System Framework for Digital Monitoring of the Construction of Asphalt Concrete Pavement Based on IoT, BeiDou Navigation System, and 5G Technology
Abstract
:1. Introduction
2. Background
2.1. Asphalt Concrete Pavement Monitoring System
2.2. Navigation and Positioning System and Network Transmission Technology
3. Method and Materials
3.1. Initial Stage
- (1)
- Research purpose
- (2)
- Planning the interview
- (1)
- Working in the same unit or the same job for more than 5 years;
- (2)
- Working in different types of units;
- (3)
- Different ages or gender;
- (4)
- From different professional backgrounds or fields of work;
- (5)
- Ranks of different positions.
- (3)
- Conduct interviews
3.2. Interview Results and Discussion
- (1)
- Objective of the system
- (2)
- Obstacles for system implementation
- (3)
- Benefits for system implementation
- (4)
- Improvements for system implementation
3.2.1. Data Management System
3.2.2. Asphalt Mixture Construction Monitoring
3.3. Construction of Digital Monitoring System for Asphalt Concrete Pavement Construction
3.3.1. Overall System Design
3.3.2. Composition of the Digital Monitoring System
Data Management System
Asphalt Material Production Monitoring System
Asphalt Mixture Monitoring System
Asphalt Mixture Transportation Monitoring System
Asphalt Mix Paving Monitoring System
Asphalt Mixture Rolling Monitoring System
4. Case Study Investigation
4.1. Data Management System
4.2. Asphalt Material Production Monitoring System
4.3. Asphalt Mixture Monitoring System
4.4. Asphalt Mixture Transportation Monitoring System
4.5. Asphalt Mixture Paving Monitoring System
4.6. Asphalt Mixture Compaction Monitoring System
4.7. Platform Application Results
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Xu, W.; Zhang, F.; Wu, H.; Zhao, P. Effect of Graphene Oxide on the Low-Temperature Crack Resistance of Polyurethane-SBS-Modified Asphalt and Asphalt Mixtures. Polymers 2022, 14, 453. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hou, K.; Jia, Y.; Wei, Z.; Wang, S.; Li, Z.; Ding, F.; Gong, X. Variability Evaluation of Gradation for Asphalt Mixture in Asphalt Pavement Construction. Autom. Constr. 2021, 128, 103742. [Google Scholar] [CrossRef]
- Hu, W.; Shu, X.; Jia, X.; Huang, B. Geostatistical Analysis of Intelligent Compaction Measurements for Asphalt Pavement Compaction. Autom. Constr. 2018, 89, 162–169. [Google Scholar] [CrossRef]
- Ghosh, A.; Edwards, D.J.; Hosseini, M.R. Patterns and Trends in Internet of Things (IoT) Research: Future Applications in the Construction Industry. Eng. Constr. Archit. Manag. 2021, 28, 457–481. [Google Scholar] [CrossRef]
- Chen, B.; Yu, X.; Dong, F.; Zheng, C.; Ding, G.; Wu, W. Compaction Quality Evaluation of Asphalt Pavement Based on Intelligent Compaction Technology. J. Constr. Eng. Manag. 2021, 147, 04021099. [Google Scholar] [CrossRef]
- Yu, J.; Xiong, C.; Zhang, X.; Li, W. More Accurate Modulus Back-Calculation by Reducing Noise Information from in Situ-Measured Asphalt Pavement Deflection Basin Using Regression Model. Constr. Build. Mater. 2018, 158, 1026–1034. [Google Scholar] [CrossRef]
- Li, T.; Wen, Y.; Feng, H.X.; Wei, L. Analysis on the De-Noise Effect of Anti-Skid Noise Reduction Asphalt Pavement; Wang, H., Liu, Y., You, Z., Eds.; Destech Publications: Lancaster, PA, USA, 2016; pp. 297–303. [Google Scholar]
- Yuan, J.; Li, X.; Ke, Y.; Xu, W.; Xu, Z.; Skibnewski, M. Developing a Building Information Modeling-Based Performance Management System for Public-Private Partnerships. Eng. Constr. Archit. Manag. 2020, 27, 1727–1762. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, J.; Philbin, S.P.; Li, H.; Yang, J.; Feng, Y.; Ballesteros-Perez, P.; Skitmore, M. Dynamic Quality Monitoring System to Assess the Quality of Asphalt Concrete Pavement. Buildings 2021, 11, 577. [Google Scholar] [CrossRef]
- Cong, L.; Shi, J.; Wang, T.; Yang, F.; Zhu, T. A Method to Evaluate the Segregation of Compacted Asphalt Pavement by Processing the Images of Paved Asphalt Mixture. Constr. Build. Mater. 2019, 224, 622–629. [Google Scholar] [CrossRef]
- Yiqiu, T.; Haipeng, W.; Shaojun, M.; Huining, X. Quality Control of Asphalt Pavement Compaction Using Fibre Bragg Grating Sensing Technology. Constr. Build. Mater. 2014, 54, 53–59. [Google Scholar] [CrossRef]
- Milad, A.A.; Adwan, I.; Majeed, S.A.; Memon, Z.A.; Bilema, M.; Omar, H.A.; Abdolrasol, M.G.M.; Usman, A.; Yusoff, N.I.M. Development of a Hybrid Machine Learning Model for Asphalt Pavement Temperature Prediction. IEEE Access 2021, 9, 158041–158056. [Google Scholar] [CrossRef]
- Tan, Y.; Liang, Z.; Xu, H.; Xing, C. Research on Rutting Deformation Monitoring Method Based on Intelligent Aggregate. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22116–22126. [Google Scholar] [CrossRef]
- Zhu, S.; Li, X.; Wang, H.; Yu, D. Development of an Automated Remote Asphalt Paving Quality Control System. Transp. Res. Rec. 2018, 2672, 28–39. [Google Scholar] [CrossRef]
- Liu, P.; Wang, C.; Lu, W.; Moharekpour, M.; Oeser, M.; Wang, D. Development of an FEM-DEM Model to Investigate Preliminary Compaction of Asphalt Pavements. Buildings 2022, 12, 932. [Google Scholar] [CrossRef]
- Hu, D.; Gu, X.; Yang, F.; Zhou, Z.; Bo, W.; Cui, B.; Pei, J. Atomic Mechanisms of Separation Failure at the Asphalt-Aggregate Interface and Its Dependence on Aging and Rejuvenation: Insights from Molecular Dynamics Simulations and DFT Calculations. Appl. Surf. Sci. 2022, 598, 153775. [Google Scholar] [CrossRef]
- Ravichandran, M.; Castorena, C. Critical Evaluation of Dynamic Shear Rheometer (DSR)-Based Methods to Measure Asphalt Binder Diffusion. J. Test. Eval. 2021, 49, 4014–4031. [Google Scholar] [CrossRef]
- Kassem, E.; Liu, W.; Scullion, T.; Masad, E.; Chowdhury, A. Development of Compaction Monitoring System for Asphalt Pavements. Constr. Build. Mater. 2015, 96, 334–345. [Google Scholar] [CrossRef]
- Chang, G.K.; Mohanraj, K.; Stone, W.A.; Oesch, D.J.; Gallivan, V. (Lee) Leveraging Intelligent Compaction and Thermal Profiling Technologies to Improve Asphalt Pavement Construction Quality: A Case Study. Transp. Res. Rec. 2018, 2672, 48–56. [Google Scholar] [CrossRef]
- Wan, Y.; Jia, J. Nonlinear Dynamics of Asphalt-Screed Interaction during Compaction: Application to Improving Paving Density. Constr. Build. Mater. 2019, 202, 363–373. [Google Scholar] [CrossRef]
- Howell, R.; Muench, S.; Feracor, J.; Ashtiani, M.; Weston, J. Field Performance of 9.5-Mm Nominal Maximum Aggregate Size Asphalt Pavement in Washington State. J. Transp. Eng. Part B-Pavements 2020, 146, 04020024. [Google Scholar] [CrossRef]
- Zuo, W.; Guo, C.; Liu, J.; Peng, X.; Yang, M. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning. Sensors 2018, 18, 169. [Google Scholar] [CrossRef] [PubMed]
- Wasle, E.; Seybold, J.; Urquijo, S.; Rohmer, G.; Seidel, C.; Ligier, A.; Euler, H.-J. IEEE Advanced Galileo Navigation System for Asphalt Fleet Machines ASPHALT. In Proceedings of the 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, The Netherlands, 8–10 December 2010. [Google Scholar]
- Astarita, V.; Giofre, V.P.; Guido, G.; Vitale, A. The Use of Adaptive Traffic Signal Systems Based on Floating Car Data. Wirel. Commun. Mob. Comput. 2017, 2017, 4617451. [Google Scholar] [CrossRef]
- Wang, K.; El-Mowafy, A.; Wu, J. Inst Navigat Integrity Monitoring Using ARAIM for Bridging DFMC SBAS Outages in Road Transport; Inst Navigation: Washington, DC, USA, 2020; pp. 2430–2439. [Google Scholar]
- Luo, J.; Zhu, X.; Hou, X. Research about Monitoring Systems of Special Roads Based on 4G; Jiang, P., Liang, X., Eds.; Atlantis Press: Paris, France, 2016; Volume 80, pp. 726–730. [Google Scholar]
- You, K.; Ding, L.; Zhou, C.; Dou, Q.; Wang, X.; Hu, B. 5G-Based Earthwork Monitoring System for an Unmanned Bulldozer. Autom. Constr. 2021, 131, 103891. [Google Scholar] [CrossRef]
- Nguyen, K.; Nguyen, P.L.; Li, Z.; Sekiya, H. Empowering 5G Mobile Devices With Network Softwarization. IEEE Trans. Netw. Serv. Manag. 2021, 18, 2492–2501. [Google Scholar] [CrossRef]
- Lee, W.; Lin, K.-Y.; Johnson, P.W.; Seto, E.Y.W. Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-Level Construction Worker Fatigue: A Logistic Regression Approach. Eng. Constr. Archit. Manag. 2022, 29, 2905–2923. [Google Scholar] [CrossRef]
- Ye, Z.; Yan, G.; Wei, Y.; Zhou, B.; Li, N.; Shen, S.; Wang, L. Real-Time and Efficient Traffic Information Acquisition via Pavement Vibration IoT Monitoring System. Sensors 2021, 21, 2679. [Google Scholar] [CrossRef]
- Li, Z.; Cui, Y.; Zhong, J. Recent Advances in Nanogenerators-Based Flexible Electronics for Electromechanical Biomonitoring. Biosens. Bioelectron. 2021, 186, 113290. [Google Scholar] [CrossRef]
- Segalini, A.; Carri, A.; Grignaffini, C.; Capparelli, G. Formulation of Landslide Risk Scenarios Using Underground Monitoring Data and Numerical Models: Conceptual Approach, Analysis, and Evolution of a Case Study in Southern Italy. Landslides 2019, 16, 1043–1053. [Google Scholar] [CrossRef]
- Wang, H.-P.; Xiang, P.; Jiang, L.-Z. Optical Fiber Sensing Technology for Full-Scale Condition Monitoring of Pavement Layers. Road Mater. Pavement Des. 2020, 21, 1258–1273. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, G.; Xie, W.; Xie, S.; Wang, H. Assessment and Comparison of Satellite Clock Offset between BeiDou-3 and Other GNSSs. Acta Geod. Et. Geophys. 2021, 56, 303–319. [Google Scholar] [CrossRef]
- Kim, Y.-E.; Kim, Y.-S.; Kim, H. Effective Feature Selection Methods to Detect IoT DDoS Attack in 5G Core Network. Sensors 2022, 22, 3819. [Google Scholar] [CrossRef]
- Fu, H.; Zhu, H.; Xue, P.; Hu, X.; Guo, X.; Liu, B. Eye-Tracking Study of Public Acceptance of 5G Base Stations in the Context of the COVID-19 Pandemic. Eng. Constr. Archit. Manag. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, F.; Jin, P.J.; Liu, H.; Ma, S.; Yao, Z. Vehicle Travel Path Recognition in Urban Dense Road Network Environments by Using Mobile Phone Data. Transp. A-Transp. Sci. 2022, 18, 1496–1516. [Google Scholar] [CrossRef]
- Mishra, L.; Vikash; Varma, S. Seamless Health Monitoring Using 5G NR for Internet of Medical Things. Wirel. Pers. Commun. 2021, 120, 2259–2289. [Google Scholar] [CrossRef]
- Ma, X.; Dong, Z.; Chen, F.; Xiang, H.; Cao, C.; Sun, J. Airport Asphalt Pavement Health Monitoring System for Mechanical Model Updating and Distress Evaluation under Realistic Random Aircraft Loads. Constr. Build. Mater. 2019, 226, 227–237. [Google Scholar] [CrossRef]
- Liu, D.; Chen, J.; Li, S. Collaborative Operation and Real-Time Control of Roller Fleet for Asphalt Pavement Compaction. Autom. Constr. 2019, 98, 16–29. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Zhang, J.-X.; Ni, Q.-C.; Skitmore, M.; Ballesteros-Perez, P.; Ke, Y.-J.; Zuo, J.; Sun, H.-J. Data-Driven Platform Framework for Digital Whole-Process Expressway Construction Management. Front. Neurosci. 2022, 16, 891772. [Google Scholar] [CrossRef]
- Khan, S.; Nagabhushana, M.N.; Hossain, K.; Tiwari, D.; Guruvittal, U.K.; Bazan, C. Performance Evaluation of Fly Ash-Based Inverted Pavement System. J. Transp. Eng. Part B-Pavements 2022, 148, 04022028. [Google Scholar] [CrossRef]
- Shabbir Hossain, M.; Nair, H.; Celik Ozyildirim, H. Construction of a Composite Pavement (Asphalt over Concrete) in Virginia. Transp. Res. Rec. 2022, 2676, 251–264. [Google Scholar] [CrossRef]
Unit | Age | Education | Number of People | Rank | Respondent Number |
---|---|---|---|---|---|
Quality monitoring unit | 25–40 | Undergraduate | 10 | managers and non-manager | A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 |
System development unit | 24–35 | Master | 8 | A11, A12, A13, A14, A15, A16, A17, A18 | |
Construction unit | 23–50 | Bachelor, Master | 5 | A19, A20, A21, A22, A23 | |
Survey unit | 24–42 | Bachelor, Master | 2 | A24, A25 |
Interview Outline | Node Encoding in Nvivo | |
---|---|---|
Asphalt road digital monitoring test demand analysis | 1. What is the goal of digital monitoring of asphalt pavement? | Q1 |
2. What are the difficulties in implementing monitoring at present? | Q2 | |
3. How is the monitoring of the asphalt mixture carried out? | Q3 | |
4. In the process of monitoring the asphalt mixture, what’s the problem? How to solve it? | Q4 | |
5. At present, what are the difficulties in the collection and transmission of monitoring data? | Q5 | |
6. What are the difficulties encountered in the application of the existing monitoring system? | Q6 | |
System Operational Requirements Analysis | 1. What functions do you want the system to have? | Q7 |
2. What are the requirements for data transmission? | Q8 | |
3. What are the benefits of using a monitoring system? | Q9 |
Wireless Communication | User Experience Rate/(Gbit·s−1) | Peak Rate/(Gbit·s−1) | Flow Density /(Tbit·s−1·km−2) | Connection Density/km2 | Air Interface Delay/ms | Mobility/(km·h−1) | Support Services |
---|---|---|---|---|---|---|---|
4G | 0.01 | 1 | 0.1 | 105 | 10 | 350 | VoLTE, high-speed network data |
5G | 0.1–1.0 | 20 | 10 | 106 | 1 | 500 | eMBB/uRLLC/MTC |
Main Construction Process | Key Monitoring Indicators |
---|---|
Asphalt mixture production stage | Base bitumen, modifier, stabilizer, whetstone ratio, gradation, temperature, speed |
Asphalt mixture mixing stage | Asphalt weight, mixture temperature, mixing time by plate, silo weight, discharge temperature, gradation |
Asphalt mixture transportation stage | Loading time, loading location, transportation route, transportation time, transportation speed, vibration frequency, segregation |
Asphalt paving stage | Paving trajectory, paving speed, distance Paving time, paving thickness, asphalt temperature |
Asphalt mixture rolling stage | Rolling speed, rolling trajectory, rolling times, asphalt temperature, rolling strength, vibration frequency |
Serial Number | Device Name | Function |
---|---|---|
1 | Mobile station | Connect with the base station to achieve centimeter-level positioning, and the rolling speed can be collected |
2 | Temperature Sensor | Collect temperature data during rolling |
3 | Vibration sensor | Collect vibration frequency |
4 | BDS positioning components | Monitor compactor position parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhu, Z.; Liu, H.; Zuo, J.; Ke, Y.; Philbin, S.P.; Zhou, Z.; Feng, Y.; Ni, Q. System Framework for Digital Monitoring of the Construction of Asphalt Concrete Pavement Based on IoT, BeiDou Navigation System, and 5G Technology. Buildings 2023, 13, 503. https://doi.org/10.3390/buildings13020503
Zhang J, Zhu Z, Liu H, Zuo J, Ke Y, Philbin SP, Zhou Z, Feng Y, Ni Q. System Framework for Digital Monitoring of the Construction of Asphalt Concrete Pavement Based on IoT, BeiDou Navigation System, and 5G Technology. Buildings. 2023; 13(2):503. https://doi.org/10.3390/buildings13020503
Chicago/Turabian StyleZhang, Jingxiao, Zhe Zhu, Hongyong Liu, Jian Zuo, Yongjian Ke, Simon P. Philbin, Zhendong Zhou, Yunlong Feng, and Qichang Ni. 2023. "System Framework for Digital Monitoring of the Construction of Asphalt Concrete Pavement Based on IoT, BeiDou Navigation System, and 5G Technology" Buildings 13, no. 2: 503. https://doi.org/10.3390/buildings13020503
APA StyleZhang, J., Zhu, Z., Liu, H., Zuo, J., Ke, Y., Philbin, S. P., Zhou, Z., Feng, Y., & Ni, Q. (2023). System Framework for Digital Monitoring of the Construction of Asphalt Concrete Pavement Based on IoT, BeiDou Navigation System, and 5G Technology. Buildings, 13(2), 503. https://doi.org/10.3390/buildings13020503