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Abstract: Herein, two novel Physics Informed Neural Network (PINN) architectures are proposed
for output-only system identification and input estimation of dynamic systems. Using merely sparse
output-only measurements, the proposed PINNs architectures furnish a novel approach to input,
state, and parameter estimation of linear and nonlinear systems with multiple degrees of freedom.
These architectures are comprised of parallel and sequential PINNs that act upon a set of ordinary
differential equations (ODEs) obtained from spatial discretization of the partial differential equation
(PDE). The performance of this framework for dynamic system identification and input estimation
was ascertained by extensive numerical experiments on linear and nonlinear systems. The advantage
of the proposed approach, when compared with system identification, lies in its computational effi-
ciency. When compared with traditional Artificial Neural Networks (ANNSs), this approach requires
substantially smaller training data and does not suffer from generalizability issues. In this regard,
the states, inputs, and parameters of dynamic state-space equations of motion were estimated us-
ing simulated experiments with “noisy” data. The proposed framework for PINN showed excellent
great generalizability for various types of applications. Furthermore, it was found that the proposed
architectures significantly outperformed ANNSs in generalizability and estimation accuracy.

Keywords: physics-informed neural networks; system identification; parameter estimation;

input estimation

1. Introduction

The application of Artificial Neural Networks (ANNSs) in the field of vibration-based
structural health monitoring (SHM) and system identification has gained significant atten-
tion from researchers in the past decade [1,2]. Rich et al. proposed an ANN for identifying
the mass of the system by acceleration measurements [3]. Xu et al. developed a framework
based on ANNS to estimate the inter-story stiffness and damping coefficients of a 5-story
frame [4]. In another research, eigenvalues and eigenmodes of a three-story steel frame
were estimated by an ANN [5]; more recently, Liu et al. successfully identified modal
properties of a cable-stayed bridge via a self-coding ANN with vibration data as input [6].

While ANNs are powerful tools for mapping nonlinear input to output, their accuracy,
efficiency, and generalizability significantly depend on the size of the training data. More-
over, the interpretability of ANN results is a challenge. The former is the main drawback
for ANNs application in real-life structural system identification, where collecting data
is expensive, time-consuming, sometimes impractical, and often subjected to large uncer-
tainties due to humans or equipment nature. Moreover, the common ANNs act as a “black
box” and lack interpretability. Therefore, the final model of the network might not have a
strong connection with the underlying physics of the system. Although some researchers
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have tried to find a solution to this problem, the issue of the interpretability of ANN is an
open research area [7,8]. Besides, due to the complexity of determining the characteristics
of dynamic systems, the ANNSs require several assumptions and a significant amount of
input data, such as measuring data in all DOFs or restricting the hidden layers and neu-
rons. Khanmirza et al. suggested an ANN for parameter identification of multistory shear
buildings [9]. The number of layers in their proposed neural network (NN) was equal to
the system’s degree of freedom, and it was assumed that displacement, velocity, and accel-
eration were measured at all degrees of freedom. Xie et al. proposed a discretized system
and tried to define a differential model by ANNSs [10]. Recently Liu et al. introduced a
physically interpretable neural-fuzzy network for the identification of piecewise linear dy-
namical systems [11]. Wang et al. proposed an ANN using the finite element method to
estimate the relationship between uncertainty in system parameters and natural frequen-
cies [12]. Another approach is the application of more dynamic ANNSs, such as dynamic
neuron units [13]. Another limitation of the ANNSs is their fixed architecture, the number of
layers, and neurons, which makes them susceptible to large errors with minor changes in
the system properties. Deng presented a hybrid NN to surpass this issue that uses a serial-
parallel hybrid structure [14]. Dudek suggested introducing a data-driven randomized ap-
proach to compact the NN architecture with significant nodes [8]. However, the previous
ANN:Ss utilized for system identification lacked a rigorous and generalizable structure.

To address the shortcomings of ANNSs, the Physics-Informed Neural Network (PINN)
bridged the gap between ANNSs and physical systems by introducing the governing equa-
tions of the system to the loss function of ANN as an additional criterion [15,16]. Since
the introduction of the PINN, this approach has been applied in various research fields,
including fluid mechanics [17,18] and solid mechanics [19]. The main goal of the PINN
is to facilitate the modeling of phenomena with limited data and a simplified model of
the system. One of the advantages of using PINNs is their generalizability in case of
changes in structural properties, which is especially important in the control and diag-
nosis of damaged systems [20,21]. Most physical systems’ behavior can be described us-
ing differential equations; therefore, introducing derivatives of variables was a challenge
in the application of PINN [22]. Haghighat developed a high-level neural network Ap-
plication Programming Interface (API), SciANN, for the ease of PINN application. The
main advantage of the SciANN is the accessibility to define derivatives of variables in
physics-informed equations [23,24]. Researchers have recently modified the PINN to ex-
tend its performance. Jagtap et al. [25] introduced the Conservative Physics-Informed
Neural Networks (cPINNs) for nonlinear conservation law. Kharazmi et al. implemented
the Petrov-Galerkin formulation to the PINN and presented Variational Physics-Informed
Neural Networks (VPNNSs) [26]. They extended their work to global approximation with
local learning by developing the hp-Variational Physics-Informed Neural Networks (hp-
VPNNSs) [27]. The PINN was applied to the identification of parameters of materials, solid
mechanics, fractures, and discrete structures such as shear-type structures, where the main
focus was on finding the stiffness and viscous damping [28-31].

The existing PINN architectures do not allow for input, state, and parameter estima-
tion using the PDEs of structural dynamics in the objective function, and this problem has
not been addressed in structural dynamics for bridge-type structural systems. In this re-
gard, two novel parallel and sequential PINN architectures were developed for seamless
integration of the PDEs of structural dynamics into a Machine Learning (ML) framework
within the scope of this study. Due to their inherent properties, these layouts reduce the
computation time, which is essential for complex and/or real-time systems. To validate the
efficacy of the proposed approaches, several dynamic systems with dynamic linear and
nonlinear ODEs and PDEs are used for a comprehensive numerical investigation. Firstly,
a Single-Degree-of-Freedom (SDOF) system as an ODE was studied; subsequently, a Pure
Cubic Oscillator (PCO) as a nonlinear dynamic system was examined. Next, a bridge-type
structural system modeled by a PDE was considered. The PDE of the structure was dis-
cretized using the Eigenfunction Expansion Method (EEM). It was shown that the two
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novel PINN architectures successfully estimated the parameters of the beam and the char-
acteristics of the external load. The proposed PINN method was demonstrated to have
the ability to perform successful dynamic system identification and assess moving load
characteristics in more complex problems after testing it with various inputs and making a
comparison to the conventional ANNs. The extensive numerical experiments presented in
this study confirmed the excellent generalizability of the proposed architecture for PINN
for the state, parameter, and input estimation. Additionally, it was observed that when
applied to similar problems, the proposed PINN outperforms regular ANNSs.

2. Theoretical Background
2.1. Artificial Neural Network (ANN)

Since the introduction of ANNS, they have been used in various fields. Adeli and Yeh
were the pioneers of implementing ANN in structural analysis [32]. Multi-Layer Neural
Network (MNN) is the most commonly used form of ANNs due to their simplicity and
efficiency. ANNSs were not very efficient before the introduction of the backpropagation
algorithm and the development of fast computing; however, they have been one of the
most popular black-box modeling and prediction tools [33].

In this study, Fully Connected (FC) ANNs with different hidden layers were used
as conventional NNs. They were predominantly used as a benchmark to compare the
performance of the proposed novel PINN architecture to a pure data-based ANN. For the
ANN with multiple hidden layers and a feedforward process, each layer input is calculated
based on the previous layer outputs:

a® = U(Wsas_1 + bs>. 1)

In Equation (1), the W® is the weight matrix that connects the k' neuron in the (s — 1)th

layer to the j neuron in the s layer with w;k. With the same notations, the b® and a® are
the bias and activation of the s layer, respectively. In other words, b]S- stands for bias of
the j neuron in the s layer, whereas a5 is the activation of the j neuron in the s layer.

The ¢(.) is the activation function where 0/(v); = o'(v;).
In this study, y is the state of the structural system and is approximated by ANNss:

y(x,t) = y(x,t) = NN(x,t;W,b). ()

The parameters of the ANNs, W*® and b®, are calculated through the backpropagation
process. To find the optimal parameters, the following loss function is minimized:

argnginL(WIb) = [ly(8) =305 )l = ly(x*, £) = NN(X*, EW, b)]]. ®)
W,

where x* is the training data and ||| stands for Euclidean norm of e.

As mentioned earlier, the sensor outputs are the only input of the ANN, assuming
j installed sensors on the structure, the input layer is defined with j nodes. The number
of output layer nodes, k, is selected based on the number of quantities of interest to be
estimated. The governing Equation of a single-layer ANN for this structure is

j
Y = (T(Z XjWi + bk> . (4)
]

where yy is the output of the neuron, checkpoint output, wj is the corresponding weight
to the input x;, sensor output, and ¢(.) is the activation function of the ANN. Herein, the
sine function was selected to be the activation function.
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2.2. Physics-Informed Neural Network (PINN)

The main idea of the PINN is to guide the ANN by introducing the physical behavior
of the model as an additive constraint. Therefore, the loss function consists of two compo-
nents: the loss due to the difference between predicted and real training data, L,, and the
loss originates from physics constraint dissatisfaction, L,. The data fit portion of the loss
function with N, training points are calculated as follows:

Lo= ) lyi— owp(xf, D], ©)

where g is the approximate solution for the physics equation of the studied system, which
is a conventional NN mapping the inputs, x, t, to the variable g;

p:(x,t) = NN(x, t;W,b)

The physical constraint consists of two components; Ly, the differential equation of
the system and L; representing both the boundary and initial condition. The physics
differential equation of the studied system for Ny points is introduced to the system by
Equation (6) as

1
Ly = 5. LIE®) —¢'T (6)
S Ny
fi=1
in which the E(p) is the system’s partial differential equation, and the E(.) is the partial
differential operator; ¢* is the constant number, which here equals zero. The automated
differentiation calculates the partial differential possible [34].

The initial and boundary conditions of the physical differentiation equations can be
incorporated into the loss function. Hence Lj, which represents both initial and boundary
conditions, is introduced as

1y oy Ly 2
Ly=—) [7i— it — ) i — it 7
0=, Ll = gr G O+ Z;[yz go(xf, )%, (7)
where gr and gp denote the boundary and initial states of the physical equation for N, and
N, boundary and initial points, respectively.

In conclusion, the final loss function for the PINN can be calculated in Equation (8) by

Ly Ly

argmin L(W,b) := [ - y"[| + [|1E(p) = ¢"| + 19 =y llag + 150 —woll].  (8)
W,b H,—/

La L,

where ¥ and y* are the output of the PINN and the measured data; dR is the boundary
domain, and subscript 0 stands for the initial condition of the physic equation. It is worth
mentioning that the contribution of each phrase in Equation (8) can be adjusted regard-
ing the accuracy of the measured data and the reliability of the physics equations. Thus,
Equation (8) is rewritten in the form of Equation (9) as

W%’vnzinL(W/b)H? —y I+ AIE() =l + 17 =y llor + 150 — wo - ©)

A is a tuning parameter for regulation of the proposed framework for the PINN; A = 0
converts the framework to the ANNs, whereas A = 1 reconciles the ANN and the phys-
ical information. The schematic algorithm for the loss function in the PINN is plotted in
Figure 1. The physics equations can be introduced to the PINN as parametric equations.
This makes PINNSs suitable for inverse analyses. In this regard, the trained PINN can yield
the unknown parameter in addition to the other quantities of interest in the system.
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Figure 1. PINN schematic algorithm for loss function.

Although the PINNs can introduce several differential equations in the loss function,
the calculation of these equations significantly increases the computational burden of the
training stage. To mitigate this problem, two novel architectures are proposed that can
be applied to the space-discretized PDE. In this study, the EEM was used to discretize the
governing PDE. In the first layout illustrated in Figure 2, n parallel PINNSs are trained si-
multaneously. These PINNs are connected to each other via the total loss function. The
efficiency of the parallel PINNSs is specifically important for complex and real-time systems
in which analysis time is crucial. The proposed layout can be said to be more suitable for
running it on GPUs, which significantly reduces the computational time. Besides, due to
the independence of the PINNs in the parallel layout, the architecture of each PINN can
be different from the rest, making the total layout of the framework more flexible. In some
dynamic systems, one or two modes might be dominant and can play an important role
in the system'’s global behavior. One can reflect this priority by introducing a weighting
parameter to the output of each PINN. Another solution is to focus on the dominant modes
first and later use the estimated properties in the next modes. This framework shapes n
series PINNs, as demonstrated in Figure 3. In this regard, the importance of each mode is
defined by the framework by order of the relative PINN in the framework. Also, one can
terminate these series and control the output accuracy. Unlike the previous layout, the out-
put of each PINN is necessary for subsequent PINNs. However, by placing the dominant
modes in the early sector of the sequential framework, the subsequent PINNs benefit from
previous estimates and run faster. It should be highlighted that, for generalizability pur-
poses, one can estimate the structural properties, such as stiffness change, by introducing
the proper physics-based equations and employing the PINN method. This can potentially
be used for SHM of infrastructure systems subjected to unknown moving loads.
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Figure 3. Schematic framework with sequential PINNs.

t

2.2.1. PINN for ODE

Since introducing the physical equation in the PINN is essential, the equations and
loss function are briefly reviewed for ODE and PDE. The dynamic equation for an SDOF
is a classic example of ODEs. Consider an SDOF dynamic system where the mass and
stiffness of the system are m and k, respectively. A viscous damper, c, is added to the sys-
tem to study the performance of the PINNSs in tracking the vibration behavior of damping
systems. The following equation represents the state-space equation for this system

(t) = At(t) + BE(t), (10)

T(t) = [ zgg ],A: [ —mO*1k _ml,lc ],B: [ mql } (11)

Additionally, the measurement vector y(t) is defined as

o= 2150}

where
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Sy and S, correspond displacement and acceleration observation variables. Now that
the physical equation and measurement vector are defined, one can simply use Equation
(9) as the loss function.

2.2.2. PINN for PDE

In this section, the vibration equation for a continuous beam is studied as a PDE. Con-
sider a simply supported beam, where pA and EI are mass per unit length and flexural
rigidity of the beam, and c is the damping of the beam. The forced vibration equation of
this system can be written as follows:

0%w otw ow
A— +El— + pAc— = f(t 1
p atZ + ax4 +p Cat f( )’ ( 3)
where w denotes vertical displacement. By applying the EEM, the beam response is decou-
pled as

w(x ) = ilcmx)qj(t) ~ iw,-(x)qj(t), (14)
= =

¢; and g; are the j modal shape and coordinate of the j mode, respectively. By
substituting Equation (14) in Equation (13), the modal equation results:

Mq(t) + Cq(t) + Kq(t) = Spp(t), (15)
where,

1 1 1
M= pA/lb(x)tl)T(x)dx,C = pAc/lp(x)tpT(x)dx,K = EI/tI)(x)tl)””T(x)dx. (16)
0 0

0

Sp and p(t) are the influence matrix and time history of the imposed force, respec-
tively. Subsequently, the state-space equation for a beam subjected to a moving load is

T(t) = A () + HE(t). (17)

where

TT = [ q(t) q (t)]’ A= l: _MoflK —M171C :|’ H= [ M071 :|/ fT(t) = _mng(xe)I' (18)

In this formulation, ¥ is the modal matrix, m, and x, are the mass and changing posi-
tion of the moving loads, respectively. Also, the measured vector, y(t), is defined as:

o-[% 2150}

where S4 and S, are the correspondent displacement and acceleration observation matrix.

Since Equation (17) is composed of n independent equations, it is proposed to consider
an individual PINN for each equation which can be calculated in parallel or in series. In
this regard, the global architecture will be more flexible since the local architecture of each
equation is independent and can be adjusted to the physical equation properly. Figure 4
demonstrates the schematic layout of the proposed framework for a beam subjected to a
moving load. It can estimate the state of the system and identify the system properties.
In addition, the properties of the input load, the weight, and the velocity of the moving
object, which has a key role in the control of the structures, can be determined through
the framework of this study. The proposed algorithm for both sequential and parallel
PINNSs is introduced in Algorithm 1. In these algorithms, it is supposed that the noisy
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measurements of s sensors are fed to the framework after discretization to n modes by the
EEM. Each layout consists of n PINNs that work together.

Algorithm 1 Proposed framewoark with sequential and parallel PINNs.

Input: £, 5),...,Eyand Y.

Sequential layout: Parallel layout:
for j=12,...,n forj=12,...,n
def $:(q,t) > NN(q;,t; W;, by): | def $:(q,t) > NN(q;, t; W;, b;)
fork=12,...,s end
calculate ||ys — s G|l + AE — ¢*|l for k=12,...,s
return [§y; Wi, ¢19;] calculate Y7, 1lys — qll + A1Z — ¢”||
end return [G; i, §1Pi]
end end

Output: [state estimation; dynamic system properties; input load].

Q) | ©
L 1
¥ - " ¥
T N ‘ /Y
» Y* Je
| |
I
. | EEM | |
j | State estimation:
S *l' e — @ displacement
® acceleration
q>.<
EEEE l ———— System identification:
\ | e natural frequency
} PINN :——* o damping ratio
\
S |
Input estimation:

L e weight
e speed

Figure 4. Input and outputs of a PINN framework for a beam subjected to moving load.

3. Demonstrative Examples

The main purpose of this section is to evaluate the performance of the PINN in dy-
namic structural system identification and input force estimation. To evaluate the perfor-
mance of PINN for dynamic structural system identification, two types of dynamic sys-
tems were considered for verification purposes: a linear Single Degree of Freedom (SDOF)
system as well as a Pure Cubic Oscillator (PCO) as ODE examples; afterward, a simply sup-
ported beam as a bridge-type structure representing PDE problems were analyzed. In the
last step, the capability of the PINN in estimating input force was examined by introducing
a moving load to the bridge-type system.

To evaluate the performance of the PINN in determining the dynamic structural sys-
tem identification, each system was trained for a short period of time with a few displace-
ments and/or accelerations sensor outputs. By imposing physics equations constraints,
both dynamic parameters and the state of the system were estimated. The accuracy of
parameter estimations was investigated with different sensor noise levels, and the PINN
and ANN's capability in predicting the structure’s state was compared. Finally, the com-
petency of the PINN in estimating input force was examined. In this regard, the weight
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and speed of a moving load were identified for a bridge-type structure. An overview of
the demonstrative examples and their results is presented in Figure 5.

[ If it’s SDOF & ODE ]

Identifying the structure and define

[ 1fits MDOF & PDE |

I
I
I
I'| physic-based differential equations: | |
| ODEs and PDEs |
1
1
I
I
I
I )
I E:
1
I
|
1
I |
|

Constructing PINN architecture
(parallel/sequential) and
introducing physical behavior:

ol CMmO)

D000 s N 0

]

[ System identification: ]

Estimation of dynamic characteristics of linear and

nonlinear system

Robustness of the results for different noise levels and

training data

* Estimation of modal properties with different
architectures (sequential and parallel) and different
measurement scenarios

[ State prediction: ]

[ State prediction:

)

.

.

Role of a regulator (1) in the accuracy of the predicted

states

Comparison between ANN and PINN for state

prediction

* Comparison between ANN and PINN in predicting the \
states over time

[ Load assessment: ]

* Properties estimation of the moving loads (weight and
velocity)

Figure 5. The workflow of the paper and demonstrative examples.

3.1. SDOF System

The vibration of an SDOF system is a classical problem in the field of structural dynam-
ics, and an analytical solution to this system is available. By assuming circular frequency, w,
and damping ratio, {, as known parameters, the analytical response of the systems with
{ < 1is obtained:

x(t) = e bwnt [xo cos(wpt) + (W) sin(th)] , (20)
D

where wp = wy/1 — 2.

As discussed earlier, Equation (10) is regarded as a physics constraint for the PINN,
and the outputs of the PINN are both dynamic properties of the SDOF and state prediction.
In other words, the only input of the PINN is the state (displacement and/or acceleration)
of the SDOF during the training period, I, and the PINN will estimate the SDOF’s displace-
ment and acceleration after the training period and also predict the system properties, O.
Here below, the inputs and outputs of PINN are laid out:

1= [x(ti);jé(ti)], i=1,2,...,N
0= x(ti),jé(ti);w,g], i> N,
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where N is the number of samples in the training data, which in this case is the total time
steps used for the training period. Now that the input and output of the PINN are known,
the loss function is calculated:

N N 2
argmint (W, b) i= & & ([57 = pwa(t)] + [5 = wa(t)])
Wb i=1 (21)
N ra Ao 2

+A [111 P [@w,b(fi) + 2000w (1) + @ Pwp(ti) — 0*} +[x - @w,b(o)ﬂ ,

dw p(t;) represents the PINN estimation of the studied SDOF displacement at the i'"
time step; & and { are the unknown parameter; therefore, the PINN is expected to predict
these parameters after training. In order to compare the accuracy of the predicted state of
the PINN and the ANN, A = 1, and A = 0 were introduced to the model, respectively.
Aiming for an accurate comparison, an identical architecture is considered for the analysis
of both PINN and ANN. Since the behavior of the SDOF is not complex, a NN with one
hidden layer with 50 nodes is selected for this section. It is noteworthy that the initial
condition of the system, here x(, can also be introduced to the loss function. This criterion
helps the PINN to converge numerically faster. However, since the initial condition might
be unknown, it was not introduced to the presented models.

3.1.1. System Identification

In the first step, the capability of the PINN in system identification is evaluated. Since
the ANN is not capable of parameter prediction, only the PINN’s estimates are presented in
this section. To train the PINN, the analytical displacement of the SDOF was contaminated
with an additive zero-mean white Gaussian noise which its Root Mean Square (RMS) was
1% of the RMS of the signal, and it was fed into the PINN during three natural periods.
The performance of the PINN in the system identification framework was evaluated for
various SDOF systems. Table 1 presents the predicted dynamic characteristics of different
SDOFs. With a relative error of almost less than 1.5%, the results confirmed the accuracy
of the estimated parameters. The relative error provides a normalized measure of the error
in the estimated value. It is expressed as a ratio of the absolute error to the true or actual
value. This accuracy level reduces with increasing damping ratios and amplification of the
diminution effect, although the overall estimations can be said to be accurate. Eventually,
a specific SDOF with a circular natural frequency of , /2 and a damping ratio of 0.005 was
chosen for further studies.

Table 1. Estimation of the PINN for dynamic characteristics.

w (rad/s) { (kN.s/m) o (radls) Relative Error of & (%)  { (kN.s/m) Relative Error of (%)

0.70710 0.005 0.70711 0.002 0.00495 1.050

1 0.005 1.00002 0.003 0.00501 0.281
1.414213 0.005 1.41422 0.001 0.00499 0.248
2.236067 0.005 2.23607 0.001 0.00500 0.050
3.162278 0.005 3.16221 0.002 0.00493 1.400
1.414213 0.01 1.41425 0.008 0.00998 0.156
1.414213 0.02 1.41420 0.019 0.02002 0.121
1.414213 0.05 1.41418 0.123 0.05003 0.060
1.414213 0.10 1.41459 0.009 0.00491 0.038

The efficiency of NNs relies on both the quantity and quality of the training data. In
the next step, the capability of the PINN for system identification was assessed for different
training periods and noise levels subjected to the various initial conditions.

To evaluate the performance of the PINN with different training periods, the accuracy
of the parameter estimation after (a) half, (b) two, and (c) three natural periods of training
with different initial conditions are compared in Figure 6. The PINN can estimate the
system properties accurately with less than half of the natural period, and by increasing the
training time, the estimations become more precise. In order to evaluate the sensitivity of
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relative error %

the PINN to the noise levels, the analyses were repeated for different input data with noise
levels ranging from 1% up to 10% RMS of the training data. Based on Figure 7, the dynamic
properties of the SDOF were estimated accurately for all noise levels. Despite increasing
the noise level, the accuracy of the predicted parameters decreased as expectedly. These
results are valid for different initial conditions.

10

8

relative error %

\
—_—
S

0.5

trainig period/natural period a - -
X0=10 -+ x0=5 = = x0=15 —X0=10 - x0=5 — = x0=15

1 3 1
’ trainig period/natural period
(a) (b)

Figure 6. PINN'’s relative error with different training periods for (a) natural circular frequency;
(b) damping ratio estimations.

10
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Figure 7. PINN's relative error with different noise levels for (a) natural circular frequency; (b) damp-
ing ratio estimations.

3.1.2. State Estimation

In this section, the accuracy of the predicted states during and after the training period
is unveiled in detail. Figures 8 and 9 represent the state estimation of the SDOF trained
by displacement and acceleration measurements during three periods, respectively. Even
though both PINNs estimations are accurate for the early training steps, the estimation
error increases over time. It should be noted that for the system with acceleration training,
Figure 9, the PINN needs to estimate the displacement by dealing with a more complicated
process, double integration, and more time-consuming compared to the system trained by
the displacement, Figure 8. Unlike integration operations, the derivation operations are
calculated automatically during the training process. However, the results of this system
are precise for both displacement and acceleration estimates. Figure 10 shows the loss
function for a PINN that was trained on both displacement and acceleration inputs. As
mentioned earlier, the loss function in PINNs consists of two components: L,, data-driven
term, and Lp, differential equation term. In Figure 10, these terms, in addition to the total
loss function, are presented; while the physics equation term decreases to lower loss values,
the data-driven term values of the displacement and acceleration increased to 0.007 and
0.02, respectively.
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Figure 10. PINN loss function with three periods of training by displacement and acceleration input.

To be able to dig more into the performance of the PINN during the training period,
Figure 11 is plotted to represent the output of the PINN for these two constraints: consis-
tency with the training data (displacement and acceleration) and satisfaction of the physi-
cal equation during the training period. It is evident that the output of the PINN for train-
ing data is accurate, but there is an error of about 2% in the physical equation constraint
that reduces over the duration of analyses.

Training Data (displacement)

Training disp data 10
—— PINN ouput 5
0
=5
-10
Training Data (acceleration)
20
10
0
Training accel data -10
—— PINN ouput -15
Pyisics Informed Equation
0.01
0.0
—0.01
—-0.02

time (sec)

Figure 11. Constraint satisfaction of the PINN during three natural periods of training: (top) input
data consistency with estimated displacement; (middle) estimated acceleration; (bottom) physics

equation satisfaction 0*.

In the last part of this section, the role of A as the physics-informed regulator is ex-
plained. Based on the results of the system identification, the PINN can estimate the pa-
rameters of the physics equation precisely, but according to Figure 10, the data-driven
phrases decrease rapidly to a specific value. By recalling Equation (9), it is reminded that
A plays an important role in deciding on the contribution of the physics equation to the
final loss function. By increasing A, the PINN is more strictly forced to follow the physics
equation, while decreasing the A gives more credibility to the measured data. In the ex-
treme case of A = 0, the PINN turns into a conventional ANN, which only relies on the
data during the training period. Figures 12 and 13 present the estimated displacement and
acceleration of the SDOF for the test periods, which is three times longer than the training
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period. It is obvious from both figures that the ANN cannot represent reliable estimation
for long periods, whereas the PINN estimations are capable of following the main trend in
all cases. All NNs show an acceptable state estimation for a short period after the training;
however, there is an increasing discrepancy over time, which is more evident in the case
of using lower A. In fact, by increasing the A, the PINN is more restricted to satisfy the
physical equation, but it should be noted that this is true when the physics equation is reli-
able. In other words, the A helps the PINN to regulate its prediction based on the relative
reliability of the measured data and the physics equation.

dis_test A=0 2=0.15 2=0.25 —x=0.5 dis_train
15
10
’g 5
g
g0
(]
Q
S
o
g5
-10
-15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
time (sec)

Figure 12. Displacement estimation of the PINN for various A and the ANN with A =0 during the
test period.

accel_test - A=0 A=0.15 A=0.25 ——A=0.5 accel_train
25

20

acceleration (mm/s?)

time (sec)

Figure 13. Acceleration estimation of the PINN for various A and the ANN with A = 0 during the
test period.

3.2. Pure Cubic Oscillator (PCO)

Due to the inherent complexity of nonlinear dynamic systems, these problems are of-
ten examined through the discretization and linearization of the nonlinear system. There-
fore, in most cases, numerical methods are used to find the response of the nonlinear sys-
tems. The Duffing-type oscillators are a special case with nonlinear behavior and ana-
lytical solution. These oscillators are usually implemented in the nonlinear vibration ab-
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sorbers [35]. In this study, the pure cubic oscillator, as a special case of the hardening
duffing oscillators, is studied. The vibration equation of the PCO plotted in Figure 14 is
described as

mx + kx> =0 (22)

Figure 14. Schematic representation for a nonlinear dynamic system.

The analytical solution of this system is governed by the elliptical function; hence, for
a system with an initial displacement of the x( and zero initial velocity, one can find [36]

x = xpen(wpcot, \/Mpco) (23)

where cn is the Jacobi elliptic function; mpcp, elliptic parameter equals 0.5, and the param-

eter proportional to frequency is
w =4/ k xXo = kx (24)
PCO 0 0

It is worth mentioning that, unlike linear systems, the frequency is amplitude-
dependent, and its amplitude dependency makes the influence of the initial condition
more critical.

To explore the performance of the NN, the vibration of a PCO with an initial displace-
ment was studied. The displacement of the system during the two cycles was measured
and fed to the NNs. The properties of the examined PCO for different properties and initial
conditions are presented in Table 2. It confirms the accuracy of the estimated parameter
with less than 0.1% error. Considering the complex nature of nonlinear systems, the supe-
riority of the PINN over ANN in state estimation is evident. According to Figure 15, the
PINN estimates the states accurately while the ANN fails to deliver acceptable estimations;
this incompatibility increases over time. Based on Figure 16, during the training procedure,
the PINN is obligated to simultaneously comply with the dynamic equation and measure
displacement, which helps it to represent more accurate predictions and better parameter
estimation (Table 2). The PINN satisfies Equation (22) as the physical constraint with an
accuracy of less than 1%. In fact, the added constraint for the PINN clearly improves the
training performance, as displayed in Figure 17. By comparing the loss function of the
PINN and ANN during the training process, which is presented in Figures 17 and 18, re-
spectively, one can find out that, unlike the PINN, which shows a decreasing trend over
epoch incrementation, the ANN shows a drastic decrease during the first epochs and stay
stationary for the rest of the training. Although the fluctuations of the loss function de-
crease over time for both NNs, the total loss function of both NNs descends to 0.0001 at
the end.
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Table 2. Estimation of the PINN for the nonlinear parameter.

k° Relative Error (%) INITIAL Displacement (cm)
2 0.0253 1

3 0.0693 1

4 0.1072 1

2 0.0343 0.5

2 0.0882 1.5

time (sec)
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—1.00

displacement (cm)

0.0 5.0 10.0 15.0 20.0 25.0 30.0
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Figure 15. The PINN and ANN state estimation for the test period after two natural training periods.
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Figure 16. Physic equation satisfaction of the PINN during two natural training periods: (a) input
data consistency; (b) physics equation satisfaction 0%.
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Figure 17. Loss function of the PINN.
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Figure 18. Loss function of the ANN.

3.3. Simply Supported Beam

In this section, the efficiency of the proposed method is evaluated for bridge-type
structures via analysis of a simply supported beam. To investigate the performance of the
PINN in system identification and input estimation of the bridge-type structures, at first,
the efficiency of the parallel and sequential PINNs in both system identification and state
estimation was probed. Subsequently, the effectiveness of the proposed framework in the
dynamic identification of beams subjected to moving load was unveiled.

The geometrical and dynamic properties of the studied beam are length I = 1 m,
mass per unit pA = 1 kg/m, flexural rigidity EI =5 x 103N x m?, and modal damping
coefficient ¢ = 0.005 kN.s/m. In this study, three and six modes were considered in the
reduced order model for the calculation of sensor outputs and NN’s analysis, respectively.
Itis assumed that three displacement sensors were installed at equal distances on the beam,
as illustrated in Figure 19. The output of these sensors with a 1% RMS noise level is plotted
in Figure 20.
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Figure 20. Sensor outputs of the beam.

To introduce the set of ODEs into the PINNSs, three parallel NNs with 200 nodes and
two hidden layers were considered; three sets of equations were introduced to the PINN
to connect these NNs. The loss function, which was used in the training procedure of the
proposed PINN framework, is presented in Equation (25).

i=1,2,3 . R I s 2 KR
1 23 arvgvfrg}nL(Wi,bi) = [l — vl + Alla; + 28@q; + @rg; — il (25)

Figure 21 plots the modal predictions for the test period, where the PINN outperforms
the ANN. The ANN shows an increasing time lag in the first mode and instability in the
third mode. Unlike the ANN, the PINN presents acceptable predictions, especially for the
first mode. Based on Figure 22, the ANN cannot deliver the phase lag for sensors and

shows inconsistency.
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Figure 21. PINN and ANN modal estimation with two hidden layers for the test period.
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Figure 22. PINN and ANN phase lag of each sensor with two hidden layers for the test period.
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To make the architecture of the NNs more efficient, three different architectures were
considered for each mode based on the mode’s specific attributes. Since the first mode expe-
rienced fewer oscillations due to lower vibration frequency, only one layer with 200 nodes
was suggested for both NNs architectures, whereas for the next two modes with higher
frequencies, three and five layers were introduced for the second and third modes, re-
spectively. The effect of this modification is obvious in both precise circular frequency
estimation in Table 3 and state estimations for the next steps in Figure 23. On the other
hand, according to Figure 24, the ANN shows a more stable estimation for the second and
third modes, but modal predictions deviate from their course over time. The results of the
FFT analysis on both the PINN and the ANN state estimations are illustrated in Figure 25,
demonstrating that, unlike the PINN, ANN cannot track the higher frequencies precisely,
which results in poor modal and, thereafter, state estimations.

Table 3. Estimation of PINN for the first three modal dynamic characteristics.

Relative Estimation Error (%)

w (rad/s) N . e .
One Hidden Layer Two Hidden Layers = Modified Hidden Layers

0.6978 0.01 0.004 0.04

2.7915 50.53 0.007 0.007

6.2809 22.29 17.32 0.002
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Figure 23. PINN state estimation with modified hidden layers for the test period.
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Figure 24. ANN modal estimation with modified hidden layers for the test period.
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Figure 25. FFT analysis on the PINN and ANN state estimations with modified hidden layers for
the test period.
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Finally, to evaluate the generalizability of the NNs results on the other points of the
beam, the state estimations of both PINN and ANN for two checkpoints are examined. Ac-
cording to Figure 26, the PINN shows accurate estimations for these two points; however,
there is a minor lag at the end of the test period. This issue affects the ANN results more
seriously; thus, the ANN'’s predictions are accurate for a much shorter time.
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Figure 26. PINN and ANN state estimation at the checkpoints with modified hidden layers for the
test period.

3.3.1. Beam Subjected to Moving Load

To examine the applicability of the proposed method for the identification of struc-
tural parameters of the beam subjected to moving loads, it is assumed that four mov-
ing loads, which weigh 0.05 kg/vehicle each, are passing the beam with equal distances,
d =0.2 m with a constant velocity, v = 0.125 m/s, which is 1.9 times higher than the critical
velocity. After departing the last moving load, the beam experiences a free vibration phase,
which is the desired time window for extracting the beam properties. It is assumed that
three displacement/acceleration sensors, which are indicated with solid green rectangles,
are installed on the beam at the middle point between the vehicles, as shown in Figure 27.
The output of these sensors is contaminated with a 1% RMS noise level. Figure 28 shows
the output of the third accelerometer.

0 u u ] ] N
o ) x
\ 7 d

Figure 27. A simply supported beam subjected to moving inertial loads with a single span.
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Figure 28. The output of the third accelerometer.

After the departure of the last moving load, the beam experiences a free vibration
phase. During this phase, the properties of the beam are evaluated by the PINN. In the
first step, NNs with three hidden layers and 200 nodes are considered. Since the first two
modes are more important, two parallel NNs are considered to calculate the properties of
the first two modes. This layout was presented in the previous section in Figure 2. These
two NNs are connected through the modal equation of the first two modes, as explained
in Equation (25). In Figure 29, the loss function of two modal equations in comparison
to the displacement sensor outputs are plotted. While the first modal equation descends
to lower loss values, the second modal equation experiences more fluctuations. Table 4
shows the predicted modal properties of the beam. Although the proposed architecture
precisely predicts the damping ratio and the first natural frequency, the error is noticeably
slight in the second natural frequency estimation. Figure 30 confirms these results.
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Figure 29. The loss function of the parallel PINNs with displacement input.

Table 4. The modal properties of the beam subjected to moving loads estimated by the PINN.

wq (rad/s) w» (rad/s) ¢ (kN.s/m)
Exact Value 1.709 6.838 0.005
Displacement input Paralllel PINNs 1.725 6.118 0.008
Series PINNs 1.709 6.184 0.005
Parallel PINNs 1.704 6.829 0.004

Acceleration input Series PINN's 1.600 6.832 0.004
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Figure 30. Parallel PINN estimations during the training period with displacement output.

In the second layout, a sequential architecture for the PINNs was considered. Since
the first mode plays an important role in the displacement estimation of the beam, for the
first phase, only one PINN with three hidden layers and 50 nodes is defined; therefore,
only the first modal equation was considered in the loss function. In this regard, the first
natural frequency, w, and the damping ratio, ¢, are estimated and then fed into the next
series of the PINNSs. In the next step, since the properties of the first modal equations were
already estimated, only the second natural frequency needs to be predicted. In a sequential
layout, each step needs less calculation and therefore runs faster; it relies on the results of
the previous phase. This series can also be adjusted to the desired accuracy. For instance,
when only the first natural frequency plays a key role, running the next PINNs is not nec-
essary, and the sequence can be terminated based on the desired accuracy. Once again, it
is reminded that this layout is essential for situations in which specific modes contribute
more to the results than the other modes. For instance, in cases with accelerometer inputs,
the parallel layout is more accurate in modal frequencies and damping ratio estimations.
Based on Figure 31, the sequential layout satisfies all constraints during the training period,
and the parallel PINN can outperform the series layout predictions. In conclusion, both

layouts represent acceptable estimations, but the input of the PINN affects the efficiency
of these two layouts.
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Figure 31. Sequential PINN estimations during the training period with acceleration input.
3.3.2. Force Identification of Moving Load

In the last section, the accuracy of the PINN in estimating a moving load is studied.
In this regard, the properties of the beam are assumed to be known, either by the proposed
algorithm from previous sections or other methods; hence, the weight and velocity of the
moving load are considered unknown parameters. It should be noted that the PINN is
trained by the sensor outputs during the moving load passage.

Consider a simply supported beam, the same as in the previous section that is sub-
jected to a moving load (Figure 32). Supposing the forced movement initiates at t = 0 and
has a constant velocity of v, the implied force is calculated as

p(t) = No(x — x.) = —mgd(x — (vt)) (26)
where m is the mass of the moving load, g is the gravity acceleration, and ¢ is the Dirac
delta function. By transforming the applied force to the modal force, one gets

n n
t) =) Noj(x) =~ ) mge;(x —ot). (27)
=1 =1
Z
v
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Figure 32. Model of the moving load passing a simply supported beam.
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In this section, the PINN is informed by only the first two modes. In other words, the
first two modal equations are introduced to the PINN. In addition, the outputs of three
sensors during load passage are used for PINN training. The loss function of this system
for mass and velocity identification is

j=12 .  Nlowde— ¥l (12 S 20t oo (0
K=1,2,3 [28ain (Wi b1) := llgkd; = yicll + [1d; 4 28eojg; + wjdy + g g; (BE)]]. (28)

To examine the performance of the PINN with different input load predictions, mov-
ing loads with various weights and velocities were applied to the proposed model.
Figure 33 demonstrates the accuracy of the estimated weight and velocity for the PINN
that was trained with three displacement sensors with a 1% RMS noise level. In both cases,
the relative error is less than 0.1%, which affirms the PINN capability in predicting mov-
ing loads. In addition, it is inferred that by increasing the velocity of the moving load, the
estimation accuracy decreases. This is because, by increasing velocity, the time that mov-
ing load passes on the beam reduces, and inevitably the time window for gathering data
and training the PINN reduces. On the contrary, by increasing the weight of the moving
load, the beam experiences more distinct deflections; therefore, the accuracy of the weight
estimation increases by incrementing the weight of the load. Based on Figure 34, the ac-
celerometer outputs help the PINN estimate the weight as accurately as the displacement
sensors; however, the PINN with acceleration inputs fails to accurately estimate higher
velocities. It is worth mentioning that, unlike the displacement sensors, the acceleration
inputs make the training of the PINN more challenging and time-consuming. Once again,
it is reminded that in contrast to displacement inputs, the acceleration inputs fluctuate
more intensely during the passage of the moving load. Also, as mentioned in the previous
sections, the process of training the PINNs with acceleration entails integration operations
which, unlike the differential operation, brings more complexity to the training process.

0.01 0.08
0.009 0.07
0.008
_0.06
< 0.007 S
< 0.006 5 0.05
5 0.005 5 0.04
o
: z
£ 0.004 £ 003
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0 0
0 0.1 0.02 0.03 0.04 005 0.06 0.07 0.08 0.09 0.1 0.11 0 1 2 3 4 5 6 7 8 9
W/Wbeam V/Ver
(a) (b)

Figure 33. Moving load estimations using displacement sensors: (a) weight; (b) velocity estimation
of the moving load.
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Figure 34. Moving load estimations using accelerometer sensors: (a) weight; (b) velocity estimation
of the moving load.

4. Conclusions

Within the scope of this study, the two novel architectures were proposed to employ
the PINNs in the dynamic system identification and moving load assessment. The pro-
posed architectures were applied to real-time structural system identification and input
estimation. The presented methods were validated using simulated experiments on differ-
ent dynamic systems with various levels of complexity.

In the first step, to elaborate on the details and capability of the PINN framework for
system identification and state prediction, the linear and nonlinear SDOFs were studied,
respectively. In this regard, various measurement scenarios with different noise levels and
training periods were applied to evaluate the performance of the PINN in system identi-
fication. Based on the results, the proposed PINN framework can estimate the natural
frequency and damping ratio even when the high noise level is 10% RMS. Although the
PINN can predict the dynamic properties of the SDOFs with half of the natural period
training, it is recommended to train the model at least for one natural period to obtain
more accurate results. The capability of the PINN in state estimation was compared to the
ANNSs, and the superiority of the PINN frameworks was confirmed. The role of A as the
physics-informed regulator was studied, and it was shown that by increasing the A from 0
to 0.5, the model could predict the state of the system for almost four times longer period,
which highlights the significance of taking into account prior physical knowledge in the
structure of the PINNs.

In the next step, the bridge-type structure was chosen to demonstrate the efficacy of
the PINNSs in system identification and load assessment of the beams subjected to the mov-
ing loads. The importance of the NNs architectures was assessed via various numerical
analyses. It was shown that by modifying the hidden layers of the PINN, one could con-
siderably improve the accuracy of the estimated parameters. Furthermore, the competency
of the PINN frameworks for both parallel and sequential architectures was studied. The
findings show that both architectures can estimate the modal properties of the beam ac-
curately; although the parallel PINNs need less computation time, making them a better
choice for more complex systems. For load assessment of the moving forces specifically
important in the realm of bridge design and construction, it has been shown that using
both accelerometer and displacement sensor measurements, the proposed framework de-
livers reliable and robust results for estimating the weight of the moving load. However,
for velocity estimation of the moving load, it is recommended to use displacement mea-
surements for training the PINNS.

The following results can be drawn based on the conducted study through extensive
numerical examples;
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e  The PINN architectures in the published literature do not properly address the in-
tegration of structural dynamics PDEs into NN objective function. Nevertheless, the
novel architecture proposed herein utilizes parallel and sequential PINNs successfully.

e  The proposed parallel layout enables the PINN framework to accurately identify the
properties of the continuous systems and moving loads. This is an important step
toward the generalization of the PINN framework for developing an accurate model
of continuous structures and, more specifically, systems subjected to moving loads,
such as bridges;

e Unlike conventional ANNs, the novel PINN architectures feature excellent
generalizability when applied to output-only system identification of dynamic
structural systems. This makes them suitable candidates for operational system
identification, where one needs to simultaneously consider input, model, and
measurement uncertainties.
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