2020, 241, 118085. [Google Scholar] [CrossRef]
- Xiao, Y.; He, X.; Evans, T.M.; Stuedlein, A.W.; Liu, H. Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand. J. Geotech. Geoenviron. Eng. 2019, 145, 04019048. [Google Scholar] [CrossRef]
- Lv, X.; Zhou, H.; Liu, X.; Song, Y. Experimental study on the effect of basalt fiber on the shear behavior of cemented sand. Environ. Earth Sci. 2019, 78, 688. [Google Scholar] [CrossRef]
- Dasaka, S.M.; Sumesh, K.S. Effect of coir fiber on the stress-strain behavior of a reconstituted fine-grained soil. J. Nat. Fibers 2011, 8, 189–204. [Google Scholar] [CrossRef]
- Divya, P.V.; Viswanadham, B.V.S.; Gourc, J.P. Evaluation of tensile strength-strain characteristics of fiber-reinforced soil through laboratory tests. J. Mater. Civ. Eng. 2014, 26, 14–23. [Google Scholar] [CrossRef]
- Gao, Z.; Lu, D.; Huang, M. Effective skeleton stress and void ratio for constitutive modeling of fiber-reinforced sand. Acta Geotech. 2020, 15, 2797–2811. [Google Scholar] [CrossRef]
- Sivakumar Babu, G.L.; Chouksey, S.K. Model for analysis of fiber-reinforced clayey soil. Geomech. Geoeng. 2010, 5, 277–285. [Google Scholar] [CrossRef]
- Salih, M.M.; Osofero, A.I.; Imbabi, M.S. Constitutive models for fibre reinforced soil bricks. Constr. Build. Mater. 2020, 240, 117806. [Google Scholar] [CrossRef]
- Kanchi, G.M.; Neeraja, V.S.; Sivakumar Babu, G.L. Effect of anisotropy of fibers on the stress-strain response of fiber-reinforced soil. Int. J. Geomech. 2015, 15, 06014016. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, J.; Li, Y.; Wang, S. Disturbed state concept-based model for the uniaxial strain-softening behavior of fiber-reinforced soil. Int. J. Geomech. 2022, 22, 4022092. [Google Scholar] [CrossRef]
- Specification for mix Proportion Design of Cement Soil. In Chinese Standard JGJ-T233-2011; Fujian Academy of Building Research: Fuzhou, China, 2011. (In Chinese)
- Lemaitre, J. A continuous damage mechanics model for ductile fracture. Trans. ASME, Ser. H. 1985, 107, 83–89. [Google Scholar] [CrossRef]
- Tian, H.; Ziegler, M.; Kempka, T. Physical and mechanical behavior of claystone exposed to temperatures up to 1000 °C. Int. J. Rock Mech Min. 2014, 70, 144–153. [Google Scholar] [CrossRef]
- Dusan, K.; Silva, M.A.G. Statistical aspects of the continuous damage theory. Int. J. Solids Struct. 1982, 18, 551–562. [Google Scholar] [CrossRef]
- Mcdowell, G.R.; Amon, A. The application of Weibull statistics to the fracture of soil particles. J. Jpn. Geotech Soc. 2000, 40, 133–141. [Google Scholar] [CrossRef]
- Munkholm, L.; Perfect, E. Brittle fracture of soil aggregates. Soil Sci. Soc. Am. J. 2005, 69, 1565–1571. [Google Scholar] [CrossRef]
- Frandsen, H.L. Weibull statistics effective area and volume in the ball-on-ring testing method. Mech. Mater. 2014, 73, 28–37. [Google Scholar] [CrossRef]
- Ding, Y.; Wei, W.; Pan, B.; Huang, Q.; Liu, Z.; Liu, D. Statistical damage model for fiber-reinforced vegetation concrete substrate. Chin. J. Geotech. Eng. 2022, 044, 652–659. [Google Scholar]
- Kachanov, M.; Montagut, E. Interaction of a crack with certain microcrack arrays. Eng. Fract. Mech. 1986, 25, 625–636. [Google Scholar] [CrossRef]
- Lemaite, J. How to use damage mechanics. Nucl. Eng. Des. 1984, 80, 233–245. [Google Scholar] [CrossRef]
- Tao, C.; He, H.; Yan, W.; Zhou, D. Compression damage constitutive model of hybrid fiber reinforced concrete and its experimental verification. Constr. Build. Mater. 2020, 264, 120026. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Wang, Y.; Xiong, W.; Zhao, Y.; Du, S. A statistical damage constitutive model considering whole joint shear deformation. Int. J. Damage Mech. 2020, 29, 988–1008. [Google Scholar] [CrossRef]
Physical and Mechanical Index | Value |
---|---|
Natural water content (%) | 33.2 |
Plastic limit (%) | 41 |
Plasticity index | 16 |
Natural density (g/cm3) | 2.71 |
Void ratio | 1.03 |
Liquid limit (%) | 25 |
Main Component | Si | Ca | Al | Mg | O | K | Na | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|
Atomic fraction/% | 26.6 | 18.93 | 7.89 | 6.90 | 31.81 | 1.18 | 1.63 | 1.26 | 4.04 |
Diameter/μm | Tensile Strength/MPa | Modulus of Elasticity/GPa | Density/(g/cm³) | Thermal Conductivity/(W-m/k) | Operating Temperature/°C |
---|---|---|---|---|---|
7–15 | 3000–4800 | 91–110 | 2.63–2.65 | 0.030–0.038 | −269–650 |
Strength Grade | Specific Surface Area/(m²/kg) | Initial Setting Time/h | Final Set Time/h | Cementitious Sand Flexural Strength/MPa | Cementitious Sand Compressive Strength/MPa | ||
---|---|---|---|---|---|---|---|
3 d | 28 d | 3 d | 28 d | ||||
P-O 42.5 | 345 | 2 | 2.5 | 5 | 8 | 24 | 49 |
No. | Fiber Content/% | Fiber Length/mm | No. | Fiber Content/% | Fiber Length/mm |
---|---|---|---|---|---|
C0-L0 | 0 | 0 | C0.5-L3 | 0.5 | 3 |
C0.1-L3 | 0.1 | 3 | C0.5-L6 | 0.5 | 6 |
C0.1-L6 | 0.1 | 6 | C0.5-L12 | 0.5 | 12 |
C0.1-L12 | 0.1 | 12 | C0.5-L20 | 0.5 | 20 |
C0.1-L20 | 0.1 | 20 | C0.5-L35 | 0.5 | 35 |
C0.1-L35 | 0.1 | 35 | C0.7-L3 | 0.7 | 3 |
C0.3-L3 | 0.3 | 3 | C0.7-L6 | 0.7 | 6 |
C0.3-L6 | 0.3 | 6 | C0.7-L12 | 0.7 | 12 |
C0.3-L12 | 0.3 | 12 | C0.7-L20 | 0.7 | 20 |
C0.3-L20 | 0.3 | 20 | C0.7-L35 | 0.7 | 35 |
C0.3-35 | 0.3 | 35 |
Parameter Expressions in Different Degrees | |
---|---|
Compress Degree | Destroy Degree |
m = 9.52 × 10−3−6.05 × 10−3 C–1.08469 × 10−4. * L–7.49 × 10−3 * C2 + 3.20978 × 10−6 * L2 –3.94778 × 10−5 * C* L | m1 = 2.918 × 10−2–1.791 × 10−2 * C–2.94713 × 10−4 * L + 2.495 × 10−2 * C2 + 6.91643 × 10−6 * L2 + 1.03341 × 10−4 * C * L |
n = 5.2595–7.80631 * C–7.979 × 10−2 * L + 7.16081 * C2 + 1.63 × 10−3 * L2 + 4.1 × 10−2 * C * L | n1 = 4.888–7.762 * C–4.83 × 10−3 * L – 5.243 * C2 + 1.248 × 10−4 * L2 −4.93 × 10−3 * C * L |
Related Parameters | E | D0 | n | m | m1 | n1 |
---|---|---|---|---|---|---|
C0.1-L3-14d | 202 | 0.61 | 4.3380771 | 0.008857147 | 0.026847 | 4.036524 |
C0.1-L6-14d | 210 | 0.57 | 4.1550171 | 0.008606567 | 0.026181 | 4.023925 |
C0.1-L12-14d | 214 | 0.6 | 3.8769171 | 0.008604154 | 0.025221 | 4.005465 |
C0.1-L20-14d | 220 | 0.59 | 3.6886771 | 0.008743518 | 0.024714 | 3.99483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Zhang, R.; Niu, L.; Qi, C. Damage Model of Basalt-Fiber-Reinforced Cemented Soil Based on the Weibull Distribution. Buildings 2023, 13, 460. https://doi.org/10.3390/buildings13020460
Xu L, Zhang R, Niu L, Qi C. Damage Model of Basalt-Fiber-Reinforced Cemented Soil Based on the Weibull Distribution. Buildings. 2023; 13(2):460. https://doi.org/10.3390/buildings13020460
Chicago/Turabian StyleXu, Lina, Runze Zhang, Lei Niu, and Chenhui Qi. 2023. "Damage Model of Basalt-Fiber-Reinforced Cemented Soil Based on the Weibull Distribution" Buildings 13, no. 2: 460. https://doi.org/10.3390/buildings13020460
APA StyleXu, L., Zhang, R., Niu, L., & Qi, C. (2023). Damage Model of Basalt-Fiber-Reinforced Cemented Soil Based on the Weibull Distribution. Buildings, 13(2), 460. https://doi.org/10.3390/buildings13020460