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Abstract: Point cloud data have become the primary spatial data source for the 3D reconstruction of
building engineering, where 3D reconstructed building information models can improve construction
efficiency. In such applications, detecting windows and doors is essential. Previous research mainly
used red-green-blue (RGB) information or semantic features for detection, where the combination
of these two features was not considered. Therefore, this research proposed a practical approach
to detecting windows and doors using point cloud data with the combination of semantic features
and material characteristics. The point cloud data are first segmented using Gradient Filtering
and Random Sample Consensus (RANSAC) to obtain the 3D indoor data without intrusions and
protrusions. As input, the 3D indoor data are projected to horizontal planes as 2D point cloud data.
The 2D point cloud data are then transformed to 2D images, representing the indoor area for feature
extraction. On the 2D images, the 2D boundary of each potential opening is extracted using an
improved Bounding Box algorithm, and the extraction result is transformed back to 3D data. Based
on the 3D data, the reflectivity of building material is applied to differentiate windows and doors from
potential openings, and the number of data points is used to check the opening condition of windows
and doors. The abovementioned approach was tested using the point cloud data representing one
campus building, including two big rooms and one corridor. The experimental results showed that
accurate detection of windows and doors was successfully reached. The completeness of the detection
is 100%, and the correctness of the detection is 90.32%. The total time for the feature extraction is
22.8 s for processing 2 million point cloud data, including time from reading data of 10.319 s and time
from showing the results of 4.938 s.

Keywords: point cloud data; window and door extraction; RANSAC; Bounding Box algorithm

1. Introduction

When addressing building engineering problems, such as indoor localization and
navigation systems [1,2], disaster management [3,4], building structure maintenance [5,6],
and building information modeling (BIM) [7,8], it often requires establishing a three-
dimensional (3D) visual model that can be read and monitored by computer programs [9].
Such 3D visual models can be used as building information models that can improve
construction efficiency such as conducting virtual conflict detection. However, it is always
challenging to efficiently obtain accurate spatial data for generating 3D models because of
traditional surveying methods’ time-consuming measurement and interpolation errors [10].
Laser scanning, also known as Light Detection and Ranging (LiDAR), is a prominent
remote-sensing technology for point cloud data collection [11]. By integrating a digital
camera, the laser scanner can acquire a massive number of 3D points with the information,
including the Cartesian coordinates in x-, y-, and z-directions, the intensity of laser beams,
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and red-green-blue (RGB) color. These 3D points are called point cloud data and are
accurate points that can be used for generating 3D models. Compared with traditional
surveying methods, terrestrial laser scanning can conduct spatial data collection efficiently
and cost-effectively [12]. Nevertheless, information extraction of the 3D model from the
point cloud data compatible with computational software is also problematic due to the
unstructured [13] and high-density [14] characteristics of point cloud data and operation
imperfections of laser scanners such as occlusions and data noise [9]. But it is worth to
construct computation related models to facilitate the construction of civil engineering area,
like railway [15,16] and recycled water infrastructure [17].

The extraction of building façade from point cloud data mainly includes two steps,
segmentation and feature extraction. Segmentation is the precondition of feature extraction
and is the process of segregating a group of points belonging to a plane [9], such as
segregating a wall from the roof or segregating building polyhedrons into different planes.
By contrast, feature extraction extracts building elements such as windows, doors, and
walls from the façade planes.

For segmentation, the mainstream method is the model fitting approach [18,19], such
as the Random Sample Consensus (RANSAC) method proposed by Fischler and Bolles [20].
In 2009, Boulaassal et al. [21] applied this RANSAC algorithm to wall segmentation and suc-
cessfully extracted planar surfaces such as walls, roofs, and doors from building façade. An-
other popular technique is the octree indexing structure proposed by Wang and Tseng [22].
This method can only perform rough segmentation as the principle is to split points into
small planes based on average characteristics such as height, intensity, and shape orien-
tation, where complicated shapes cannot be handled. Then in 2014, Lari and Habib [23]
adopted principal component analysis to identify whether a point belongs to a linear, a
planar, or a cylindrical surface and improved the model by estimating the local points’
intensity variation. The model is robust, but the result is not accurate enough for opening
detection. In 2016, Mahmoudabadi et al. [24] proposed a computer vision algorithm by
exploiting the angular structure of point cloud data including laser intensity, range, normal
vectors and color information. The method showed less computation time, more qualita-
tive segmentation and less user intervention than RANSAC. After that, in 2018, Che and
Olsen [25] implemented NORmal VAriation ANAlysis (Norvana) for extracting edge points
and applied region growing to grouping the points on a surface to obtain the segmentation
result. The method enabled exploiting angular grid structure from unorganized point cloud
for multiple registered scans simultaneously. Then in 2020, Luo et al. [26] proposed a deep
learning method for conducting unsupervised scene adaptation semantic segmentation,
including data alignment using pointwise attentive transformation module (PW-ATM) and
feature alignment using a maximum classifier discrepancy-based (MCD-based) adversarial
framework. The method focuses on cross-scene semantic segmentation of urban mobile
laser scanning (MLS) point clouds. In 2021, Chen et al. [27] applied a learnable region-
growing method for segmenting a class-agnostic point cloud. A deep neural network was
trained to add or remove points from the point cloud region to morph into a more complete
object instance, and the method can process arbitrary shape. After that, Zhang and Fan [28]
adopted an improved multi-task pointwise network (RoofNet) for roof plane segmentation.
The method did not depend on human intervention and had good performance on both
instance and semantic segmentation.

Feature extraction is the second step after segmentation. In 2004, Wang and Tseng [22]
applied a simple classification method using planar attributes to classify roofs, walls, and
ground. Then in 2006, Bendels et al. [29] tried calculating the distance from each point
to the neighboring points by combining different angles and shapes to detect the holes
in point cloud data. This method successfully detected holes, but intensive computation
and human intervention are required. Shortly after, Pu and Vosselman [30] introduced a
fully automatic method for extracting building façade features. The method works well
for doors but not for windows because of a lack of data, and a set of rules and constraints
necessitated to be followed. Then in 2012, the Façade Delaunay (FD) method was proposed
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by Truong-Hong et al. [31] based on Delaunay Triangulation (DT) for extracting boundary
points of façade and openings. The process is highly time-consuming, and a preset length
threshold is needed. After that, Truong-Hong et al. [32] applied angle criteria for detecting
boundary points and kd-tree for accelerating the selection of k-nearest neighbor (KNN)
points for candidate boundary points. Still, the computation is tedious as all the data
points need to be checked. To reduce time consumption, the Façade Voxel (FX) method
was introduced in 2014 by Truong-Hong and Laefer [33], where only data points around
the façade boundary and openings will be considered as candidate points. This method
significantly improves the time consumption, but sufficient data and a predefined voxel
size threshold are still needed. Then in 2016, Ni et al. [34] proposed Analysis of Geometric
Properties of Neighborhoods (AGPN) for detecting edges and tracing feature lines. The
method enables to eliminate preprocessing such as segmentation and object recognition
and is insensitive to the density of input data. After that, in 2017, Li et al. [35] applied
least-squares fitted normalized gray accumulative curves to regular structures detection
and used a binarization dilation extraction algorithm for façade elements partition. The
method is robust with respect to noise and point cloud densities and is reliable when
experimenting with different façade shape. In 2019, Shi et al. [36] proposed PointRCNN for
3D object detection from point cloud using bottom-up 3D proposal generation and proposal
refinement in canonical coordinates. Different from projecting point cloud to bird’s view
or voxels, the method directly generates canonical 3D boxes of detected objects. Then in
2021, Shao et al. [37] implemented a top-down strategy based on cloth simulation to detect
seed point set with semantic information and applied a region growing method for further
feature extraction. Different from the bottom-up method, this top-down strategy with help
of a region-growing algorithm can directly extract roofs with little error and fast speed.

As a specific branch of feature extraction, extracting windows and doors has multiple
methods based on point cloud data, resembling normal vector components and spectral
band information [38]. In 2014, Previtali et al. projected the 3D point cloud data onto a 2D
plane along the normal vector orientation, followed by automatic extraction of the break
lines of the façades from the 2D planes [39] for the detection of windows and doors. They
used the method of transferring 3D point cloud data to 2D images and, by extracting façade
break lines, potential openings with rectangular shapes were segmented from the building
planes. However, the research did not distinguish windows, doors, and walls, where
all the potential openings were detected simultaneously, and further work needs to be
performed on differentiation. Malihi et al. adopted the Gestalt principles for window frame
detection, in which the differences in data densities between window frames and other
building elements were considered [40]. The approach can avoid the most influence from
intrusions and protrusions on the window detection, but several doors with glass and parts
of scaffolding were detected as windows. Then in 2018, Previtali M. applied the ray-tracing
algorithm to detect indoor openings from the point clouds collected by Indoor Mobile
Mapping System [41]. The differentiation of windows and doors was taken by applying
semantic features of windows and doors, where the assumption was made that windows
and doors had only single shapes and these two shapes were different. The differentiation
result was compelling, but the assumption is not suitable for all the buildings, as windows
may have different shapes in one building (same for doors). Furthermore, windows and
doors may have similar shapes. Jung et al. adopted noise filtering, subsequent segmentation
and regularization using the inverse binary map to reconstruct building interiors [8]. Less-
constrained input is needed in this method, but the time taken on segmentation was 105.7 s,
which caused expensive computation work. In 2020, Jarząbek-Rychard et al. applied TIR
(thermal infrared) and RGB information for façade classification [42], but the differentiation
of windows and doors was not conducted as well. Zhao et al. applied point cloud slices
and minimum bounding rectangles to extract windows and doors, and the process can be
finished in 8 s for 1.6 million point cloud data [43]. The processing is efficient, but windows
are still not differentiated from doors. Then in 2021, Cai and Lei implemented a moving
window to detect potential openings on 2D planes of buildings and intensity histograms
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of data points were used to differentiate doors and walls [44]. The generated model is
accurate, but the time consumption is high because of the large amount of point cloud data,
where further research can be taken on improving the efficiency.

In summary, previous studies usually adopt semantic features of windows and doors
or intensity of building materials for windows and doors detection from point cloud data.
Generally, previous studies have the limitation that differentiation of windows and doors
and computational efficiency cannot be satisfied simultaneously. In this paper, a new ap-
proach utilizing both semantic features and building material property is proposed, based
on Gradient Filtering [45] and RANSAC for the segmentation process and an improved
Bounding Box algorithm in MATLAB for the feature extraction process. The proposed ap-
proach has three main advantages: (1) it is a fast method in windows and doors’ extraction
with only 7.543 s needed for 2 million point cloud data; (2) windows and doors can be
differentiated; and (3) the opening condition and the material property of the openings can
be detected.

2. Materials and Methods
2.1. Study Site and Data

One campus building, including two big rooms and one corridor, was selected as the
study site. The data were surveyed from multiple scan stations by a Leica RTC360 scanner.
The point cloud data obtained from each station were firstly aligned by the laser scanner
during the surveying process, and further refined registration was taken by Leica Cyclone
software. The registered point cloud data has a large amount (476 million data points).
The positional accuracy of the data points is calculated from the point-to-plane distance
using the RANSAC algorithm to fit the plane containing the maximum data points of each
dataset. After calculation, the mean and standard deviation of the point-to-plane distance
is 0.11 mm and 0.26 mm, respectively. For further data processing, the registered point
clouds for the site are approximately 2 million data points after subsampling. The result in
Cloudcompare is displayed in Figure 1.
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Figure 1. Original point cloud data set in Cloudcompare.

2.2. Methodology

The method mainly includes four steps, as shown in Figure 2. The first step is to
subsample the data from 476 million data points to 2 million data points. The second step
is the segmentation process, which includes the Gradient Filtering method for removing
the horizontal structure part of buildings (ceilings and floor) and the RANSAC algorithm
for fitting wall planes from the building structure. The third step is to extract windows
and doors (potential openings) from the wall planes, including the projection of 3D data
to 2D binary images, and apply the improved Bounding Box algorithm for detecting
potential openings. The fourth step is to transform 2D detection results back to 3D, thus
differentiating windows and doors and identifying their opening conditions in 3D data.



Buildings 2023, 13, 507 5 of 19

Buildings 2023, 13, x FOR PEER REVIEW 5 of 19 
 

binary images, and apply the improved Bounding Box algorithm for detecting potential 
openings. The fourth step is to transform 2D detection results back to 3D, thus differenti-
ating windows and doors and identifying their opening conditions in 3D data. 

 
Figure 2. Schematics of methodology. 

The improved Bounding Box algorithm is written as codes in MATLAB. By running 
the codes in MATLAB to process the point cloud data, the improved Bounding Box algo-
rithm can be applied for detecting potential openings in this paper. Generally, using arti-
ficial intelligence approach in windows and doors detection can be performed using Con-
volutional Neural Network (CNN) for image processing, which uses amounts of images 
for learning. Since the images for this study are limited, the artificial intelligence approach 
is not chosen. 

This paper introduces several methods for processing the data points and reducing 
the time consumption, including subsampling the dataset, using the Gradient Filtering 
method, and using an improved Bounding Box algorithm. Subsampling the dataset can 
reduce the data density. It can reduce the further processing time as the number of data 
points has been reduced. The Gradient Filtering method can directly discard the roof and 
floor part and remain the façade part. Similarly, as the number of data points have been 
reduced, the further processing time will be reduced. Improved Bounding Box algorithm 
can minimize the computational resources so as to reduce the processing time. 

2.2.1. Data Preprocessing (Step 1) 

Figure 2. Schematics of methodology.

The improved Bounding Box algorithm is written as codes in MATLAB. By running the
codes in MATLAB to process the point cloud data, the improved Bounding Box algorithm
can be applied for detecting potential openings in this paper. Generally, using artificial
intelligence approach in windows and doors detection can be performed using Convolu-
tional Neural Network (CNN) for image processing, which uses amounts of images for
learning. Since the images for this study are limited, the artificial intelligence approach is
not chosen.

This paper introduces several methods for processing the data points and reducing
the time consumption, including subsampling the dataset, using the Gradient Filtering
method, and using an improved Bounding Box algorithm. Subsampling the dataset can
reduce the data density. It can reduce the further processing time as the number of data
points has been reduced. The Gradient Filtering method can directly discard the roof and
floor part and remain the façade part. Similarly, as the number of data points have been
reduced, the further processing time will be reduced. Improved Bounding Box algorithm
can minimize the computational resources so as to reduce the processing time.
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2.2.1. Data Preprocessing (Step 1)

As the original data is too dense for further processing (476 million data points),
subsampling is used to preprocess data points to decrease the number of points to 2 million.
The subsampling process is conducted in Cloudcompare software. The ‘spatial mode’ is
used as the subsampling method, and the minimum distance between two points is 20 mm.
The minimum distance of 20 mm has been tested in Cloudcompare using a wide range of
minimum distances for test samples so that the obtained point cloud data density can be
successfully fitted to separate planes using RANSAC in step 2.

The schematics of subsampling has been shown in Figure 3, where d is the minimum
distance between two points. When a candidate point (blue point) is used to conduct the
distance-based subsampling, a minimum distance will be set by the user to select points
having distance to the candidate point less than the minimum distance. These points will
be selected points (red points) and the other points having a distance to the candidate
point larger than the minimum distance will be unselected points (black points). All the
selected points will be eliminated. The process will be conducted for all the points so that
the minimum distance between two arbitrary points will be d.
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2.2.2. Segmentation Using Gradient Filtering and RANSAC Algorithm (Step 2)

Different from Previtali’s [41] research work using the ray-tracing algorithm, this study
used Gradient Filtering, which can discard the floor and ceiling part directly and obtain
the wall part of the building within a shorter time. The principle of the Gradient Filtering
method is to calculate the gradient value of the scalar field and then filter the data points
by gradient value [45,46]. The method for calculating the gradient vector of one point in
3D coordinates is shown in Equation (1).

∇f =
∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k (1) (1)

where i, j, k are the standard unit vectors in the direction of x, y, z coordinates, respectively.
∇f is the resultant vector. The method to calculate the gradient value here is to select the
gradient value in z direction, which is ∂ f

∂z . The ceiling and roof part will have small gradient
value in z direction as they are generally perpendicular to z direction. The façade part
will have large gradient value as it is generally parallel to z direction. So, the ceiling and
roof part can be selected and discarded by using this method and the façade part can be
remained.

Then, by setting RANSAC parameters appropriately, the plane fitting is satisfactory,
and the process is efficient (2.424 s from Cloudcompare). The minimum support points per
primitive are set to be 500, and the maximum distance of samples to the ideal shape is set
to be 0.2 m. The sampling resolution, which represents the distance between neighboring
points, is set as 0.1 m. The maximum deviation from the ideal shape average vector is set to
be 5◦. The overlooking probability, indicating the probability that no other candidate was
overlooked during sampling, is set as 0.01 [46].

The principle of RANSAC is as follows: (1) Randomly selecting a subset of data
set; (2) Fitting a model to the selected subset; (3) Determining the number of outliners;
(4) Repeating steps 1–3 for a prescribed number of iterations. By conducting such steps, the
RANSAC can perform a robust estimation of the model parameters.
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2.2.3. Windows and Doors Extraction in the 2D Image with Improved Bounding Box
Algorithm (Step 3)

Each plane has been rotated to planes parallel to the XOZ plane or the YOZ plane
using a rotating matrix. For planes supposed to be parallel to the y-y axis, the rotating
matrix should be as follows:

cos(0.5π − θ) − sin(0.5π − θ) 0
sin(0.5π − θ) cos(0.5π − θ) 0

0 0 1

For planes supposed to be parallel to the x-x axis, the rotating matrix should be
as follows:

cos(π − θ) − sin(π − θ) 0
sin(π − θ) cos(π − θ) 0

0 0 1

The rotation is based on the theory of the Manhattan World assumption [47] that the
common planar primitives and straight lines are intersected orthogonally. Therefore, all
the façade planes are assumed to be perpendicular to the XOY plane, which is supposed
to be the ground level. Then, the 3D point cloud data will be regulated to 2D point cloud
data by rotating the fitted planes to the orientation parallel to the XOZ plane or the YOZ
plane. θ is the rotating angle, as shown in Figure 4. After rotating all the planes parallel to
the XOZ plane or the YOZ plane, the 3D point cloud data can be directly projected to 2D
point cloud data.
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Then, the 2D point cloud data can be transformed into 2D images, as shown in Figure 5.
The method here is to define a rectangular box divided into several small square boxes. For
instance, the whole 2D point cloud data range from [0, 20] in the X direction and [0, 10] in
the Y direction. Then, by dividing the whole 2D area into 200 small squares (20 portions in
the X direction and 10 portions in the Y direction), each 2D point cloud data can be sorted
into one specific small square box according to the position of the 2D point cloud data. The
spectral information (reflectivity) of the small square box is to be determined by averaging
the spectral value of the 3D point cloud data sorted into this tiny square box. If there is
2D point cloud data in the small square box, the binary value should be 1. If there is no
2D point cloud data to be classified into this tiny square box, the binary value of this box
will be 0.
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After all the 3D point cloud data have been transformed into 2D images, the extraction
of windows and doors can be implemented on the 2D images by using an optimized Bound-
ing Box algorithm. The original Bounding Box algorithm is shown in Equation (2) [48],
which returns the location of the fitted rectangle.

(x, y, w, h) = regionprops
(

f illhole,
′ boundingbox′

)
.Boundingbox (2)

where x indicates the x location of the initial point; y indicates the y location of the initial
point; w indicates the width of the fitted rectangle; h indicates the height of the fitted
rectangle for determining the location of windows and doors. The improved Bounding
Box algorithm has been used by setting specific parameters based on the building semantic
features. The process of setting specific parameters is as follows.

Ameliorate the Boundary Condition of the Bounding Box Algorithm

At the first stage, the detection result of the potential openings is not satisfactory,
as most of the bottom boundaries of the doors were not detected. The solution is to
eliminate the white space (noise) at the bottom of each plane’s binary image so that the
image’s margin can approach the doors’ bottom boundary. To eliminate the image noise,
“bwareaopen” removes the minimum area smaller than the threshold value, as shown in
Equation (3).

BW2 = bwareaopen(BW, P) (3)

where BW2 means another binary image removing all the connected components with
fewer than P pixels from the binary image BW. After testing the result of the “bwareaopen”
command, the connect-area parameter P is determined to be set to P = 100.

Elimination of Nonstandard Shape

The nonstandard shapes of windows and doors include shapes with too small or big
areas and too high aspect ratio. The elimination of the nonstandard rectangles will be
conducted by setting an area threshold value in the programming code that is not to be
smaller than 0.9 m2 and not to be larger than 3 m2. In addition, the shape with an aspect
ratio (height:width) larger than 3 (3:1) will be considered not to be windows and doors and
eliminated.

Region Union Method

The region union method is developed to solve the specific condition where two
rectangles intersect, as shown in Figure 6. Then, the effect of the region union method is
to merge the two rectangles to be one rectangle. For instance, if one rectangle with four
points (x1,1, y1,1), (x1,2, y1,2), (x1,3, y1,3), (x1,4, y1,4) intersects with another rectangle with
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four points (x2,1, y2,1), (x2,2, y2,2), (x2,3, y2,3), (x2,4, y2,4), then the merged rectangle will be
with four points (x1,1, y1,1), (x1,2, y2,2), (x2,3, y1,3), (x2,4, y2,4).
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Segmentation Method

The effect of the segmentation method is to segment the area composed of rectangles
with different levels, which is developed by adding a segmenting line at the juncture of the
two modules that are supposed to be partitioned from each other, as shown in Figure 7.
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Method for Window Detection

In most cases, doors have similar bottom levels, while windows have similar top
levels, as shown in Figure 8. Therefore, it is more reasonable and practical to detect the
windows from the top of the building façade. The idea of this study for window detection
is to reverse the image plane up and down so that the detection from the bottom can be
transversed to detection from the top. Thus, we used the “flipud” command in MATLAB
to reverse the image plane to flip vertically.
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Figure 8. Schematic features of windows and doors in most cases.

After all the potential openings have been detected, the result of the 2D image will be
transformed back to 3D point cloud data by using the inverse rotating matrix, where angle
θ will be the same value as the rotating matrix.
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2.2.4. Identification of Windows and Doors and Their Opening Condition (Step 4)

To further conduct the differentiation of windows and doors and identification of their
opening condition, this study combines building semantic features and material properties:

(1) If the bottom boundary of the opening is on the ground level, then the opening is
supposed to be a door, and the reflectivity of the area needs to be verified.

(2) If the bottom boundary of the opening does not fit the ground level, the material
properties will be taken as the primary factor to define whether the detected area
is a window, door, or wall. Timber material has reflectivity ranging from 0.2 to
0.35 [46]. White paint on the non-filed concrete has a reflectivity of about 0.6 [49].
Glass has a transmittance of over 0.95 [49]. The scalar field value in Cloudcompare
software represents the reflectivity value proportionally. The object having a scalar
field value larger than timber material and smaller than white-painted concrete will be
regarded as a whiteboard. The overall value relationship will be Swhite painted concrete >
Swhiteboard > Swood > Sglass, where S stands for the scalar field value.

For the opening condition, the detection result is based on the rate of the number of
the small squares without point cloud data divided by the number of all the small squares
(Equation (4)), where one small square is one pixel of the binary image.

opening rate =
number o f small squares without point cloud data
number o f all small squares set f or binary image

(4)

If the opening rate is smaller than 0.5, the opening is defined to be closed; if the
opening rate is larger than 0.5 and smaller than 0.65, the opening is defined to be half open;
if the opening rate is larger than 0.68, the opening is defined to be open.

3. Results
3.1. Results of Gradient Filtering and RANSAC Algorithm

The steps mentioned in Section 2 were realized in MATLAB codes that run in a
computer with Windows 10 system (64-bits), an Intel Core i5-3317U processor, and 16 GB
RRD3 RAM. Gradient Filtering was applied to the site data to discard the ceilings and
floors of the building. The post-filtering dataset is shown in Figure 9.
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Figure 9. The ceiling and (a) floor part (left); and (b)wall part (right) to be separated using Gradient 
Filtering. 

The RANSAC shape detection results are shown in Figure 10. Using RANSAC, in-
door obstacles (desks and chairs) have been directly discarded. After deleting indoor noise 
data (Figure 10b) manually, the planes left can be used for further analysis, as shown in 
Figure 10c. The maximum distance of samples to the ideal shape has been set to larger 
than the offset of windows and doors from the wall plane so that the data of windows and 
doors can be reserved within the wall plane. 

Figure 9. The ceiling and (a) floor part (left); and (b) wall part (right) to be separated using Gradi-
ent Filtering.

The RANSAC shape detection results are shown in Figure 10. Using RANSAC, indoor
obstacles (desks and chairs) have been directly discarded. After deleting indoor noise
data (Figure 10b) manually, the planes left can be used for further analysis, as shown in
Figure 10c. The maximum distance of samples to the ideal shape has been set to larger than
the offset of windows and doors from the wall plane so that the data of windows and doors
can be reserved within the wall plane.
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further processing (down).

3.2. Results of Windows and Doors Detection on 2D Image
3.2.1. Ameliorate Boundary Condition and Adopt Nonstandard Shape Elimination and
Region Union Method

The same grammar rules were applied to all the façade planes for door detection, and
one specific rule was applied to Plane 6 and Plane 27 for windows detection. For ease
of demonstration, Plane 1 was used as an example to present each step’s output of door
detection. The primary result is shown in Figure 11a, where the detected box selected the
whole area as the potential opening. The main reason for the unsatisfactory result was
that the boundary condition of the image was not ideal and needed to be improved on
the ground level. After improving the boundary condition of the Plane 1 binary image,
the detection results are shown in Figure 11b. There is still a small-sized rectangle that is
not the normal size of windows and doors, which need to be eliminated. After applying
the elimination of rectangles with nonstandard shapes, the detection results can be shown
in Figure 11c. The normal size of the building openings is determined. However, the
detected openings intersected, which needs to be tackled. Then, the union region method
was proposed, and the satisfactory post-processing result is shown in Figure 11d. Since the
segmentation method and elimination of openings with a high aspect ratio do not affect
Plane 1’s detection, the demonstration of the two methods will be conducted on Plane 8.
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of using the same grammar rules of door detection is displayed in Figure 13a, where none 
of the windows have been detected. After reversing the binary image from up to down, 
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Figure 11. (a) Original detection of windows and doors on Plane 1; (b) detection of windows and
doors after adopting the boundary approximation method; (c) detection of windows and doors by
eliminating small-sized rectangles for Plane 1; (d) detection of windows and doors for Plane 1 after
union region method.

3.2.2. Adopt Segmentation Method and Elimination of High Aspect Ratio Openings

Figure 12a shows the detection result on Plane 8 after using the same grammar rules as
Plane 1, where two potential openings were detected as one. Figure 12b displays the result
after adopting the segmentation method, where two potential openings were segmented
successfully. Still, one rectangular shape with high aspect detected as a potential opening is
not correctly detected. By eliminating of high aspect ratio of 3 (height:width = 3:1), the final
detection result is shown in Figure 12c. All planes except for Plane 5 and Plane 27 applied
the same grammar rules for door detection, and Planes 5 and 27 used the inverse method
for windows detection.
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3.2.3. Adopt Specific Method for Windows Detection

Plane 5 was taken as an example to present the rule for windows detection. The
result of using the same grammar rules of door detection is displayed in Figure 13a, where
none of the windows have been detected. After reversing the binary image from up to
down, the detection result is shown in Figure 13b, where all the potential openings have
been detected.
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3.3. Results of Windows and Doors Differentiation and Opening Condition on 3D Point
Cloud Data

Building material properties and semantic features were applied to 3D point cloud
data detection for further differentiating windows and doors. Moreover, the opening
condition is judged by calculating the opening rate defined in Section 2.2.4.

3.3.1. Windows and Doors Detection Result on 3D Point Cloud of Each Plane

Figure 14 shows the detection result of Plane 1. The detected location of the first door
on the plane’s left side is correct, but the opening condition is wrong. The door should
be closed, but the model’s detection opens it. The missing data points probably cause the
detection mistake.
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The detection result of Plane 2 is displayed in Figure 15. The third door from the left
should be detected as closed, but the detection result is half open. The main reason for the
mistake is similar to Plane 1, for missing data points. The material type is all correct. The
rest of the results are shown in Figures 16 and 17, where all the material type and opening
conditions are correct, except for that Plane 6’s framed size of the whiteboard is larger than
the real size.
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3.3.2. Final Result Shown in MATLAB Window

The perspective views of the overall windows and doors detection of the building
façade have been displayed in Figure 18. To have a good view of the results, doors are
marked yellow; windows are marked blue; whiteboards are marked white; and walls are
marked red.
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To evaluate the performance of our framework, we computed two final evaluation
indexes, completeness (Equation (5)) and correctness (Equation (6)), related to the quality
of feature extraction.

Completeness =
Nd
Ns

(5)

Correctness =
Nc

Ns
(6)

where Nd, Nc, Ns are the number of detected potential openings, correctly detected potential
openings, and potential openings that should be detected. The corresponding quality
performance is shown respectively in Tables 1 and 2.

Completeness =
8 + 6 + 1 + 0 + 4 + 1 + 0 + 4 + 4 + 1 + 0 + 0 + 1 + 1
8 + 6 + 1 + 0 + 4 + 1 + 0 + 4 + 4 + 1 + 0 + 0 + 1 + 1

= 100%

Correctness =
7 + 5 + 1 + 0 + 4 + 0 + 0 + 4 + 4 + 1 + 0 + 0 + 1 + 1
8 + 6 + 1 + 0 + 4 + 1 + 0 + 4 + 4 + 1 + 0 + 0 + 1 + 1

=
28
31

= 90.32%
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Table 1. Table of completeness.

Plane 1 Plane 2 Plane 3 Plane 4

Completeness 8/8 (7 doors and 1 whiteboard) 6/6 (6 doors) 1/1 (1 door) 0/0 (no opening)
Plane 5 Plane 6 Plane 7 Plane 8

Completeness 4/4 (4 windows) 1/1 (1 whiteboard) 0/0 (no opening) 4/4 (4 doors)
Plane 9 Plane 10 Plane 11 Plane 12

Completeness 4/4 (4 doors) 1/1 (1 door) 0/0 (no opening) 0/0 (no opening)
Plane 13 Plane 27

Completeness 1/1 (one door) 1/1 (one window)

Table 2. Table of correctness.

Plane 1 Plane 2 Plane 3 Plane 4

Correctness 8/7 6/5 1/1 0/0
Plane 5 Plane 6 Plane 7 Plane 8

Correctness 4/4 1/0 0/0 4/4
Plane 9 Plane 10 Plane 11 Plane 12

Correctness 4/4 1/1 0/0 0/0
Plane 13 Plane 27

Correctness 1/1 1/1

The completion of the model detection reaches 100%, and the correctness of the model
reaches 90.32%. The programming speed is fast for only 22.8 s, including the time cost
by reading the point cloud data of 10.319 s and the time cost by showing the data result
of 4.938 s. The time cost for the segmentation process is 40.862 s and the time cost for
the feature extraction process is 7.543 s. The processing time and the differentiation effect
is generally more efficient than other existing method in the literature. Table 3 shows a
comparison of computational efficiency with other existing methods in the literature.

Table 3. Comparison of computational efficiency with other method.

Ref. Year Number of Data
Points (Million)

Segmentation and Feature
Extraction Time (s)

Differentiation of
Windows and Doors

2016 [9] 2.6 3 No
2018 [8] 31–66 58.5–140.79 No
2020 [43] 1.6 8 No
2021 [44] 469.1 284 No

Our approach 2.3 7.543 Yes

4. Conclusions

This paper introduced the improved Bounding Box algorithm to detect potential
openings from building façade, where the detection of potential openings can help build
3D building information models that can be used to improve construction efficiency. The
method involves three main steps. Firstly, each façade is roughly segmented using the
Gradient Filtering method and RANSAC algorithm. Secondly, the segmented façade planes
are transformed into 2D images. Methods including eliminating nonstandard shape, region
union, and segmentation are adopted to extract potential openings on 2D images. Thirdly,
the detection result from each image is transformed back to 3D data. Material reflectivity is
used to differentiate windows and doors, and the opening ratio is calculated to identify the
opening conditions. The improved Bounding Box algorithm represents advantages with
respect to the following: (1) accurately extracting and differentiating windows and doors;
(2) minimizing the computational resources needed; (3) detecting the opening condition and
the material property of the openings. The speed of the programming model is generally
fast. The preprocessing process for subsampling the dataset and segmentation process
totally takes 40.862 s. The time cost for feature extraction process is only 7.543 s, excluding
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the time cost of reading data of 10.319 s and the time cost of showing data of 4.938 s. By
calculation, the completeness of the feature extraction is 100% and the correctness is 90.32%.
In future research, the number of read-in points needs to be tested to obtain the optimal
result for each plane of the dataset so that the parameters of the Bounding Box used for
detecting windows and doors can be set to be in a more robust range.
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