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Abstract: Numerous pedestrians interact with the subway station space by finding entrances into
this closed area to use the subway system; further, they may use transfer transportation facilities or
the complex functions nearby, such as commercial. Many studies examine pedestrian behaviors in
subway stations, but most focus on special situations such as disasters and evacuation. Because it is
important to analyze gait patterns in everyday situations, this study aims to verify the explanatory
power of actual gait behavior by using space syntax theory in constructing an optimal agent-based
model. To this end, first, pedestrian characteristics and space types are classified using pedestrian data
from Gangnam Station. Second, the depthmapX program is used to develop an appropriate agent-
based model for stations. Third, a simulation is run to calculate the frequency of the agent movement
at each gate, which is matched with the observed pedestrian volume. Fourth, the relationship between
the frequency of the agent movement and pedestrian volume is analyzed using Statistical Package for
the Social Sciences. The results show that although agent-based models have limitations in explaining
pedestrian patterns in the entire subway station, they are capable of explaining these patterns along
the shortest paths between ticket gates and station entrances.

Keywords: agent-based model; space syntax; subway station; pedestrians’ behaviors

1. Introduction
1.1. Background

As urban areas expand, subways are constructed to alleviate traffic congestion. How-
ever, many subway stations in the city center are overcrowded during peak hours [1].
Therefore, predicting people’s space use patterns in stations is important to both their con-
venience of movement and safety. In addition, many people find it challenging to navigate
the station space, given that it is a closed underground space that has many multifunction
facilities such as transfer transportation and commercial facilities [2]. Because the behaviors
of pedestrians in station space contribute to increased congestion and unused space, it
is important to understand how they move from the platforms to the exits after passing
through the ticket gates.

In this regard, many commercial software programs support agent-based models
to analyze and predict pedestrian behaviors—for example, Building EXODUS, Simulex,
Pathfinder, and Unity 3D [3]. However, these programs are typically used to analyze
crowd diversion mechanisms for use in emergency evacuation rather than in the daily
environment. Further, they set complex conditions for individual agents and are hence
suitable for applications in a limited closed space and under special circumstances [4]. In
addition, these simulation programs are not used for large and the diverse elements of the
surrounding environment cannot be incorporated into them [5]. Therefore, researchers
have been seeking ways to overcome the limitations of such simulations and have called
for new approaches [6].

In this context, pedestrian behaviors in subway stations under normal circumstances
differ from those during an emergency evacuation, when only the shortest distance paths
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are used. In reality, pedestrians do not calculate the most optimal path to the destination
with every step. In other words, they choose paths continuously by using available visual
information [7]. Hence, a visual perception-based simulation of space is required to predict
their behaviors under normal circumstances. To this end, this study examines subway
station space using the Visual Graph Analysis (from now “VGA”) method of space syntax
theory [8–11]. Nevertheless, given that in an analysis of space, VGA cannot be used to
examine micro-space use behaviors, an agent-based model was developed by employing
space syntax theory. This model can be used to analyze pedestrian behaviors under normal
circumstances by incorporating the field of view for agents and the visibility characteristics
of the station [12]. However, it needs to be verified in various spatial environments to
confirm that it is completely reliable [13].

In sum, this study seeks to apply and verify an agent-based model by examining its
correlation with the observed pedestrian volume in a major subway station in which the
pedestrian environment is important. The study provides insights into pedestrian behavior
patterns according to the characteristics of the subway station space and discusses potential
applications for the presented agent-based model.

1.2. Literature Review
1.2.1. Studies on the Effect Factors on Pedestrian Behavior in Subway Stations

Modern subway stations not only transport passengers but also serve as transport
hubs and multiuse facilities. Consequently, these are perceived as key urban facilities that
significantly influence the development of surrounding areas [14]. Proposals to develop
subway stations as multiuse facilities that reflect local identity are often presented [15,16].
Many studies have focused on user satisfaction with the station’s physical environment
or the appropriateness of station size [17–19]. The key focus area of studies that exam-
ine stations as multiuse facilities is often the design of an efficient transit center or the
development of an integrated information system [17,20,21]. Thus, subway stations are
studied as important spaces that attract people and generate complex behaviors in the
urban environment.

Meanwhile, various studies have also considered the characteristics of the spatial con-
figuration of subway stations since it affects human behavior [22]. For instance, Durmisevic
and Sariyildiz [23] derived space syntax indicators to assess the quality of underground
station space, and Yoon and Kim [2] introduced such indicators as elements of wayfinding
in public space within. In addition, Van der Hoeven and Van Nes analyzed design of
underground space in two subway stations using space syntax method [24]. These studies
have also discussed ways to improve the environment by verifying that the subway station
environment is related to spatial configuration indicators.

Other studies have examined the relationship between the spatial configuration of
subway stations and pedestrian behaviors in more detail. For example, Kim and Kim [7]
showed that pedestrian behaviors in the space between the platform and the ticket gates
are related to the field of view, which is dependent on a spatial configuration, but that there
was little correlation in other areas. Moreover, Ueno [10] analyzed the spatial characteristics
of multiuse commercial facilities connected to Shibuya Station and their relationship to
pedestrian volume. This study showed that although the correlation was low overall, there
was a positive correlation at the ticket gates and station entrances. Thus, these studies
have commonly identified a specific subway station space where pedestrian behavior is
determined by spatial configuration. Notably, these studies suffer from a limitation in that
they have not analyzed how various pedestrian behaviors are influenced by the spatial
configuration of subway stations.

Another stream of studies has investigated the effects on pedestrian behavior of
environmental factors other than the spatial configuration in order to compensate for this
limitation. In this regard, Okamoto et al. [9] studied an underground market in Nagoya,
Japan, and argued that elements other than spatial configuration—such as the visual depth
from the corridor and the number of store tenants—significantly affect pedestrian behavior.
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Further, Xu and Chen [11] measured urban spatial vitality in underground spaces connected
to subways by analyzing the relationship between hourly pedestrian volumes and spatial
characteristics. They found that vitality is related not only to the accessibility to space
syntax elements and the field of view but also to the size of the space, the range of functions,
and transportation elements—and that the effects differ according to the time of the day. In
other words, since pedestrian behaviors at a station are influenced by factors such as the
surrounding function, scale, and environment, it is difficult to explain their behavior by
considering existing spatial configuration indicators alone.

In sum, pedestrian behaviors inside subway stations differ from general pedestrian
behaviors that depend on spatial configuration.

1.2.2. Studies of Pedestrian Behavior Using Agent-Based Models

Many studies on pedestrian behaviors have used the space syntax approach [25],
including that of Turner and Penn [13], who proposed the agent-based model and simulated
pedestrian movements using agents with a defined field of view as they moved in space.
This approach is based on Gibson’s ecological theory of perception [26]. This model does
not depend on learned paths or destinations, but instead follows movement rules based
on the spatial configuration of buildings [13,27]. The model can be used in both a closed
internal space [28] and a large open space [29,30]. Some key studies that have used this
model are as follows.

Turner and Penn [13], who studied the Tate Britain gallery, are the first to have
verified the correlation between the agent-based model and the characteristics of pedestrian
behaviors. They showed that when agents were programmed to change direction after
3 steps, the model showed the highest correlation with observed pedestrian patterns
(R2 = 0.76). Above all, it is meaningful that they confirmed the validity of the agent-based
model. Hu et al. [31], who analyzed pedestrian patterns in a plaza, based their simulations
on scenarios of various conditions experienced by pedestrians. They tested for the scenario
most similar to the current gait pattern, thus demonstrating the possibility of combining
spatial organization and multiple agents. Omer and Kaplan [32] examined pedestrian
behavior in the urban environment using an agent-based model, that incorporated a street
network and land use. They showed that the agent-based model is more effective than a
multiple regression analysis (from now “MRA”) model in explaining pedestrian behaviors.
Thus, these studies have confirmed that the agent-based model can be used to explain urban
pedestrian behaviors. Jiang and Jia [33], who analyzed a road network through agent-based
simulations, found no difference in behavior between pedestrians with and without a final
destination. This result is significant for controlling crowd flow. Cheliotis [34] tested agent-
based models of space design and human behaviors and asserted that these models explain
the complexities of human and crowd behavior in space. Thus, this study confirmed the
validity of the agent-based model for analyzing pedestrian behavior in spaces ranging from
the interior space of a building to open spaces in a city.

The following studies have analyzed rail stations using agent-based models.
Castle et al. [35] argued for applying these models in rail stations—pointing out the need
for crowd evacuation and exit simulations—but did not conduct empirical research. Tang
and Hu [36] used an agent-based model to study Sihui Station in Beijing, China, focusing
on examining the spatial design of the station’s public space and parking space and of
the retail space outside the station. They proposed a solution to address congestion at
the station entrance and strategies to improve pedestrian circulation patterns. Although
agent-based model studies for subway stations are insufficient, the importance of the
movement path connected to the entrance has been confirmed. Meanwhile, the analyses in
these studies are limited to the station’s surrounding areas and overlook its internal space.
Therefore, the present study is meaningful in that it analyzes pedestrian behaviors in the
indoor space connected to the subway entrance by using the agent-based model validated
in previous studies.
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2. Methods and Data
2.1. Methods

This study explores how well an agent-based model can explain observed pedestrian
behavior in the underground space connected to subway stations. The hypothesis in this
study is as follows: “An agent-based model is capable of explaining pedestrian behavior in
the underground space connected to subway stations”. To verify this statement, the study
proceeds in five steps.

First, pedestrian behavior and subway station space types were analyzed, given
that the underground space connected to station is influenced not only by ticket gates
and the external environment of the station but also by visual accessibility. Therefore,
pedestrian data were collected to analyze actual pedestrian behaviors, and space types
were defined according to pedestrian behaviors. Second, an appropriate agent-based model
that reflects the characteristics of the underground space connected to subway stations
was created. Using depthmapX program—was used to set values for the agent analysis
tool—including the analysis length, the number of agents and locations, and the agent
set parameters. Spatial configuration characteristics and Turner and Penn’s study [13]
were considered because these authors applied an agent-based model in real space to
study visitor behaviors in a gallery and verified their results. Although present study
Turner and Penn’s results [13] were initially considered, some parameters have changed
the model to fit observed pedestrian behaviors. Third, an agent-based simulation was run
for comparison with the observed pedestrian volume at each observation location. The
data included the number of agents who moved through the cells, which can be compared
with pedestrian behavior. Fourth, the study’s hypothesis was supported by explaining the
observed pedestrian volume using an agent-based simulation. To this end, correlation and
regression analyses were conducted using Statistical Package for the Social Sciences (from
now “SPSS”). The correlation analysis correlation coefficients and significance for each
category. In the simple linear regression analysis, the adjusted R2, Durbin–Watson values,
and significance was calculated to ascertain the extent to which the agent-based model
can explain the observed pedestrian volume. A section with conclusions and a discussion
follows the results section. Figure 1 summarizes the research method and process.
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2.2. Study Area Characteristics

The study area selected was Gangnam Station, Seoul, Korea. Specifically, the study area
was limited to the station’s first basement (B1) level, which has ticket gates and entrances.
Gangnam Station is among the busiest subway stations in Korea and is connected to many
multiuse facilities. Table 1 shows the five subway stations with the highest annual ridership
in 2021. The first is Sinnonhyeon, followed by Gangnam. Gangnam and Jamsil Stations are
both transportation hubs connected to the subway and other modes of transportation. They
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are also connected to underground commercial areas. Gangnam Station was selected for
this study since it has both a high level of ridership and a wide range of space use behaviors.

Table 1. The five subway stations with the highest annual ridership in 2021.

Rank Station Name Line Annual Ridership

1 Sinnonhyeon Line 9 18,762,507
2 Gangnam Line 2 17,563,866
3 Noryangjin Line 9 15,582,731
4 Jamsil Line 2 14,544,907
5 Yeouido Line 9 14,312,939

Note: Open Government Data (https://www.data.go.kr/data/15099330/fileData.do (accessed on 5 January 2023).

In Gangnam Station (Line 2), the platform is located in the second basement (B2) level,
and the ticket gates and the station entrances are located in the level (Figure 2). Pedestrian
behaviors on the platform depend on the transfer locations in the previous stations rather
than the spatial configuration of this station itself [8]. Therefore, this study excluded
the B2 level and focused on the B1 level, where pedestrian behaviors are related to the
spatial configuration of the station space. In the B1 level, a corridor links the underground
commercial area to the Sinbundang Line for people who wish to transfer. Gangnam Station
(Line 2) has 8 entrances. Since the road intersection above this station does not have
crosswalks, people sometimes use the B1 level to cross the intersection. More than 89 city
and inter-city bus routes connect Gangnam Station to Seoul’s other centers and to satellite
cities around Seoul [37].
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2.3. Components and Path Selection of Agent-Based Model

The agent-based model based on space syntax was simulated in the depthmapX
program. The components of the environment were the analysis length, the number of
agents, and the starting points.

The analysis length was the time the agent enters and travels. The number of agents
was set for each starting point. The agent parameters included the agent stride length,
walking speed, isovist, and steps before changing the direction to the destination. The
agent stride length and walking speed are related and set the cell size of 1 step. The isovist
is the angular extent the agent is heading toward the destination. Therefore, when the agent
changes direction, the agent chooses a new random destination within the isovist [12]. This

https://www.data.go.kr/data/15099330/fileData.do
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model is not for setting a final destination and move, but for continuously changing the
destination according to visibility.

Figure 3 shows the agent’s path selection process in the model [12,38]. First, the scope
of analysis space, environment, and agent parameters is set. Then, the number of agents
at the starting point is entered. Each agent establishes a destination at the starting point
and takes steps before changing direction. Upon arrival, the agent determines a temporary
new destination using the isovist. It is based on Poisson distribution. If the agent’s field of
view is unclear, they take a step to the left or right to set a new destination. When an agent
arrives at a new destination, the agent moves iteratively according to the same rules.
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2.4. Pedestrian Data and Behaviors
2.4.1. Pedestrian Data

In this study, pedestrian data from Kim et al. [8] was used for analysis. Specifically,
they divided the study into convex spaces and counted the number of pedestrians at the
“gates” defined at the boundaries. They collected data for 5 min between 8–9 a.m. and
6–7 p.m. on a Friday. Although Kim et al. [8] included data on 48 gates, this study used
data collected from 28 gates only since the study area was restricted to the B1 level and
excluded the B2 level (Figure 4). Gangnam Station area is a major office district where the
pedestrian volume is highest during commute hours and reaches the highest level during
Friday evening commute hours. Therefore, it was considered appropriate to use these data
as representing the busiest times.
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The data collected from the 28 gates during morning and evening commute hours are
shown in Figure 4a,b, respectively. The areas filled in blue are separated by ticket gates, and
the numbers in green circles refer to station exit numbers. Pedestrian volume is denoted
with colored lines—the red lines denote higher volumes, and the purple lines denote lower
volumes. The numbers next to the colored lines are the number of pedestrians who passed
the gates during the 5 min observations.

The highest pedestrian volume during the morning commute was observed at the
ticket gates, followed by station exits 10(452), 11(437), and 7(427), and the southbound
corridor (437). Meanwhile, station exits 8 and 9 had relatively low pedestrian volumes, as
did the western section of the station. Similarly, the highest pedestrian volume during the
evening commute was observed at the ticket gates and relatively low pedestrian volumes
were observed at exits 8 and 9. However, the corridors connecting the ticket gates in the
center to exits 2, 7, 10, and 11 had very high pedestrian volume levels. It was observed that
there were more people in the corridors, given that the pedestrian count at the ticket gates
was approximately 700.

A comparison of the pedestrian volumes during the morning and evening commute
hours showed that the pedestrian volume was higher in the evening. In the morning,
pedestrians passed the ticket gates, and then immediately dispersed via corridors or exits.
In the evening, in addition to subway riders, there were pedestrians who remained in
the underground space or passed through the station and left via other exits. This can be
observed in the pedestrian volume difference between the ticket gates and nearby corridors.
For example, for the northeast ticket gate, the number of pedestrians in the morning was
676. The number of pedestrians in the three connected corridors was 326, 304, and 98,
respectively. The difference between ticket gate count and corridor count is 52 and shows
the ratio of pedestrians who travel through the connected corridors. However, in the
evening, the number of pedestrians at the ticket gate and at a nearby point were 848 and
962, respectively. The pedestrian counts in the three connected corridors was 560, 351, and
392. The difference exceeds 100 even close to the ticket gate and exceeds 340 in connected
corridors. This result indicates that pedestrians not only use the ticket gates but also either
stay in the station space or pass through it to exit the station.
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2.4.2. Space Type Classification Based on Pedestrian Behaviors

Among the pedestrians inside Gangnam Station, workers comprise the largest group [37].
This indicates that during commute hours, most pedestrians have a definite destination and
are well aware of its location and the shortest paths to reach it. They tend to travel along the
shortest path to their destination, from the subway platform to the ticket gates to the station
exits [8,39]. Since pedestrian behaviors differ depending on whether they take the shortest
path or not, this study examined pedestrian behaviors separately for different sections of
travel. To this end, “shortest path space” was defined as in Figure 5, by directly connecting
station exits to the nearest ticket gates (Figure 5a). Spaces outside the “shortest path space”
were categorized simply as the corridors of the underground commercial areas.
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3. Verification of Pedestrian Volume Using Agent-Based Model
3.1. Definition of Agent-Based Model and Calibration
3.1.1. Analysis Length

The analysis length was set to 5 min after an agent is released. This corresponds to
the actual observation period of 5 min and enables direct comparison of agent simulation
results with observed pedestrian volume. In addition, it takes approximately 5 min for
people to travel from the subway platform to a station exit through a ticket gate.

In the depthmapX program, “timestep” refers to the analysis period. The study area is
divided into cells (unit space), and the cells represent the travel time. Sutherland et al. [40]
defined the cell size at 0.75 m × 0.75 m and assumed a walking speed of 1.5 m/s. Therefore,
1 s is equivalent to 2 timesteps.

Given that the width of ticket gates in the study area is 0.5 m at most, the cell size
cannot be set as 0.75 m × 0.75 m because the space around the ticket gates would be
“closed.” VGA, which provides the basis for conducting agent-based modeling, requires a
grid setting so that all spaces are connected and accessible [38]. Hence, the cell size was
set at 0.375 m × 0.375 m, which is equivalent to a half step and also enables agents to pass
through the ticket gates. In addition, the timesteps were set to 4 per second, or 1200 since
the analysis length was 5 min (300 s).

3.1.2. Number of Agents

To determine the number of agents, public ridership data for Gangnam Station in
October 2007 was applied to enable a direct comparison with the observed pedestrian
volume. The average ridership between 8–9 a.m. was 3627 entries and 19,408 exits,
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corresponding to 1919 in 5 min. The average ridership between 6–7 p.m. was 14,765 entries
and 11,726 exits, corresponding to 2207 in 5 min.

The number of agents to be introduced depends on the cell size, and the number of
agents to be released per 1/4 s was entered for starting points. For the starting points, the
stairs to the subway platform (eight sections) reflect the number of exits, and the station’s
eight exits/entrances reflect the number of entries. The number of agents introduced
for the analysis length (1200 timesteps) is 1.58 for the morning commute and 1.85 for
the evening commute. The ratio between entries/exits is approximately 1:53 during the
morning commute, and 1:0.79 during the evening commute, which is similar to the actual
pedestrian volume in the station (1 in the equation).

Morning Commute (8-9 a.m.): 1200 [timesteps] × 1.59 [agents] = 1908 agents
Evening Commute (6-7 p.m.): 1200 [timesteps] × 1.84 [agents] = 2208 agents

(1)

3.1.3. Agent Parameters

The agent parameters were adopted from Turner and Penn’s study [13] on Tate Britain
Gallery in London. In this study, agents were programmed such that their field of view
was 170◦ and they changed direction after three steps. The highest correlation between the
predicted and observed pedestrian volume (R2 = 0.76) was observed in this setting, which
confirmed the model’s validity.

The field of view angle in the present study was also set to 170◦ (15 bins), and “steps
before turn decision” was initially set to 6 steps or 1.5 s in line with Turner and Penn’s
setting of 1.5 s or 3 steps [13]. However, these parameters did not match the actual
pedestrian behaviors, and after several trials, it was discovered the setting of 12 steps best
fit the actual pedestrian behavior. It can be surmised that in Turner and Penn’s study [13],
people changed direction frequently to view the artworks in the gallery, whereas in the
subway space, during commute hours people tend to move in a relatively straight way to
their destinations.

3.2. Comparison of Agent-Based Model Simulation and Observed Pedestrian Volume
3.2.1. Analysis of Agent-Based Model Simulation

The gate count results from the movement of agents through the cells can be compared
with the observed pedestrian volume. As agents move during the 5 min period, cells record
the frequency of their movement. In Figure 6, colors closer to red (blue) indicate cells with
higher (lower) frequency values.
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The morning commute results showed that the section with the highest frequency is
the ticket gates in the station’s east section, followed by the corridor linking those ticket
gates in the east to the ones in the center. The corridor linking station exits 2 and 11
had the next highest frequency, and the corridors around the underground commercial
areas showed relatively low frequency. The evening commute results differ—the corridors
near the station exits showed higher frequency values than the ticket gate sections. This
finding reflects the fact that the proportion of ‘exits (entries)’ is higher during the morning
(evening) commute.

3.2.2. Comparison of Simulated and Observed Pedestrian Volume

The simulation result includes frequency values, which indicate how many times
agents passed through each cell. Table 2 presents the frequency values from the cells
corresponding to the locations in the station where the actual number of pedestrians
was counted. For observation locations without data, the frequency value of the cells
was excluded. In sum, a database containing data from 28 locations during the morning
commute and 25 locations during the evening commute was prepared. All 53 locations
were included in the statistical analysis. In addition, given that pedestrians tend to travel
along the shortest paths [7], gates were classified into those along the shortest paths and
those that are not, in order to examine their spatial characteristics. In all, 35 gates were
along the shortest paths (17 for the morning commute, and 18 for the evening commute),
and 18 gates were not (11 for the morning commute, and 7 for the evening commute).

Table 2. Data on pedestrian movement and agent movement at the observation location.

Location
Morning Commute Hours Evening Commute Hours Gate Type

Pedestrian Agent Pedestrian Agent

1 676 1128 848 771

Gates located
on the shortest

paths

2 - - 962 1355
3 260 287 372 369
4 368 216 273 325
5 326 368 560 304
6 304 380 392 312
7 437 363 754 600
8 264 630 667 794
9 - - 695 931
10 325 508 776 752
11 573 765 625 609
12 680 558 757 421
13 - - 490 432
14 247 530 718 631
15 266 403 862 648
16 321 327 476 638
17 101 158 - -
18 91 145 - -
19 177 216 212 329
20 117 132 243 274

21 389 125 - -

Gates not
located on the
shortest paths

22 427 102 - -
23 437 147 - -
24 452 110 - -
25 245 463 365 442
26 98 999 351 767
27 157 318 224 357
28 99 984 - -
29 123 332 - -
30 144 705 275 812
31 - - 190 405
32 - - 651 812
33 38 298 230 420
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3.3. Investigation of Observed Pedestrian Volume Using Agent-Based Model
3.3.1. Correlation Analysis

Table 3 shows the correlations between the observed pedestrian volume and the total
number of agents by observation period and gate type. Following Turner and Penn’s
approach to verification of the simulation results [13], the pedestrian volume and the
frequency value of agents were both log-transformed so that the distribution is close to
normal distribution.

Table 3. Correlation between observed pedestrian volume and agent number.

Total Morning Commute
Hours

Evening Commute
Hours

All gates
Pearson correlation coefficient 0.346 0.035 0.636

p-value 0.006 * 0.429 0.000 *
N 53 28 25

Gates located on the
shortest paths

Pearson correlation coefficient 0.833 0.827 0.789
p-value 0.000 * 0.000 * 0.000 *

N 35 17 18

Gates not located on
the shortest paths

Pearson correlation coefficient −0.321 −0.690 0.671
p-value 0.097 0.009 * 0.050 *

N 18 11 7

* Correlation coefficient is significant at the 0.01(99%) level (both sides).

The results in Table 3 show that the observed pedestrian volume and simulation
frequency values are positively correlated at 0.35 for all gates. For gates located on the
shortest paths, the correlation is very high at 0.83. For gates not located on the shortest
paths, the correlation is negative but not statistically significant. Regarding the morning
commute hours, there is no correlation for all gates—but for those along the shortest paths,
it is 0.83. During evening commute hours, there is a positive correlation of 0.64, and for
the shortest paths, it is 0.79. In other words, the observed pedestrian volume and the
total number of agents show high correlation in the shortest path spaces. In contrast, the
observed pedestrian volume during the morning commute hours differs from that revealed
by the agent simulation. For gates not located on the shortest paths, there is only a weak
correlation, both during morning and evening commute hours, at the 0.05 confidence level,
but the correlation is negative for the morning commute and positive for the evening
commute. This difference likely stems from the limitation of a small sample size.

3.3.2. Simple Linear Regression Analysis

After extracting simulation data that had a positive correlation with the observed
pedestrian volume, a simple linear regression analysis was conducted to examine agent
attributes that explain the observed pedestrian volume clearly. The observed pedestrian
volume was the dependent variable, and the frequency value of agents is the independent
variable. Both R2 and Durbin–Watson values were checked to determine how well the
model fits the data. For the Durbin–Watson test, a value close to 2 indicates that the
residuals from the regression analysis are not autocorrelated. An analysis of variance
(ANOVA) was used to evaluate whether the results are significant at the p < 0.01 level (99%
confidence interval).

Table 4 shows that for the entire study area including all gates, the adjusted R2 is very
low at 0.103 and the regression is not statistically significant at the 99% confidence level.
However, for gates on the shortest paths, the regression is statistically significant and R2

is 0.693. Table 5, which presents results from morning commute hours, shows that the
regression is statistically significant only for gates on the shortest paths, and the adjusted
R2 is 0.663.
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Table 4. Simple linear regression analysis for the entire study area.

Model Summary

Model R R2 Adj. R2 Std. Error of
Estimate Durbin–Watson

All gates 0.346 a 0.120 0.103 0.663 1.009
Gates on the shortest paths 0.833 a 0.693 0.684 0.350 1.570

ANOVA b

Model Sum of
Squares df Mean

Square F Sig.

All gates
Regression 3.062 1 3.062 6.955 0.011 c

Residual 22.450 51 0.440 - -
Total 25.511 52 - - -

Gates on the shortest paths
Regression 9.140 1 9.140 74.530 0.000 c

Residual 4.047 33 0.123 - -
Total 13.187 34 - - -

Coefficients d

Model
Unstandardized Standardized

t Sig.
B Std. Error Beta

All gates Constant 3.440 0.893 - 3.853 0.000
Log agent 0.388 0.147 0.346 2.637 0.011

Gates on the shortest paths Constant 0.339 0.655 - 0.518 0.608
Log agent 0.927 0.107 0.833 8.633 0.000

a Predicted value: (constant), log agent; b dependent variable: log pedestrian; c predicted value: (constant), log
agent; d dependent variable: log pedestrian.

Table 5. Simple linear regression analysis for morning commute hours.

Model Summary

Model R R2 Adj. R2 Std. Error of
Estimate Durbin–Watson

Gates on the shortest paths 0.827 a 0.684 0.663 0.348 1.903

ANOVA b

Model Sum of
Squares df Mean Square F Sig.

Gates on the shortest paths
Regression 3.935 1 3.935 32.488 0.000 c

Residual 1.817 15 0.121 - -
Total 5.752 16 - - -

Coefficients d

Model
Unstandardized Standardized

t Sig.
B Std. Error Beta

Gates on the shortest paths Constant 1.201 0.824 - 1.458 0.165
Log agent 0.829 0.145 0.827 5.700 0.000

Table 6 presents the results for the evening commute hours, and although the regres-
sion is statistically significant for all gates (adjusted R2 = 0.378), the Durbin–Watson value
is less than 1 and the regression does not have adequate explanatory power. For gates on
the shortest paths, the regression is statistically significant and the adjusted R2 is 0.599.
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Table 6. Simple linear regression analysis for evening commute hours.

Model Summary

Model R R2 Adj. R2 Std. Error
of Estimate Durbin–Watson

All gates 0.636 a 0.404 0.378 0.406 0.867
Gates on the shortest paths 0.789 a 0.622 0.599 0.290 1.554

ANOVA b

Model Sum of
Squares df Mean

Square F Sig.

All gates
Regression 2.573 1 2.573 15.610 0.001 c

Residual 3.792 23 0.165 - -
Total 6.365 24 - - -

Gates on the shortest paths
Regression 2.221 1 2.221 26.374 0.000 c

Residual 1.347 16 0.084 - -
Total 3.568 17 - - -

Coefficients d

Model
Unstandardized Standardized

t Sig.
B Std. Error Beta

All gates Constant 1.276 1.232 - 1.036 0.311
Log agent 0.774 0.196 0.636 3.951 0.001

Gates on the shortest paths Constant 1.292 0.977 - 1.321 0.205
Log agent 0.799 0.156 0.789 5.136 0.000

a Predicted value: (constant), log agent; b dependent variable: log pedestrian; c predicted value: (constant), log
agent; d dependent variable: log pedestrian.

In sum, the regression is statistically significant and can explain the observed pedes-
trian volume for only the shortest path spaces. The two regression equations are presented
below (two of an equation), as shown in Equation (2) and Figure 7. The agent simulation
has the best explanatory power when the morning and evening commute data are both
included (68.4%). Specifically, the pedestrian volume for the morning commute is slightly
better explained. This study’s hypothesis that “An agent-based model is capable of ex-
plaining pedestrian behavior in the underground space connected to subway stations” is
therefore rejected for the entire study area. However, it is not rejected when applied only to
the shortest path spaces.

Shortest path gate during morning and evening commute hours: y = 0.684x + 0.339
Shortest path gate during morning commute hours: y = 0.663x + 1.201
Shortest path gate during evening commute hours: y = 0.599x + 1.292

(2)
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4. Discussion

This study analyzed how an agent-based model can explain real pedestrian behaviors
in a subway station. The correlation between the frequency of agent movement from
the agent-based model and the observed pedestrian volume was weak and did not have
explanatory power (R = 0.346). However, when only the shortest path spaces were analyzed
separately, the correlation was high and had strong explanatory power (R = 0.833). In
other words, the main result of this study is that it verified that the agent-based model can
explain the behavior of pedestrians only for the shortest path within the subway station.
Based on previous studies and the results from this study, the following four points need to
be discussed.

First, it should be ensured that pedestrians have the appropriate viewing angle in
the space corresponding to the shortest path connecting the ticket gate and the station
exit to ensure smooth pedestrian flows. In this study, the pedestrian behavior patterns
show that the people who use subway stations during commute hours depend on their
field of view and follow the shortest paths between the ticket gates and the station exits.
In particular, the explanatory power for the morning commute hours was 66% higher
than for the evening commute hours (60%). Notably, prior studies have reported this
pattern and have also revealed that subway users are well aware of the shortest path to
their destinations and choose to travel along these paths [8,39]. In contrast, the correlation
was low for spaces outside the shortest path spaces. While this result is not statistically
significant (R = −0.321. p-value = 0.097), it indicates that the spaces outside the shortest
path spaces are used as travel space to destinations—indicating that these serve as shortcuts
based on the experiences of pedestrians rather than on their field of view. This result is
related to Penn’s argument that the pedestrian behavior patterns for the spaces along the
destination path differ from those determined by spatial configuration.

Second, the agent-based model used to analyze the subway station space should
reflect the factors that affect movement by considering the various walking purposes of
pedestrians, given that the results of the model used in this study varied depending on the
characteristics and space use behavior of the agent. The correlation between the results
from the agent-based model and the observed pedestrian volume was low for the subway
station space because pedestrians engage in many types of behaviors simultaneously. The
observation of pedestrians revealed that some subway riders are aware of the shortest paths
from the subway platform to station exits and travel with a clear purpose, but others either
look around the underground commercial area or remain in one location. In Turner and
Penn’s analysis of the Tate Britain Gallery [13], the explanatory power of agents was high
at 76%, because most pedestrians had a common goal of artwork appreciation. Therefore,
it is necessary to experiment with different model parameters, for example, by modifying
agent conditions or introducing a space-type variable, depending on pedestrian behavior.

Third, subway stations need a physical environment plan to respond to the chang-
ing pedestrian behaviors by the time of day. This study analyzed data from a station’s
pedestrian peak hours, that is, the morning and evening commute hours on a Friday. The
correlation between the frequency of agent movement and the observed pedestrian volume
was very high (R = 0.827) along the shortest paths during the morning commute hours, and
slightly lower (R = 0.789) during the evening commute hours. During the evening commute
hours, the correlation was low (R = 0.636) for the entire station as well. These results are
in accordance with Xu and Chen’s argument [11] that spatial vitality varies in different
periods of the day depending on environmental variables. In addition to subway riders,
there were pedestrians who did not use the subway but stayed in one space during the
evening commute hours. This finding indicates that although pedestrian behavior during
morning and evening commute hours differs, a multiple regression analysis that includes
factors that likely influence such behaviors at other times of the day must be conducted.

Fourth, future studies should adjust the environment and agent settings of the agent-
based model according to the characteristics of the actual physical environment and pedes-
trian behaviors. For the agent program parameter in the present study, “steps before turn
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decision” was initially set to the default value of three steps [13], but this was not appro-
priate as a predictive model of pedestrian volume in a subway station. Other values were
tested, and it was determined that 12 steps were the most optimal for this study. Therefore,
when applying an agent-based model for a structure, it is necessary to apply appropriate
parameters for each space type. If researchers modified it to better match actual pedestrian
behaviors, the agent-based model would become an effective tool capable of predicting
pedestrian behaviors accurately.

5. Conclusions

This study contributes to the literature in two ways. From the academic perspective, it
developed an agent-based model—capable of predicting general pedestrian behaviors—
and applied it not to a general building structure but, rather, to a subway station, which is
a unique space. From the methodological perspective, the study showed that although this
model has shortcomings, it has the potential to predict natural pedestrian behaviors and
can be applied to diverse types of architectural space.

Regardless, this study has some limitations. First, the pedestrian data size was not large
enough, since data from observation locations in only one station were used. Therefore, this
study attempted to reveal the model’s validity by testing the residuals and the significance
of the regression equation. Second, this study used only an agent-based model to explain
actual pedestrian patterns using simple linear regression. Since the goal of the study was to
verify the explanatory power of the agent-based model other factors were not considered.
Therefore, future studies need to build a more meaningful predictive model and test it
using data collected from several subway stations. In addition, multiple regression analysis
models should be verified by examining various factors influencing gait behavior.

Therefore, in the future, it is necessary to build a more meaningful predictive model
with comprehensively approached data and data from several subway stations. In addition,
the multiple regression analysis models should be verified by examining various gait
behavior influencing factors.

Despite these limitations, this study is meaningful because it presents an agent-based
model that reflects the reality of the subway station space where pedestrians engage in
various pedestrian behaviors. The analysis results can provide primary data for developing
agent-based models for built and urban environments. In addition, this study can be used
as a guide when evaluating and planning a pedestrian-centered subway station space.
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