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Abstract: The creation of building information models requires acquiring real building conditions.
The generation of a three-dimensional (3D) model from 3D point clouds involves classification,
outline extraction, and boundary regularization for semantic segmentation. The number of 3D
point clouds generated using close-range images is smaller and tends to be unevenly distributed,
which is not conducive to automated modeling processing. In this paper, we propose an efficient
solution for the semantic segmentation of indoor point clouds from close-range images. A 3D deep
learning framework that achieves better results is further proposed. A dynamic graph convolutional
neural network (DGCNN) 3D deep learning method is used in this study. This method was selected
to learn point cloud semantic features. Moreover, more efficient operations can be designed to
build a module for extracting point cloud features such that the problem of inadequate beam and
column classification can be resolved. First, DGCNN is applied to learn and classify the indoor point
cloud into five categories: columns, beams, walls, floors, and ceilings. Then, the proposed semantic
segmentation and modeling method is utilized to obtain the geometric parameters of each object
to be integrated into building information modeling software. The experimental results show that
the overall accuracy rates of the three experimental sections of Area_1 in the Stanford 3D semantic
dataset test results are 86.9%, 97.4%, and 92.5%. The segmentation accuracy of corridor 2F in a civil
engineering building is 94.2%. In comparing the length with the actual on-site measurement, the root
mean square error is found to be ±0.03 m. The proposed method is demonstrated to be capable of
automatic semantic segmentation from 3D point clouds with indoor close-range images.

Keywords: building information model; 3D point cloud; semantic segmentation; deep learning

1. Introduction

With the rapid development of laser scanners and digital images in recent years, spatial
three-dimensional (3D) point cloud data have been widely used in many fields. Point clouds
are convenient for spatial measurements and can show object shapes. However, point
clouds only have 3D coordinates and color information; moreover, they do not contain
attribute information. Extraction of accuracy objects from a 3D point cloud is a challenge [1].
Therefore, this issue is currently a hot research topic [2–4]. The main purpose of this study
is to expand the application of point clouds through 3D point cloud classification and
segmentation technology. The 3D information of point clouds can be widely applied to
different fields for the visual display and management of engineering information.

With the recent development of laser technology and digital photogrammetry, the
real appearance of an object can be restored through a 3D point cloud model. Point
clouds are easy to visualize; they are simply point clusters without attribute information.
Consequently, designers find them difficult to use in drawings. If the point cloud can be
segmented, errors in drawings can be reduced [5]. Moreover, point cloud attributes can
enable semi-automatic or fully automatic modeling.
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The early development of artificial intelligence in the field of computer vision was
intended for the classification, detection, and semantic segmentation of two-dimensional
(2D) images. The advances in deep learning have indirectly promoted the development
of the field of combining deep neural networks with 3D information [1]. With 3D point
clouds, supervised learning or unsupervised methods can be used for feature learning
so that the neural network can recognize geometric shapes. Because point clouds do not
contain attribute information, the attributes of an object can be obtained from a segmented
point cloud. Then, the rules of 3D modeling can be formulated, enabling the use of point
clouds in automatic modeling.

In recent years, the development of deep learning networks has been effective in the
semantic segmentation processing of 3D point clouds [4,6–8]. Using the segmentation
results, the point cloud can be assigned to a corresponding object label. Accordingly, this
study uses a deep learning network to segment 3D point clouds, improving the efficiency
and accuracy of artificial segmentation.

This research aims to segment the 3D point cloud of an indoor space using a deep
learning network, develop a set of point cloud feature extraction procedures, and complete
the automatic modeling of parametric components [9–12]. The dynamic graph convolu-
tional neural network (DGCNN) proposed by Wang et al. (2018) was used to perform
indoor point cloud segmentation [13]. After segmentation, feature extraction technology
is applied to derive the endpoints of components. Finally, the endpoint coordinates are
imported into the automatic modeling rules to generate parametric components. To ensure
the correctness of model reconstruction, the difference between a model and an object
(i.e., between a 3D model and a real 3D housing condition, respectively) is evaluated.

This paper presents a framework for automated building component recognition based
on close-range images. The proposed approach consists of three main steps: (1) grouping
3D point clouds into five categories using a deep learning classification model; (2) extracting
outlines from the five categories of building structure point clouds; and (3) identifying
boundary regulation and parametric components. The reason for choosing “columns,
beams, walls, ceilings, and floors” as the segmentation target is that these five types of data
represent the basic structure and layout of the house that cannot be easily changed, and
the simple geometry is also conducive to feature extraction and automatic modeling. The
proposed method automatically reconstructs the complete geometry of columns, beams,
walls, ceilings, and floors from 3D point clouds using close-range images. Moreover, the
material properties of components are included, thus allowing the generation of building
information models (BIMs). The proposed approach is then field-validated using an actual
building on campus.

2. Related Work

With the development of laser scanner technology and digital photogrammetry in
recent years, 3D point cloud models are typically employed to represent the surfaces of
objects. Point clouds have spatial coordinates that provide measurement information. In
addition, a colored point cloud can be used as a basis for browsing the housing environment
and querying the relative positions of components.

The generation of 3D graphs from 3D point clouds of indoor spaces is a current
research focus. The early method for this purpose was to construct a point cloud into 3D
elements using artificial methods [2,14,15]. For example, based on the geometric shape and
edge features of the point cloud distribution, the centerline of the object, the boundary of
the structure, and other details are used to build a model. However, after 3D reconstruction,
the point cloud becomes non-attribute data. If the 3D point cloud can be effectively
segmented and provided with attribute data, the results can aid in the development of
automatic modeling. Accordingly, 3D point cloud segmentation has become an important
research topic [3,14,16,17]. There are some review-type articles that organize and analyze
the progress of relevant research [1,14,15,18].



Buildings 2023, 13, 468 3 of 16

2.1. Three-Dimensional Point Cloud Classification

A point cloud does not contain geometric information. In contrast, a segmented point
cloud contains attribute data to which the rules of 3D modeling can be applied. Hence,
point clouds can benefit from automatic modeling.

The current research on 3D data combined with deep learning can be broadly classified
into categories, such as RGB-D (red–green–blue depth), volumetric approach, multiview
convolutional neural network (CNN), and unordered point set processing [1]. The first
three data items are regularly structured data with clear connection information; they yield
acceptable results in both object detection and segmentation. However, with automated
processing, the direct processing of an out-of-sequence point cloud to achieve point-to-point
classification, part segmentation, or semantic segmentation can be implemented. Moreover,
the use of a voxel grid or other conversion methods to reduce the risk of potential loss of
3D point cloud data during the conversion process is not necessary.

In recent years, the classification and segmentation technology of point clouds for 3D
processing has been investigated [6,19–23]. In 2017, Qi et al. proposed the PointNet method
for 3D point cloud processing based on deep learning. The overall semantic segmentation
accuracy of the indoor scene point cloud in the mixed test of the S3DIS dataset can reach
78.5% [24].

By ignoring related details on geometry among the points, some local features are lost.
After discovering this problem, Qi et al. proposed an improved method. In the improved
version, i.e., PointNet++, a 2D CNN processing mechanism is added to the original archi-
tecture of the method. The overall semantic segmentation accuracy of PointNet++ in the
S3DIS dataset hybrid test is 81.0% [25].

To improve segmentation accuracy, Wang et al. proposed the DGCNN method in
2019 [13]. In addition to obtaining local features, the feature information of the overall
scene can be extracted through repeated stacking. The overall accuracy of the point cloud
semantic segmentation in indoor scenes reached 84.1%.

Presently, the development of deep learning in the field of computer vision has shifted
from a mature 2D platform to 3D space. Since Qi et al. proposed PointNet, breakthroughs
have been made in object classification and semantic segmentation applied to 3D point
clouds by learning their features [24].

With the introduction of DGCNN, more accurate semantic segmentation of indoor
scenes can be achieved. In this study, after referring to relevant research on 3D point
clouds [14], the DGCNN with improved performance and a simple operational process is
selected for testing.

2.2. Semantic Segmentation and Modeling

A 3D point cloud can be provided with attribute data after semantic segmentation
using a deep neural network; for example, certain points can represent columns. For 3D
modeling, a 3D point cloud with attributes can be used to extract the feature information of
a corresponding target using a feature extraction algorithm [26–29].

The study focuses on columns, beams, walls, ceilings, and floors in interior space.
These objects have clear corners, edges, and other characteristic information in the expres-
sion of geometric shapes.

In general, the procedure for generating a building footprint involves three steps using
point cloud data: (1) segmentation; (2) extraction of building outlines; and (3) regularization
or generalization of boundaries. The first step classifies the points of the building from a
point cloud dataset. The second step involves the extraction of building boundaries and
the generation of a preliminary polygon. Finally, the third step involves the adjustment of
the generated boundary and the retrieval of simple and regular polygons [27,30].

According to Awrangjeb (2016), the methods for extracting building outlines can be
divided into two types: direct and indirect [30]. Direct methods extract building outlines
based on the points. However, these methods are sensitive to the selection of parameters
(such as neighborhood radius) and are easily affected by noise in point cloud data.
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The indirect method uses image processing technology to extract edge features
from 2D images and then matches them to point cloud data to extract 3D edge features.
Wang et al. (2013) pointed out that this method includes detecting 2D edge information
from a 2D image corresponding to the point cloud [31]. The image depth is generated
from the point cloud, and then it is matched with the original 3D point cloud data. Finally,
multiple groups of edge points are merged and used as detected 3D point cloud edges.

When edge features are extracted using the indirect method, spatial information
can easily be lost during dimension conversion; thus, 3D edge feature information may
be missed. In addition, the actual semantic segmentation results may be less than the
number of point clouds before processing due to the parameter setting of deep learning
in the point cloud sampling process. Accordingly, this study adopts the direct method for
feature extraction.

The direct method extracts edge information directly from a 3D point cloud. For
example, Borges (2010) first divided the point cloud and then detected the intersection of
the segmentation surface and depth discontinuity edge [32]. In addition, Sampath and Shan
(2007) proposed the use of a convex hull algorithm to establish the plane point information
of a roof [33]. Then, the same algorithm is used to obtain the edge lines and finally perform
boundary regularization.

3. Methodology

The main processing step in this study is to automatically generate the parametric
components of BIM from the close-range images. A series of processes in this study can be
referred to in Figure 1.

Figure 1. The overall process of the proposed method in this study.

3.1. Three-Dimensional Point Cloud Classification
3.1.1. Sample Data

A 3D point cloud can be applied to surveying and mapping, unmanned driving,
robotics, reverse engineering, and other fields. This is because it has visualization char-
acteristics, and each point contains coordinate information. In addition to the complete
and accurate preservation of the actual size of a target object, 3D point clouds present the
characteristics of irregular surface changes and image space information. To understand
the current geometric environment, the construction plans can be immediately viewed,
improved, and modified. Accurate measurements of indoor spaces can also be obtained.

Several methods for obtaining 3D indoor point clouds are available, including laser
scanning and close-range photogrammetry. The point cloud properties obtained using these
methods vary. After a point cloud is obtained, determining how to classify it is typically
required to obtain useful information. Therefore, point cloud segmentation technology is
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necessary for many applications. Consider BIMs in civil engineering as an example. To
facilitate the subsequent surface reconstruction and boundary extraction, the segmentation
of the different surfaces of building components is necessary.

In the 3D point clouds of existing buildings, multiple attribute categories are typically
present. For example, these categories are found in the 3D point clouds of columns, beams,
walls, and panels of structures, pipelines, lamps, desks, and firefighting appliances for
non-structural objects. However, existing point cloud segmentation algorithms are mainly
intended for specific shapes. For spatial regions with complex environments, manually
preprocessing the point cloud first before using segmentation algorithms may be necessary.

Accordingly, this study attempts to use the DGCNN with a deep neural network to ap-
ply semantic segmentation to 3D point clouds and maintain the neighborhood relationship
among point clouds through edge convolution. Consequently, the semantic segmentation
of 3D point clouds of columns, beams, walls, ceilings, and floors can be achieved.

1. S3DIS Dataset

The deep learning process typically relies on numerous samples for training and
requires relevant benchmark data to evaluate the prediction results of deep neural networks.
The S3DIS dataset (more completely described as the Stanford large-scale 3D indoor space
dataset) is used in this study. The dataset is built by capturing RGB-D images with a
Matterport camera to create a grid and then generating an indoor point cloud through grid
sampling. This dataset has approximately 700 million point clouds, and ground truth has
also been established [11]. We use five types of samples from the S3DIS dataset, such as
columns, beams, walls, floors, and ceilings, to increase the number of training samples to
obtain better overall accuracy and to verify our training results.

2. Close-range Images

The main point cloud acquisition methods can be classified into two categories: laser
scanning and close-range photogrammetry methods. Close-range photogrammetry has the
advantage of capturing images from multiple perspectives using a general, non-measuring
digital camera or mobile phone. It can also produce point clouds through SFM technol-
ogy, significantly reducing the production time of 3D point clouds and improving the
convenience of point cloud acquisition.

Because close-range photogrammetry is characterized by low cost, high mobility, and
high precision, it can obtain an indoor 3D point cloud in a more economical, convenient,
and reliable manner.

In view of the foregoing, this study adopts close-range photogrammetry to capture
indoor images and SFM technology to produce 3D point clouds. SFM technology can
produce high-precision 3D point clouds quickly and massively. It is a common technology
for generating 3D point clouds from close-range photogrammetry images [34,35]. The
precision of the 3D point cloud is within ±6 cm for the control point and ±3 cm for the
check point. Consequently, 3D point clouds with sufficient precision and quantity can be
generated as deep learning samples.

3.1.2. Sample Training

In this study, the DGCNN is employed to classify 3D point clouds for training using
supervised learning. Therefore, to evaluate the correctness of the training results, ground
truth samples are required. The ground truth samples in this experiment include those of
columns, beams, walls, floors, and ceilings. In the S3DIS dataset, indoor 3D point cloud
data are established to complete the ground truth samples for each category. Hence, the
ground truth data of close-range images are generated by artificially segmenting the 3D
point cloud to train the discriminative parameters of the deep learning model. By manually
segmenting the point clouds with this accuracy, we can ensure the accuracy of the ground
truth data.
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3.2. Semantic Segmentation and Modeling

Each point can be assigned a corresponding attribute value using the trained model to
segment the 3D point cloud. For example, the semantic segmentation result of a certain
point in space is “column” or “beam.” However, only the segmented point cloud can
achieve the purpose of automatically creating 3D model components.

To achieve automatic modeling, the segmentation result must be preprocessed. The
features in the 3D point cloud must be extracted, and the extraction rules must be estab-
lished to convert the point cloud with attributes into model components. This section
describes the feature extraction and automatic modeling rules. After automatic processing,
the point cloud results can be automatically converted into parametric components.

Sampath and Shan (2007) reported that in their study of the normalized edge results
of roof edge extraction, the object model had distinct endpoint features [33]. If the endpoint
coordinates can be effectively extracted, they can be used in formulating the size of the
parameterized element. Endpoint coordinates can also be based on the defined 3D coor-
dinates where the components are to be placed. To extract endpoint coordinates from the
segmented point cloud, data preprocessing must be performed. Without preprocessing,
false edges and connection problems can occur because point clouds typically contain noise,
errors, and edge irregularities.

In addition, previous related research shows that columns and beams are not consis-
tently considered when classifying 3D point clouds; nevertheless, in such cases, classifi-
cation is extremely inadequate. After the analysis, the column and beam characteristics
are as follows: (1) The point clouds are few, small in size, and difficult to classify. (2) The
columns and beams overlap with other structural components of the building. To resolve
this problem, this study focuses on the characteristics of columns and beams. The following
processing is proposed. (1) First, each category is extracted from the results of DGCNN
classification. (2) The point cloud is classified because the columns and beams overlap with
other categories; thus, the components are simplified. (3) Outlier points are removed. The
characteristics of a category are used to remove incorrect points, avoiding the lines and
results of the model. (4) Feature extraction is performed on the point cloud of the confirmed
category to extract the outlines of the model. (5) The appearance of the previous model is
integrated, and the correct model components are built.

3.2.1. Category Extraction

The 3D point cloud processed by the DGCNN is divided into five categories, which
can be extracted separately; colors are assigned to indicate different categories.

This study considers five types of data: “columns,” “beams,” “walls,” “floors,” and
“ceilings.” These categories can be distinguished by RGB colors: columns are pink, beams
are yellow, walls are light blue, floors are dark blue, and ceilings are green.

The semantic segmentation results have RGB band values; therefore, they are used as
classification indicator references. The results are shown in Figure 2.

Figure 2. (a) Classification results for each category (from left to right: column, beam, wall, floor,
ceiling). (b) Combination of all classification results.

3.2.2. Labeled Category

In the classified data, “column” and “beam” are repeatedly found in the same space
with other categories. These data must first be divided and processed into a single point
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cloud component, which is beneficial for subsequent feature extraction and component
construction. This study adopts the minimum distance segmentation method in Euclidean
space for division. After analyzing the actual building, the minimum segmentation distance
for the columns and beams was determined to be 60 cm. After checking the minimum
distance, effectively preserving the point clouds of beams and columns was found to
be possible.

3.2.3. Removal of Outliers

The overall accuracy rates of segmenting beams and columns are low. This may cause
the subsequent automatic modeling of components to be inconsistent with the current
situation. To solve this problem, this study refers to the method of Torr and Zisseee [36].
The use of building structure characteristics to filter out erroneous point clouds is proposed,
and boundary errors are avoided. Three factors are considered: (1) point-to-plane distance;
(2) plane normal vector; and (3) maximum angular distance, which uses the range interval
and the directionality of the point cloud to remove the erroneous point cloud. The method
first identifies the farthest point. Then, this point is used as the center to find the point
cloud within a certain radius. This point is evaluated using the maximum and minimum
values of the plane coordinates of the point cloud within the radius. Error points are
filtered out.

In the category of beams and columns that are difficult to classify, a method for
direction evaluation is added to filter out erroneous points and thus improve the accuracy
of beam and column models. After this preliminary filtering of error points, the outline of
the component becomes visible. However, if the coordinates of the maximum endpoint
value of the point cloud are used directly as a component range, the appearance of the
model may differ from the real situation.

Therefore, in extracting the boundaries of elements such as columns and beams in
this study, the vertical axis (Z axis) is used as the normal vector for the column, and the
horizontal axes (X and Y) are used as normal vectors for the beam element. Then, the
erroneous points of the 3D point cloud with the maximum angle are removed. This method
considers the allowable value of the angle between the point cloud and the normal vector.
The point cloud within the allowable range is retained; otherwise, it is eliminated.

3.2.4. Feature Extraction

The endpoint of the component must be extracted from the cross-section of the point
cloud. If the cross-sectional information of a certain plane is directly obtained, it can readily
result in insufficient information (Figure 3a). To resolve this, the method used in this
research projects the segmented point cloud data to the minimum value of the reference
direction according to the three axes (XYZ). The planarized point cloud has dense point
clouds (Figure 3b).

Figure 3. (a) 3D point clouds are projected onto a certain section; point clouds are few. (b) Planarized
point cloud from proposed method has dense point clouds.
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An endpoint feature extraction process can then be performed. The planarization
results in the three dimensions of XYZ are considered separately during the extraction
operation. The coordinate values of components in three dimensions are extracted to
achieve feature extraction.

3.2.5. Three-Dimensional Modeling

After completing the point cloud feature extraction, the attribute information can be
used for the automatic modeling rules [17,18,37]. In the BIM operating platform, this study
uses the Revit software produced by Autodesk for overall modeling display, component
information viewing, conflict analysis, and other functional purposes. Design using Dy-
namo (a visual plug-in program for Revit) in the automatic modeling stage is implemented.
Automatic modeling processes five parts: column, beam, wall, floor, and ceiling. Because
the research objects are mainly preset components in the parameter library of Revit, several
preset family types are directly selected as the modeling types in this study.

4. Experiments and Analyses
4.1. Test Area: Civil Engineering Building

The preliminary planning of the experimental area considered different indoor spaces
as research targets; control points were set indoors; and coordinates were obtained for scale
constraints and precision analysis. The number of training samples was increased using
data amplification methods.

Four experimental areas, 2F, 4F, 6F, and the basement of the civil engineering building
of our school, were selected as 3D reconstruction targets (Figure 4). The common charac-
teristics of the four areas are as follows: they have distinct “columns,” “beams,” “walls,”
“ceilings,” and “floors,” and a square layout.

Figure 4. Three-dimensional point cloud results of test area. Four experimental areas, the corridor of
2F, 4F, 6F, and the basement of the civil engineering building.
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4.2. Three-Dimensional Point Cloud Classification

In this study, the DGCNN is used to train and segment the S3DIS dataset and the civil
engineering hall of our school. This section presents the evaluation of the results of using
the S3DIS dataset.

4.2.1. S3DIS Dataset

The S3DIS dataset has six areas: Area1, Area2, Area3, Area4, Area5, and Area6. In this
study, Area2, Area3, Area4, Area5, and Area6 are used as training samples and Area1 is
used as the test area. The data in Area1 include 13 categories of objects, such as tables and
chairs. To explore the internal structure of the building, this study only retains the point
cloud sample data of columns, beams, walls, floors, and ceilings for training and testing.

The parameter setting before training affects the subsequent semantic segmentation
results; therefore, the parameters of the DGCNN model can be adjusted before training.
After training, the training parameters set by S3DIS were as follows: batch size = 3, decay
rate = 0.5, decay step = 300,000, learning rate = 0.001, momentum = 0.9, num point = 4096,
and epoch = 40.

Each iteration of the training process lasted approximately 33 min, and the training
accuracy started to flatten upon reaching 0.96. In the 40th iteration, the training loss rate
was 0.019 and the training accuracy rate was 0.993; overfitting was not observed.

Based on the training results, this study selects the 40th iteration model for the segmen-
tation test of the Area1 indoor area. Three small areas in Area1 were randomly selected for
comparative analysis: Conference_Room2, Office_2, and Office_6; the overall segmentation
accuracy rates are 86.90%, 97.49%, and 92.47%, respectively. Overall accuracy is calculated
as the sum of correctly classified pixels divided by the total number of pixels. Tables 1–3
are the confusion matrices.

Table 1. Conference_Room2 confusion matrix. The overall accuracy is 86.9%.

Conference_Room2
Predicted Class

Beam Ceiling Column Floor Wall %

True Class

beam 8214 287 3806 66.7

ceiling 99 61,073 24 56 99.7

column 276 7 3704 4084 45.9

floor 17 425 47,700 1204 96.7

wall 2627 9476 152 28,801 70.2

% 95.6 95.4 27.2 99.7 75.9 86.9

Table 2. Office_2 confusion matrix. The overall accuracy is 97.5%.

Office2
Predicted Class

Beam Ceiling Column Floor Wall %

True Class

beam 5509 10 28 99.3

ceiling 44 21,155 3 8 99.7

column 22 1179 3 97.9

floor 9 15,211 130 99.1

wall 61 356 1177 3 28,820 94.7

% 98.1 98.2 49.8 100.0 99.4 97.5
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Table 3. Office_6 confusion matrix. The overall accuracy is 92.5%.

Office6
Predicted Class

Beam Ceiling Column Floor Wall %

True Class

beam 4125 2693 130 59.4

ceiling 19 16,823 2 47 99.6

column 1176 5 99.6

floor 14,390 353 97.6

wall 23 97 1235 22 20,300 93.6

% 99.0 85.8 48.7 99.8 97.4 92.5

After analyzing the five structures, the segmentation results of the ceiling, floor, and
wall were all found to be excellent; however, the classification results of the beam and
column were inadequate.

Some wall point clouds were misclassified as columns, and beams were misjudged as
walls and ceilings. The ground truth and segmented results are summarized in Table 4.

Table 4. Categories of ground truth and segmented results for S3DIS dataset.

Ground Truth Segmented Results

Conference _Room2

Office_2

Office_6

4.2.2. Civil Engineering Building

The experimental area of the civil engineering building in our school has four sections:
corridors 2F, 4F, and 6F, and the basement.

The information obtained from corridors 4F and 6F as well as the basement is used as
a training sample, and that from corridor 2F is used as a test sample.

In this study, the data augmentation method is used to increase the number of samples
effectively. The training samples were sequentially divided at 10◦ intervals, and samples
from 10◦ to 90◦ were also added. After adding the samples, the parameters obtained
through training were as follows: batch size = 5, decay rate = 0.5, decay step = 300,000,
learning rate = 0.001, momentum = 0.9, number of points = 4096, epoch = 40, and
dropout = 0.4–0.7. In the training results, determining whether overfitting occurs was
necessary. The tests for loss and accuracy of calculations using the sampling model was per-
formed. No overfitting occurred during the S3DIS sample training, but overfitting started in
round 34 after adding the close-range image sample data. It is assumed that the overfitting
problem occurred because the training sample number of close-range images was small.

In the analysis, the lowest loss and highest accuracy rates occurred in the 33rd iteration;
these were 0.182% and 94.2%, respectively. Subsequently, at the 34th iteration, the loss rate
started to increase and the accuracy rate started to decrease. Accordingly, 0.7 was selected
as the dropout point. The 33rd iteration yielded the best segmentation result after adding
the samples.

The classification test results for the point cloud of corridor 2F are listed in Table 5.
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Table 5. Confusion matrix for corridor 2F. The overall accuracy is 94.2%.

Corridor 2F
Predicted Class

Beam Ceiling Column Floor Wall %

True Class

beam 4642 51 538 818 76.7

ceiling 93 23,378 43 71 99.1

column 8 2 5972 398 93.6

floor 80 41,111 1345 96.6

wall 585 1528 2300 52,205 92.2

% 87.1 93.7 66.9 100 95.2 94.2

In the confusion matrix in Table 4, the production accuracy rates were 99.1%, 93.6%,
96.6%, and 92.2% for the ceiling, column, floor, and wall, respectively. The beam achieved
an accuracy rate of 76.7%. With regard to user accuracy, the beam, ceiling, floor, and wall
reached accuracy rates of 87.1%, 93.7%, 100%, and 95.2%, respectively. The column attained
an accuracy rate of 66.9%. The ground truth data of the point cloud and the visualization
of the segmentation results are summarized in Table 6.

Table 6. Categories of ground truth and segmented results for corridor 2F of civil engineering building.

Ground Truth Segmented Result

Corridor 2F of Civil Engineering Building

Two types of sample data are used in this study: the S3DIS indoor dataset and the self-
constructed point cloud sample of the civil engineering building. In the training process,
owing to the sufficient training samples in S3DIS, the trend graphs of test and training
accuracy rates were parallel; overfitting did not occur. In the 40th iteration of training,
the overall segmentation accuracy rates of Area1_ConferenceRoom2, Area1_Office 2, and
Area1_Office 6 reached 86.90%, 97.49%, and 92.47%, respectively.

However, in the training results of the civil engineering gymnasium, owing to the
small number of original samples, sample training was performed in the form of data
augmentation. The test sample was segmented using the training results of the 33rd
iteration; the overall accuracy was 94.2%. After the analysis, the accuracy of beams and
columns remained low.

4.2.3. Discussion of Classification Results

In the S3DIS dataset, the segmentation results of the ceiling, floor, and wall were all
found to be excellent; however, the classification results of the beam and column were
inadequate. Some wall point clouds were misclassified as columns, and beams were
misjudged as walls and ceilings. The overabundance of these two types of components
was due to the small size and number of point cloud samples; hence, this type of error
was expected.

In the civil engineering building dataset, the segmentation accuracy of columns and
beams is lower than that of walls, floors, and ceilings because of two possible reasons.

1. Number of point clouds

In a single indoor space, the areas of walls, floors, and ceilings are larger than those of
columns and beams. The original sample training results of the hall in the civil engineering
building indicate that the segmentation results of columns and beams are lower than those
of the walls, floors, and ceilings. Segmentation can be improved by increasing the number
of training samples.
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2. Geometric distribution of point cloud

The point cloud data of walls, floors, and ceilings has a flat and wide distribution. In
contrast, the point cloud geometry of columns and beams has a 90◦ corner.

4.3. Semantic Segmentation and Modeling

After completing segmentation, the result of each test area was imported into the fea-
ture extraction operation. Moreover, parametric modeling was performed using automatic
modeling rules.

4.3.1. S3DIS Modeling

In the test sample of S3DIS, three sections of Area_1 were selected for the analysis
of segmentation results: Conference_Room2, Office_2, and Office_6. Feature extraction
and parametric modeling of the three areas were performed sequentially. The modeling
results are shown in Figure 5 to verify the feasibility of the automatic modeling rule design.
To facilitate the visualization of internal modeling, the ceiling is removed, as shown in
Figure 5.

Figure 5. Automatic modeling results of (a) Conference_Room2, (b) Office_2, and (c) Office_6
without ceiling.

4.3.2. 2F Corridor of Civil Engineering Building

After the segmentation of the point cloud in corridor 2F, feature extraction and auto-
matic modeling were performed sequentially. The modeling results are shown in Figure 6.
The ceiling is also removed to visualize the interior.

Figure 6. Automated modeling results of corridor 2F (without ceiling) in civil engineering building.

4.4. Evaluation of 3D Model

As presented in this section, the modeling results of corridor 2F in the civil engineering
building of our school were selected for testing. This is because corridor 2F is more
convenient to measure on site than the other areas. There were two columns, four walls,
two beams, one floor, and a ceiling in the area. This study analyzes the top view and
sectional view, as shown in Figure 7.

To verify whether the modeling result is consistent with the actual length of the
selected area, a total station was used for measuring the points, as shown in Figure 8. The
comparison results are listed in Table 7. The root mean square error (RMSE) of the line
length given by BIM compared with the actual length is ±0.03 m.
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Figure 7. (a) Top view and (b) sectional view of corridor 2F.

Figure 8. Line position map for comparing 3D model and in situ field. The letters A–Q indicate the
location of the points, and the length of the line segment connecting the two points is measured and
compared in this study.

Table 7. Three-dimensional model and actual line length difference (unit: m).

Line Model Length Actual Length Difference Line Model Length Actual Length Difference

AB 0.094 0.09 0.004 BD 0.259 0.232 −0.027

BC 1.715 1.721 −0.006 EF 0.286 0.269 0.017

DE 1.715 1.721 −0.006 HJ 0.347 0.321 0.026

FG 0.337 0.322 0.015 IK 0.347 0.324 0.023

HI 2.032 2.05 −0.018 GI 4.671 4.643 0.028

JK 2.032 2.052 −0.02 NM 0.360 0.304 0.056

LM 1.778 1.784 −0.006 KO 4.631 4.716 −0.085

NO 0.334 0.325 0.009 FP 0.749 0.781 −0.032

AL 10.598 10.609 0.011 FQ 3.455 3.430 0.025

The feature extraction process developed in this study derives the features of endpoints
from the point cloud segmentation results. Then, the parametric elements of columns,
beams, walls, floors, and ceilings were automatically modeled based on the attribute in-
formation. The experimental results indicate that Area1_ConferenceRoom2, Area1_Office
2, Area1_Office 6 of S3DIS, and corridor 2F in the civil engineering building can be used
to create the 3D model data of indoor components automatically. Each component has
attribute information, such as material, length, volume, and quantity. The overall pro-
cess not only reduces the time cost of manual model construction but also serves as
follow-up application management. It is a rapid BIM method for reconstructing existing
indoor spaces.

In comparing the actual length (obtained by inspection) of corridor 2F with the indoor
measurement yielded by automatic modeling, the RMSE is found to be ±0.03 m; hence, the
accuracy is acceptable.
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5. Conclusions and Future Work

In this study, a DGCNN was used to learn indoor 3D point cloud features. Five
items, i.e., columns, beams, walls, floors, and ceilings, were considered the research objects.
Training and learning were conducted using two different sources of point cloud data:
S3DIS and photogrammetry. Area_1 data in the S3DIS dataset and those of corridor 2F in
the civil engineering building were used as test samples for segmentation.

The endpoint feature extraction program developed in this study was applied to
process the segmented results. Other details, such as endpoint coordinates, quantity, and
length of the research object, are derived. Finally, feature information is imported into an
automatic modeling program for parametric element modeling.

This study uses a DGCNN to learn the features of indoor point clouds and segment
the point clouds of columns, beams, walls, floors, and ceilings automatically. The overall
accuracies using the S3DIS indoor dataset and civil engineering building information were
86.9% and 94.2%, respectively.

An endpoint feature extraction method that overcomes the errors caused by irregular
line segments is proposed in this paper. In addition, for columns and beams with low
semantic segmentation accuracy, a range processing method is devised to reduce semantic
segmentation errors.

The method can be employed to calculate the number of components, boundary length
and size, and relative information from the extracted endpoint. In comparing the inspected
size of corridor 2F in the civil engineering building with the measurement yielded by
automatic modeling, the RMSE is found to be approximately ±0.03 m. Because the point
clouds are constrained by control points, the model is similar to the building.

The results of this study demonstrate that indoor 3D point clouds produced by close-
range images can be segmented using a trained 3D deep learning network. The automatic
feature point extraction method proposed in this study is employed to derive the feature
point information of components. Using this information, the point cloud can be imported
into an automatic modeling system to generate BIM parametric components and create
indoor drawings.

There are a lot of objects in the room, and this study only sets out to study and
discuss five categories of structural objects. In the future, we intend to increase the
number of samples, increase the types of objects, reduce the noise, and explore ways to
improve accuracy.
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