Novel Physics-Informed Artificial Neural Network Architectures for System and Input Identification of Structural Dynamics PDEs
Abstract
:1. Introduction
2. Theoretical Background
2.1. Artificial Neural Network (ANN)
2.2. Physics-Informed Neural Network (PINN)
2.2.1. PINN for ODE
2.2.2. PINN for PDE
Algorithm 1 Proposed framewoark with sequential and parallel PINNs. |
Input: and . |
Output: [state estimation; dynamic system properties; input load]. |
3. Demonstrative Examples
3.1. SDOF System
3.1.1. System Identification
3.1.2. State Estimation
3.2. Pure Cubic Oscillator (PCO)
3.3. Simply Supported Beam
3.3.1. Beam Subjected to Moving Load
3.3.2. Force Identification of Moving Load
4. Conclusions
- The PINN architectures in the published literature do not properly address the integration of structural dynamics PDEs into NN objective function. Nevertheless, the novel architecture proposed herein utilizes parallel and sequential PINNs successfully.
- The proposed parallel layout enables the PINN framework to accurately identify the properties of the continuous systems and moving loads. This is an important step toward the generalization of the PINN framework for developing an accurate model of continuous structures and, more specifically, systems subjected to moving loads, such as bridges;
- Unlike conventional ANNs, the novel PINN architectures feature excellent generalizability when applied to output-only system identification of dynamic structural systems. This makes them suitable candidates for operational system identification, where one needs to simultaneously consider input, model, and measurement uncertainties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossain, M.S.; Ong, Z.C.; Ismail, Z.; Noroozi, S.; Khoo, S.Y. Artificial neural networks for vibration based inverse parametric identifications: A review. Appl. Soft Comput. J. 2017, 52, 203–219. [Google Scholar] [CrossRef]
- De Souza, C.P.G.; Kurka, P.R.G.; Lins, R.G.; de Araújo, J.M. Performance comparison of non-adaptive and adaptive optimization algorithms for artificial neural network training applied to damage diagnosis in civil structures. Appl. Soft Comput. 2021, 104, 107254. [Google Scholar] [CrossRef]
- Le Riche, R.; Gualandris, D.; Thomas, J.J.; Hemez, F. Neural Identification of Non-linear Dynamic Structures. J. Sound Vib. 2001, 248, 247–265. [Google Scholar] [CrossRef]
- Xu, B.; Wu, Z.; Chen, G.; Yokoyama, K. Direct identification of structural parameters from dynamic responses with neural networks. Eng. Appl. Artif. Intell. 2004, 17, 931–943. [Google Scholar] [CrossRef]
- Facchini, L.; Betti, M.; Biagini, P. Neural network based modal identification of structural systems through output-only measurement. Comput. Struct. 2014, 138, 183–194. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Z.; Bao, Y.; Li, H. Machine-learning-based methods for output-only structural modal identification. Struct. Control. Health Monit. 2021, 28, 1–22. [Google Scholar] [CrossRef]
- Liang, Y.C.; Feng, D.P.; Cooper, J.E. Identification of restoring forces in non-linear vibration systems using fuzzy adaptive neural networks. J. Sound Vib. 2001, 242, 47–58. [Google Scholar] [CrossRef]
- Dudek, G. A constructive approach to data-driven randomized learning for feedforward neural networks. Appl. Soft Comput. 2021, 112, 107797. [Google Scholar] [CrossRef]
- Khanmirza, E.; Khaji, N.; Khanmirza, E. Identification of linear and non-linear physical parameters of multistory shear buildings using artificial neural network. Inverse Probl. Sci. Eng. 2015, 23, 670–687. [Google Scholar] [CrossRef]
- Xie, S.L.; Zhang, Y.H.; Chen, C.H.; Zhang, X.N. Identification of nonlinear hysteretic systems by artificial neural network. Mech. Syst. Signal Process. 2013, 34, 76–87. [Google Scholar] [CrossRef]
- Liu, Z.; Fang, H.; Xu, J. Identification of piecewise linear dynamical systems using physically-interpretable neural-fuzzy networks: Methods and applications to origami structures. Neural Netw. 2019, 116, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wu, D.; Tin-Loi, F.; Gao, W. Machine learning aided stochastic structural free vibration analysis for functionally graded bar-type structures. Thin-Walled Struct. 2019, 144, 106315. [Google Scholar] [CrossRef]
- Yazdizadeh, A.; Khorasani, K.; Patel, R.V. Identification of a two-link flexible manipulator using adaptive time delay neural networks. IEEE Trans. Syst. Man Cybern. Part B 2000, 30, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Deng, J. Dynamic neural networks with hybrid structures for nonlinear system identification. Eng. Appl. Artif. Intell. 2013, 26, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (Part II): Data-driven discovery of nonlinear partial differential equations. arXiv 2017. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (Part I): Data-driven discovery of nonlinear partial differential equations. arXiv 2017, arXiv:1711.10561. [Google Scholar]
- Jin, X.; Cai, S.; Li, H.; Karniadakis, G.E. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations. J. Comput. Phys. 2021, 426, 109951. [Google Scholar] [CrossRef]
- Jiang, C.; Vinuesa, R.; Chen, R.; Mi, J.; Laima, S.; Li, H. An interpretable framework of data-driven turbulence modeling using deep neural networks. Phys. Fluids 2021, 33, 055133. [Google Scholar] [CrossRef]
- Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput. Methods Appl. Mech. Eng. 2021, 379, 113741. [Google Scholar] [CrossRef]
- Azam, S.E.; Rageh, A.; Linzell, D. Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition. Struct. Control Health Monit. 2019, 26, 1–24. [Google Scholar] [CrossRef]
- Jain, J.; Kundra, T. Model based online diagnosis of unbalance and transverse fatigue crack in rotor systems. Mech. Res. Commun. 2004, 31, 557–568. [Google Scholar] [CrossRef]
- Nascimento, R.G.; Fricke, K.; Viana, F.A.C. A tutorial on solving ordinary differential equations using Python and hybrid physics-informed neural network. Eng. Appl. Artif. Intell. 2020, 96, 103996. [Google Scholar] [CrossRef]
- Haghighat, E.; Juanes, R. SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Comput. Methods Appl. Mech. Eng. 2021, 373, 113552. [Google Scholar] [CrossRef]
- Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H.; Juanes, R. A deep learning framework for solution and discovery in solid mechanics. arXiv 2020, arXiv:2003.02751. [Google Scholar]
- Jagtap, A.D.; Kharazmi, E.; Karniadakis, G.E. Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 2020, 365, 113028. [Google Scholar] [CrossRef]
- Kharazmi, E.; Zhang, Z.; Karniadakis, G.E.M. VPINNs: Variational physics-informed neural networks for solving partial differential equations. arXiv 2019, arXiv:1912.00873. [Google Scholar]
- Kharazmi, E.; Zhang, Z.; Karniadakis, G.E.M. hp-VPINNs: Variational physics-informed neural networks with domain decomposition. Comput. Methods Appl. Mech. Eng. 2021, 374, 113547. [Google Scholar] [CrossRef]
- Haghighat, E.; Bekar, A.C.; Madenci, E.; Juanes, R. Deep learning for solution and inversion of structural mechanics and vibrations. In Modeling and Computation in Vibration Problems, Volume 2: Soft Computing and Uncertainty; IOP Publishing: Bristol, UK, 2021; pp. 1–18. [Google Scholar]
- Goswami, S.; Anitescu, C.; Chakraborty, S.; Rabczuk, T. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theor. Appl. Fract. Mech. 2020, 106, 102447. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.; Yin, M.; Karniadakis, G.E. Physics-Informed Neural Networks for Nonhomogeneous Material Identification in Elasticity Imaging. arXiv 2020, arXiv:2009.04525. [Google Scholar]
- Lai, Z.; Mylonas, C.; Nagarajaiah, S.; Chatzi, E. Structural identification with physics-informed neural ordinary differential equations. J. Sound Vib. 2021, 508, 116196. [Google Scholar] [CrossRef]
- Adeli, H.; Yeh, C. Perceptron Learning in Engineering Design. Comput. Civ. Infrastruct. Eng. 1989, 4, 247–256. [Google Scholar] [CrossRef]
- Tiumentsev, Y.V.; Egorchev, M.V. Neural Network Black Box Approach to the Modeling and Control of Dynamical Systems. Neural Netw. Model. Identif. Dyn. Syst. 2019, 1, 93–129. [Google Scholar]
- Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res. 2018, 18, 1–43. [Google Scholar]
- Ding, H.; Chen, L.Q. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 2020, 100, 3061–3107. [Google Scholar] [CrossRef]
- Kovacic, I. Nonlinear Oscillations; Springer International Publishing: Cham, Germany, 2020. [Google Scholar]
(rad/s) | Relative Error of (%) | ||||
---|---|---|---|---|---|
0.70710 | 0.005 | 0.70711 | 0.002 | 0.00495 | 1.050 |
1 | 0.005 | 1.00002 | 0.003 | 0.00501 | 0.281 |
1.414213 | 0.005 | 1.41422 | 0.001 | 0.00499 | 0.248 |
2.236067 | 0.005 | 2.23607 | 0.001 | 0.00500 | 0.050 |
3.162278 | 0.005 | 3.16221 | 0.002 | 0.00493 | 1.400 |
1.414213 | 0.01 | 1.41425 | 0.008 | 0.00998 | 0.156 |
1.414213 | 0.02 | 1.41420 | 0.019 | 0.02002 | 0.121 |
1.414213 | 0.05 | 1.41418 | 0.123 | 0.05003 | 0.060 |
1.414213 | 0.10 | 1.41459 | 0.009 | 0.00491 | 0.038 |
Relative Error (%) | INITIAL Displacement (cm) | |
---|---|---|
2 | 0.0253 | 1 |
3 | 0.0693 | 1 |
4 | 0.1072 | 1 |
2 | 0.0343 | 0.5 |
2 | 0.0882 | 1.5 |
(rad/s) | Relative Estimation Error (%) | ||
---|---|---|---|
One Hidden Layer | Two Hidden Layers | Modified Hidden Layers | |
0.6978 | 0.01 | 0.004 | 0.04 |
2.7915 | 50.53 | 0.007 | 0.007 |
6.2809 | 22.29 | 17.32 | 0.002 |
ω1 (rad/s) | ω2 (rad/s) | ζ (kN.s/m) | ||
---|---|---|---|---|
Exact Value | 1.709 | 6.838 | 0.005 | |
Displacement input | Parallel PINNs | 1.725 | 6.118 | 0.008 |
Series PINNs | 1.709 | 6.184 | 0.005 | |
Acceleration input | Parallel PINNs | 1.704 | 6.829 | 0.004 |
Series PINNs | 1.600 | 6.832 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, S.; Duran, B.; Eftekhar Azam, S.; Mofid, M. Novel Physics-Informed Artificial Neural Network Architectures for System and Input Identification of Structural Dynamics PDEs. Buildings 2023, 13, 650. https://doi.org/10.3390/buildings13030650
Moradi S, Duran B, Eftekhar Azam S, Mofid M. Novel Physics-Informed Artificial Neural Network Architectures for System and Input Identification of Structural Dynamics PDEs. Buildings. 2023; 13(3):650. https://doi.org/10.3390/buildings13030650
Chicago/Turabian StyleMoradi, Sarvin, Burak Duran, Saeed Eftekhar Azam, and Massood Mofid. 2023. "Novel Physics-Informed Artificial Neural Network Architectures for System and Input Identification of Structural Dynamics PDEs" Buildings 13, no. 3: 650. https://doi.org/10.3390/buildings13030650
APA StyleMoradi, S., Duran, B., Eftekhar Azam, S., & Mofid, M. (2023). Novel Physics-Informed Artificial Neural Network Architectures for System and Input Identification of Structural Dynamics PDEs. Buildings, 13(3), 650. https://doi.org/10.3390/buildings13030650