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Abstract: This paper is concerned with the seismic behavior of a superimposed slab shear wall. Based
on the test results of the specimens under low cyclic reversal loading, the formulas with respect to
the top displacement and capacity of a shear wall in the consecutive loading process are derived.
The concrete grade differentiation between the prefabricated layer and the cast-in-site layer of the
shear wall is considered to improve the calculating precision. With the help of these equations, the
extent of participation of the prefabricated concrete layers in the different loading stages is revealed,
demonstrating a great confirmation of the test results. Two ideal conditions, utterly with and without
connective effect between a combined interface, are considered to investigate the action of the bond–
slip effect. On this basis, the finite element analysis is completed in the framework of OpenSees. Its
quadrilinear restoring force model, with the consideration of the stiffness degradation and pinching
effect, is established in this paper by various feature points from the theoretical derivation of capacities
in different loading stages. The rationality of the restoring force model of the shear wall is testified by
the satisfactory agreement of the test results and simulation results.

Keywords: superimposed slab shear wall; restoring force model; pinch effect; bond–slip effect

1. Introduction

A traditional cast-in-site shear wall has found its new feasible form, a superimposed
slab shear wall, to make itself quickly adapted in the wave of building industrialization [1,2].
Some researchers in this field have made a relatively clear understanding of its structural
performance. Benayoune et al. [3], Choi et al. [4], and Mahendran et al. [5] conducted a
series of research focusing on its ordinary flexural and shear behavior.

Furthermore, Md Fudzee et al. [6] made an insight into the seismic performance of
a superimposed slab shear wall, which counts for a crucial behavior contributing to its
broader application. Kang et al. [7] indicated that the ductility and energy dissipation
capacity are decreased by gap opening and shear slip at the panel joints in conventional
precast concrete (PC) walls subject to cyclic loading. In this study, to enhance the earthquake
resistance of emulative PC walls, two potential methods were studied. Chong et al. [8]
proved that the seismic performance of a superimposed reinforced concrete (RC) shear
walls is reduced due to the sway behavior and damage concentration at the horizontal joints,
and proposed an enhanced horizontal joint method to improve the seismic performance
of this type of members. Gu et al. [9] investigated the seismic behaviors of three full-scale
T-shaped precast concrete superposed shear wall specimens with cast-in-place boundary
columns and special boundary elements and two those of T-shaped cast-in-place shear
wall specimens for reference using a quasi-static cyclic loading test. It is proved that the T-
shaped superposed precast concrete shear wall specimen with the new connecting method
of vertical joint exhibited deformation capacities, higher strengths, and energy dissipation

Buildings 2023, 13, 749. https://doi.org/10.3390/buildings13030749 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13030749
https://doi.org/10.3390/buildings13030749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-0387-8762
https://doi.org/10.3390/buildings13030749
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13030749?type=check_update&version=1


Buildings 2023, 13, 749 2 of 18

capacities compared with the T-shaped superposed precast concrete shear wall specimen
with the traditional overlapped connecting method. Jiang et al. [10] proposed a new type
of superimposed reinforced concrete shear wall with insulation (SRCSWI) by integrating
the insulation panel into the precast exterior concrete panel to achieve both bearing and
insulation capabilities. The feasibility and effectiveness are verified by experiment and
finite element simulation. The above research conducted an experimental study on the
mechanical behavior characteristics and seismic performance of a superimposed slab shear
wall or its improved form. However, these studies did not deeply discuss the restoring
force model of a superimposed slab shear wall [11], and the numerical simulation methods
used in each study were quite different.

Given that, some scholars have proposed restoring force models and numerical sim-
ulation methods suitable for a superimposed slab shear wall as supplementary research
means for experimental analysis. For example, according to the low-cycle repeated load test
results of a double-wall precast concrete shear wall, Yin et al. [12] analyzed its hysteretic
curve and skeleton curve. Then, through the dimensionless treatment of the skeleton curve,
the main points and calculation methods of the skeleton curve were summarized, and
then a three-line restoring force model of a double-wall precast concrete shear wall was
proposed. Such restoring force model provides a feasible scheme for the finite element
simulation verification of a superimposed slab shear wall, but the simulation accuracy
compared with the test results is insufficient due to its rough description. In addition, the
accuracy of a numerical simulation will be affected by the consideration of the concrete
grade difference between the prefabricated layer and the cast-in-place layer of the shear
wall [13], the bond–slip effect of the composite section [14], the stiffness degradation, the
pinching effect [15], and so on, which has not been analyzed in detail in existing studies.

As a vital and fundamental seismic property, the restoring force model of the super-
imposed slab shear wall plays a key role in the intricate nonlinear dynamic elastic-plastic
analysis. However, because some issues mentioned above are pending, such as the bond–
slip effect of the composite section and the stiffness degradation effect, there is currently
no accurate and concise restoring force model for numerical simulation. In this paper, a
quadrilinear model considering stiffness degradation is proposed, which can be used to
describe appropriately the load–displacement relationship of a superimposed slab shear
wall. The proposed restoring force model is established and calculated with the help of
the Pinching4 model from OpenSees. Test results of the specimen W-2/W-5 (cast-in-site
edge member) and specimen W-3/W-6 (prefabricated edge member) from Lian [16], to-
gether with the test results of the specimen W-2/W-4B from Ye et al. [17], are selected for
comparison with the calculation results of the proposed numerical model.

2. The Proposed Restoring Force Model

In this paper, specimens from Lian [16] and Ye et al. [17] are named after W-2 and W-2y,
respectively. The details of six test specimens are shown in Figure 1. The details of the test
device, loading system, and measuring point arrangement are listed in [16,17]. According
to the test results, the failure phenomenon of a double-superimposed slab shear wall can be
divided into four stages, namely, the uncracked stage, the inclined crack formation stage,
the peak load stage, and the failure stage. The uncracked stage is the stage when the first
crack appears from the beginning of loading to the wall. The inclined crack formation
stage refers to that when the horizontal cracks develop towards the vertical axis of the
wall after the initial cracking stage. The peak load stage is the stage from the formation of
inclined cracks to the peak load, where the horizontal and oblique cracks expand rapidly,
and diffuse cracks appear in the compression zone, with a small part of concrete peeling
off. When the horizontal load of the wall is reduced to 85% of the peak load, the failure
stage is reached, and the bearing capacity of the specimen decreases.
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calculation formula of two cantilever beam models with different stiffnesses [18], the cor-
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Figure 1. Detail of superimposed slab shear wall.

According to the above test phenomenon, the restoring force model of a superimposed
slab shear wall adopts the corresponding four-line model considering stiffness degradation,
which can be shaped and determined by the displacement, curvature, moment, and stiffness
obtained by the corresponding cracking load, yield load, peak load, and ultimate load.
Determining the value of the above key parameters is the focus of this section.

2.1. Calculation of Displacement

In order to analyze the top displacement of a composite plate shear wall, it is necessary
to establish a simplified mechanical model of this kind of structure. According to the
mechanical characteristics of a composite plate shear wall, its calculation diagram can be
simplified as a cantilever member, as shown in Figure 2. In this figure, H1 represents the
height of the rebar joint, H is the height of the shear wall, and E1I1 and E2I2 are the stiffness
of the reinforcement joint area and other areas, respectively.
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2.1.1. Displacement before Yield

Along with the stiffness degradation, cracks in the shear wall are observed obviously
before the yield. Supposing the wall stiffness deteriorates linearly along the height, its
stiffness at the top of the rebar joint should be equal to [β + (1 − β)(H1/H)]EI, where EI and
βEI are the stiffness at the top and the bottom of the shear wall, respectively. In addition,
the complexity of the connection at the top of the rebar joint generates stress concentration.
This phenomenon also makes the bottom of the shear wall local stiffness further degrade.
Therefore, a reasonable assumption should make the shear wall stiffness in the full range
of the rebar joint all equal to the bottom stiffness of βEI. Besides, the shear wall stiffness
outside the range of the rebar joint is [β + (1 − β)(x/H)]EI, where H1 ≤ x ≤ H.

Under the horizontal force at the top of the shear wall, according to the displacement
calculation formula of two cantilever beam models with different stiffnesses [18], the
corresponding bending displacement is:
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∆b =
P

3βEI
.
[

H3 − (H − H1)
3
]
+

PH

(1− β)3EI

[
1
2
(1− β)2(H2

1 − H2) + (1− β)H(H1 − H) + H2 ln
H1β + H − H1

Hβ

]
(1)

The shear displacement is:

∆s =
PH1

βGA
+

PH
(1− β)GA

ln
H

βH + (1− β)H1
(2)

where GA is the shear stiffness. Then, the total displacement is derived as:

∆YIELD = ∆b + ∆s (3)

It can be seen from the equations above that the stiffness degradation factor β is
crucial to determine the displacement. Obtained from the average cracking load and
cracking displacement of six specimens, β has a recommended value of 0.23 for calculating
theoretical cracking displacement. Meanwhile, it has a recommended value of 0.1 for
calculating the theoretical yield displacement after obtaining the average results of the
yield load and yield displacement from the tests. By substituting the corresponding β
into Equation (3), the theoretical cracking displacement and yield displacement can be
determined. The results are summarized in Table 1.

Table 1. Comparison of calculated displacement and test displacement.

Number
Cracking Displacement Yield Displacement Peak Displacement Ultimate Displacement

Calculated
(mm)

Test
(mm) Error Calculated

(mm)
Test

(mm) Error Calculated
(mm)

Test
(mm) Error Calculated

(mm)
Test

(mm) Error

W-2 3.73 3.82 2.3% 10.96 10.31 6.3% 29.89 29.935 1.4% 45.57 39.86 14.3%
W-3 3.92 3.865 1.4% 11.99 10.815 10.9% 31.12 29.36 6% 46.43 40.49 14.7%
W-5 2.03 1.845 10.1% 7.46 8.54 12.7% 19.24 20.1 4.3% 33 30.53 8%
W-6 1.83 2.135 14.3% 7.64 8.69 12.1% 20.16 19.8 1.8% 36.14 32.61 10.8%

W-4B 1.25 1.24 1.1% 6.43 6.78 5.1% 17.81 19.86 10.3% 24.84 27.61 10%
W-2y 1.62 1.83 11.9% 7.54 6.97 8.2% 18.7 19.64 4.8% 27.55 27.81 0.9%

2.1.2. Peak Displacement

Under the peak load, the bottom section of the shear wall reaches the corresponding
ultimate curvature. The distribution of the sectional curvature along the height of the shear
wall at this moment is shown in Figure 3a. As the load increases from the peak point to the
ultimate point, the plastic range at the bottom of the shear wall is fully developed and ends
up with a formative plastic hinge with a certain height. The distribution of the sectional
curvature at this moment is shown in Figure 3b.
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(1) At the peak load, the top displacement due to bending of the plastic hinge is:

∆p
b =

1
2
(H − lp)lpφy +

1
2
(H − lp)lpφu +

1
6

lp
2φy +

1
3

lp
2φu (4)

where lp is the length of the plastic hinge, φy is the yield curvature, and φu is the ultimate
curvature. Zhang et al. [19] proposed a series of formulas to describe the plastic hinge. The
length of the plastic hinge considering the effect of the bend–shear ratio is:

lp = (0.33Mu/Vu H − 0.03)H (5)

The yield curvature [20] is:

φy =
εy

(1− ξn)hw
=

2εy

hw
(6)

The ultimate curvature [21] is:

φu = ϕu
εcu

xn
= ϕu

εcu

1.25ξhw
(7)

where

ξ =
N

bwhw
+ ρyw fyw

fc + 2.5ρyw fyw
(8)

and

εcc =


εc + 2.5λvεc λv ≤ 0.32

−6.2εc + 25λvεc λv > 0.32
(9)

In the above equations, ρyw is the ratio of the distributed vertical reinforcement. Fyw
is the yield strength of the distributed vertical reinforcement. ξ is the relative height of
the compressive zone. ϕu is the strain coordination factor, normally varying from 1.1 to
1.3 [22,23]. For the superimposed slab shear wall, the test results give a recommended value
of 1.1. λν is the stirrup characteristic value, which is specified to be 0.12 per provision in
the code JGJ 3-2010. Ec is the peak strain of the compressive concrete. εcc is the peak strain
of the confined compressive concrete. εcu is the ultimate strain of the confined compressive
concrete, which equals to 2.2εcc per provision in Chinese code [24].

At the peak load, the top displacement due to the shear of the plastic hinge is:

∆p
s = lp

Vp

Ks
(10)

where Ks is the shear stiffness of the plastic hinge. Ks = [ρsh/(1 + 4nρsh)]Esbwhw based on
the 45◦ diagonal compressive concrete equivalent truss model from Park [25]. ρsh is the
ratio of the horizontal reinforcement in the shear wall. n is the ratio of the elastic module of
the rebar to the elastic module of concrete, namely, n = Es/Ec. At the peak load, the top
displacement due to both bending and shearing is:

∆p = ∆p
b + ∆p

s (11)

The elastic displacement is:

∆e =
H − lp

H
∆YIELD (12)

The total displacement is:

∆e =
H − lp

H
∆YIELD (13)



Buildings 2023, 13, 749 6 of 18

Table 1 summarizes the calculated results and the test results at the peak load.

2.1.3. Ultimate Displacement

(1) At the ultimate load, the top displacement due to bending of the plastic hinge [26] is:

∆u
b =

1
2

φulp
2 + φulp(H − lp) (14)

(2) At the ultimate load, the top displacement due to the shear of the plastic hinge
should not be less than the displacement at the peak load. To be conservative, the displace-
ment under the ultimate load can be replaced by the displacement at the peak load, namely,
∆u

s = ∆p
s .

(3) At the ultimate load, the top displacement due to both bending and shearing is:

∆ = ∆e + ∆u (15)

where ∆u = ∆u
b + ∆u

s . Comparisons between the calculated results and the corresponding
test results at the ultimate load are summarized in Table 1.

It can be concluded from Table 1 that the calculated results and the test results are in
good agreement among cracking displacement, yield displacement, peak displacement,
and ultimate displacement, which verifies the accuracy of the displacement calculation
method in the residual force model proposed in this paper.

2.2. Calculation of Moment and Curvature

Whether there is a slip effect between composite interfaces is the key problem to be
solved by the restoring force model of the superimposed slab shear wall. If there is no slip
effect, an overall analysis model can be implemented to calculate the cracking load and
yield load.

2.2.1. Peak Load

Figure 4 gives a strain–stress relationship in the cross section of the shear wall (take
specimen W-3, for example). The analytical assumptions include: (a) plane cross-section
assumption, (b) ignorance of tensile concrete action, (c) ideal elastic-plastic constitutive
relationship of the rebar, and (d) strength enhancement of concrete caused by the confine-
ment effect of the stirrup. Two extreme situations are considered: (1) no connective effect
between the combined interfaces and (2) perfectly connective effect between the combined
interfaces. By contrasting the calculating results with the test results, whether there is a slip
effect between the combined interfaces can be determined. The no-slip effect will make the
application of the overall analysis model possible.

Regarding the shear wall under the peak load, the longitudinal reinforcement at both
ends of the cross section will yield when the compressive zone height xn ≥ lc. Therefore,
assuming the longitudinal reinforcement within 1.5xn from the outmost edge of cross-
sectional compressive zone height, all the yield under the peak load is appropriate. Based
on the vertical force equilibrium, Equation (16) is derived.

N + Pt
f b + Pt

ys = Pyc + Pc + Pc
ys (16)

where N is the vertical compression force of the cross section. Pt
f b is the resultant tension

force of the distributed longitudinal reinforcement. f f b and ρv are the tension strength of
the distributed longitudinal reinforcement and its reinforcement ratio respectively. lc is
the length of confined concrete zone. Pt

ys is the resultant tension force of the rebar in the
confined concrete zone. Pyc is the resultant compression force of concrete in the confined
concrete zone. fcc is the uniaxial compression strength of confined concrete. Pc is the
resultant force of the compression of concrete in the unconfined concrete zone. Pc

ys is
the resultant compression force of the reinforcement in the compressive zone of confined
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concrete. When it comes to the symmetrically reinforced shear wall, Pt
ys = Pc

ys. Thus,
Equation (16) can be simplified to Equation (17).

N + Pt
f b = Pyc + Pc (17)
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The bending capacity of the shear wall under the peak load can be derived from
the bending moment equilibrium through the cross-sectional centroid, which is shown in
Equation (18).

Mp = fccbw(hw − lc)/2 + 0.5bw fc(xn − lc)(
hw

2
− xn

3
− 2lc

3
) + 2 fy As(hw/2− as) + f f bρv(hw − 1.5xn)bw(1.5xn − lc)/2 (18)

When the compressive zone height xn < lc, the longitudinal reinforcement in the tensile
zone will yield, but those in the compressive zone will not. Based on the cross-sectional
equilibrium, Equation (19) is derived.

N + Pt
f b + Pt

ys = Pyc + Pc
ys (19)

Similarly, by applying the bending moment equilibrium through the cross-sectional
centroid, the bending capacity of the shear wall can be presented in Equation (20).

Mp = fccbwxn(hw − xn)/2 + fy As(hw/2− as) + σy As(hw/2− as) + f f bρv(hw − 1.5xn)bw(1.5xn − lc)/2 (20)

Then, the peak load can be expressed as

Fp = Mp/H (21)
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(1) No connective effect between combined interfaces
In the test, the specimen W-3 is a typical example of a nonconnected shear wall. Hence,

it can be treated as three totally separate walls, namely, two prefabricated walls on both
sides and one cast-in-site concrete wall in the middle.

(i) Prefabricated wall
On the basis of the cross-sectional equilibrium relationship and Equation (20), the

bending capacity Mp = 205.34 kN m and the compressive zone height xn = 73.2 mm.
(ii) Cast-in-site wall
The bending capacity of the middle cast-in-site shear wall can only reach the cracking

moment capacity of the plain concrete shear wall with the same section due to its non-
reinforced condition. In this context, the bending capacity of the separated shear wall is
410.68 kN m; then a calculated peak load of 136.89 kN can be derived from Equation (21),
making a great difference compared with a test peak load of 407 kN.

(2) Perfectly connective effect between combined interfaces
A coordinate working mechanism of the shear wall will form when no slip effect

exists between the combined interfaces. Under the ultimate load, the prefabricated wall
is slower to reach the ultimate state due to higher concrete strength compared with the
cast-in-site wall. Because of this phenomenon, to be conservative, the concrete strength of
the prefabricated shear wall can be the same as that of the cast-in-site wall.

A compressive zone height xn = 208.2 mm is obtained from the cross-sectional equilib-
rium. It indicates that only the outermost reinforcement in the compressive zone reaches
the yield point, which matches well with the test phenomenon. From Equation (20), the
bending capacity of the connected wall is Mp = 1053.38 kN; then the calculated peak load
of 351.13 kN can be derived from Equation (21), making an error of 13.72% compared with
the test result of 407 kN.

Through the analysis above, the theoretical strength of the shear wall inferred by the
no-slip condition is more consistent with test results. In fact, the same conclusion also can
be found in the test phenomena [16,17]. Therefore, it is feasible to ignore the bond–slip
effect between the superimposed surfaces. Here, the overall analysis model can be applied
to calculate the shear wall strength under the cracking load and yield load.

2.2.2. Cracking Load

Under the load lower than the cracking load, the concrete will remain in the elastic
stage. Its cross-sectional strain linearly distributes along the cross-sectional height, as
shown in Figure 5. When the maximum tensile strain εt = εtu, the concrete of the tensile
zone becomes invalid. Meanwhile, due to the relatively small strain of both compression
and tension, the plane cross section assumption is still applicable when the concrete is
close to cracking. The cross-sectional stress distribution shown in Figure 5 can be further
inferred according to the constitutive relationship of concrete. According to the existing
test phenomenon [16,17], the range of the shear wall tension zone under normal working
conditions is generally small. Therefore, the stress distribution shape in the tensile zone can
be replaced by a rectangular shape to facilitate the subsequent formula derivation. Based
on the geometrical relationship, the following equation can be derived:

φcr =
εtu

h− xn
=

εc

xn
=

εs

h− xn
(22)

From equilibrium relationship, it gives: N + Pt + Pt
s + Pt

f b = Pc + Pc
s + Pc

f b. With a
known compressive zone height of xn, the bending capacity is obtained from the bending
moment equilibrium through the cross-sectional centroid:

Mcr = Pc(
h
2
− xn

3
) + Pt

h− xn

2
+ Pt

s (
h
2
− as) + Pc

s (
h
2
− as′) + Pt

f b(
h
6
+

x− 2l f

3
) + Pc

f b(
h
2
−

x− l f ′
3

) (23)
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Figure 5. Stress and strain distributions under the cracking load.

The stress and strain distribution under the cracking load considering the differences
of concrete strength grade are shown in Figure 5. Under the cracking load, the stress in the
prefabricated layer and that in the cast-in-site layer are different due to different strength
grades of concrete. Hence, the distinction of concrete strength grade in these two kinds of
wall layer should be considered as a stand-alone variable, as discussed below:

(1) Neglecting concrete strength grade differences
Generally, the lower concrete strength grade of the cast-in-site layer can be treated

as the representative of the concrete strength grade of the overall cross section. Based
on the equilibrium equation, the height of the compressive zone xn = 862.93 mm. From
Equation (22), an inferred bending capacity under the cracking load is Mcr = 484.09 kN m.
Meanwhile, the corresponding cracking load is 161.36 kN, which has 23.16% error compared
with the test result of 210 kN.

(2) Considering concrete strength grade differences
Assuming that the concrete compressive stress at the outermost section of the prefabri-

cated layer is σyc = η1σc, the concrete in the compressive zone has the relationship shown
in Equation (24):

0.5σycxn ×
bw

2
+ 0.5σcxn ×

bw

2
= 0.5bwσcxn(

η1

2
+

1
2
) (24)

It is supposed that the concrete compressive enhancement factor is ξc = (η1/2 + 1/2),
where η1 = 1.4 and ξc = 1.2, which is inferred based on the concrete strength relationship
between the prefabricated layer and the cast-in-site layer. According to the equilibrium
equation, the concrete at the tensile zone has the relationship presented in Equation (25),
in the premise of a hypothetical tensile stress of σyt = η2ft at the outmost section of the
concrete tensile zone.

σyt(h− xn)×
bw

2
+ ft(h− xn)×

bw

2
= bw ft(h− xn)(

η2

2
+

1
2
) (25)

It is supposed that the concrete tensile enhancement factor is ξt = (η2/2 + 1/2), where
η2 = 1.2 and ξt = 1.1. Such equation is inferred based on the concrete strength relationship
between the prefabricated layer and the cast-in-site layer. Taking the prefabricated concrete
strength enhancement effect into account, the bending capacity under the cracking load is
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Mcr = 555.462 kN·m, which is inferred from Equation (23). The corresponding calculated
cracking load is 185.154 kN, which has 11.83% error compared with the test result of 210 kN.
As shown in the results, a higher concrete strength grade in the prefabricated wall gives a
higher cracking resisting capacity, which simultaneously assists in postponing the stretch
of the concrete crack.

2.2.3. Yield Load

After the concrete cracking, the cracks gradually increase, accompanying the load
increment. Concrete at the tensile zone becomes invalid very soon, shifting the load to
the tensile reinforcement. The cross section yields when the reinforcement is at the yield
point. Meanwhile, concrete at the compressive zone is still at its elastic stage, as shown in
Figure 6.
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Based on the cross-sectional geometric relationship, the following equation can be derived:

φy =
εc

xn
=

εs

h0 − xn
(26)

Then, the equilibrium relationship N + Pt
S + Pt

f b = Pc + Pc
s + Pc

f b and the height
of compressive zone xn are derived. Afterwards, by employing the bending moment
equilibrium through the cross-sectional centroid, the yield bending capacity of the shear
wall is

M f = Pc(
h
2
− xn

3
)+ Pt

s (
h
2
− as)+ Pc

s (
h
2
− as′)+ Pt

f b(
h
6
+

x− 2l f

3
)+ Pc

f b(
h
2
−

x− l f ′
3

) (27)

Under the yield load, the stresses of the prefabricated layer and the cast-in-site layer
are different because of differences between the concrete strength grades, as shown in
Figure 6. Hence, whether the concrete strength grade of these two layers is consistent
should be taken as a separate variable to be introduced.

(1) Neglecting concrete strength grade differences
The lower concrete strength grade shall be a representative of the concrete strength of

the overall cross section. Based on the equilibrium equation, the height of the compressive
zone is xn = 392.92. From Equation (27), a derived bending capacity under the yield load is
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Mf = 862.705 kN·m. Meanwhile, the yield load is 287.56 kN, which gives an error of 17.84%
compared with the test result of 350 kN.

(2) Considering concrete strength grade differences
It is supposed that the compressive stress of the concrete at the edge of the prefabri-

cated layer σyc = η1σc. By replacing the concrete strength grade of the prefabricated layer
with the grade of the cast-in-site layer, Equation (28) is derived.

0.5σycxn ×
bw

2
+ 0.5σcxn ×

bw

2
= 0.5bwσcxn(

η1

2
+

1
2
) (28)

Based on the relationship between the concrete strength grades of the prefabricated
layer and cast-in-site layer, the hypothesis relationship’s concrete compressive enhance-
ment factor of ξc = (η1/2 + 1/2) can be established, where η1 = 1.4. Then, the equation
ξc = 1.2 can be derived. The yield bending capacity Mf is 1006.069 kN·m, which is de-
rived from Equation (27), under the consideration of the prefabricated concrete strength
enhancement effect. Meanwhile, the yield load is 335.356 kN, which gives an error of 4.18%
compared with the test result of 350 kN. Obviously, a higher concrete strength grade of the
prefabricated layer enhances the yield capacity of the overall shear wall.

2.2.4. Ultimate Load

Ultimate load is defined as 85% of the peak load in the descending branch of the
load–displacement curve. That is, Fu = 0.85Fp. Taking W-3, for instance, the calculated
ultimate load is 298.5 kN, which has 2% error compared with the test result.

Table 2 summarizes the results of W-2, W-5, W-6, W-4B, and W-2y. It gives a relatively
preferable coherence between the test results and the calculated results, except for a big de-
viation of the specimen W-6 regarding the cracking load and the yield load. The calculated
results of the no-slip overall model, although slightly lower, provide a great agreement with
the test results. This conclusion testifies the truss rebar embedded in the wall, guaranteeing
a synergetic working mechanism of the overall shear wall.

Table 2. Comparison of the calculated strength and test strength.

Number
Cracking Load Yield Load Peak Load Ultimate Load

Calculated
(kN)

Test
(kN) Error Calculated

(kN)
Test
(kN) Error Calculated

(kN)
Test
(kN) Error Calculated

(kN)
Test
(kN) Error

W-2 176.1 200 11.9% 333.683 320 4.28% 379.34 426.5 11.06% 322.4 320 0.8%
W-3 185.5 210 11.6% 335.356 350 4.18% 351.13 407 13.73% 298.5 304.5 2%
W-5 105.9 100 6% 166.5 200 16.7% 208.73 223.5 6.6% 177.4 192.5 7.8%
W-6 107.8 90 19.8% 158.48 205 22.7% 201 230 12.6% 170.85 188.5 9.4%

W-4B 154.5 140 10.4% 347.3 387 10.3% 396 414 11.4% 336 302 11.5%
W-2y 183.4 180 1.9% 415.6 454 8.4% 518.4 522 0.7% 440.6 413 6.7%

Currently, different codes have different provisions with respect to the concrete grades
of the prefabricated wall and the cast-in-site wall. The enhancement effect due to a higher
concrete grade of the prefabricated layer should be taken into account while calculating the
cracking capacity. Furthermore, a higher concrete strength grade will also contribute to the
deferral of crack emergence. In consequence, the prefabricated concrete of the shear wall is
recommended to use a higher concrete grade in the practical application.

2.3. Calculation of Stiffness

The cracking stiffness, the yield stiffness, the peak stiffness, and the ultimate stiffness
are calculated by the equations below, respectively:

Kcr = Pcr

/
∆cr (29)

K f =
Pf − Pcr

∆ f − ∆cr
(30)
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Kp =
Pp − Pf

∆p − ∆ f
(31)

Ku =
Pu − Pp

∆u − ∆p
(32)

3. Hysteretic Principle Based on Pinching4 of OpenSees
3.1. Introduction of Pinching4

The Pinching4 model describes the hysteretic response of a material with a pinch
effect, as shown in Figure 7. Its parameters include a backbone curve under monotonous
loading, an unloading–reloading path under cyclic loading, and three failure criteria,
namely, unloading stiffness degradation criterion, reloading stiffness degradation criterion,
and strength deterioration criterion. The dashed line in Figure 8 illustrates a typical trilinear
unloading–reloading path of this model.
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3.2. Determination of Backbone Curve

The Pinching4 model defines a generalized one-dimensional load-deformation re-
sponse, which can be further adjusted based on practical needs. On account of the load–
deformation relationship of the preceding part of the paper, the load and the corresponding
displacement at the cracking point, yield point, peak point, and ultimate point can be
selected as four control points of the backbone curve. With the symmetrical backbone curve
applied, the reversal loading condition can be considered.

3.3. Determination of Unloading–Reloading Path

The trilinear unloading–reloading path needs two independent points along the line,
indicating the end of unloading and the start of reloading. In order to define the load at
the end of unloading, the utilization of the minimum (maximum) load under monotonous
loading is appropriate, which is denominated as uForceN*(-F) and uForceP*F. In order
to define the load at the start of reloading, the utilization of the minimum (maximum)
load under current loading is appropriate, which is denominated as rForceN*Fmin and
rForceP*Fmax. As for the displacement at the start of reloading, the utilization of minimum
(maximum) displacement under current loading is appropriate, which is denominated as
rDispN* ∆min and rDispP* ∆max, where F and ∆ are generalized load and displacement,
which are specifically stated as stress and strain in the paper.

As stated above, the simulated pinch effect is determined by the value of uForce, rForce,
and rDisp. The parametric values of the specimens W-2, W-5, and W-2y can be assigned as
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uForce =−0.65, rForce = 0.35, rDisp = 0.3. The parametric values of the specimens W-3, W-6,
and W-4B can be assigned as uForce = −0.45, rForce = 0.35, rDisp = 0.3. Additionally, with
the symmetrical backbone curve applied, the reversal loading condition can be considered.
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Figure 8. Comparison of the test results and the calculated results of hysteretic curves.

3.4. Simulation of Degradation Effect

In the hysteretic response, the simulation of the degradation effect in the Pinching4
model is realized by the parameters of reloading stiffness degradation, unloading stiffness
degradation, and strength deterioration. These three failure parameters have a unanimous
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format, which is expressed in the generalized failure index theory proposed by Park and
Ang [27] in 1985:

δi = α1 · (∆max)
α3 + α2 ·

(
Ei

Emonotonic

)α4

≤ lim (33)

where δi indicates the damage index (which gives 0 in the nondamage condition and 1 in the
failure condition). E indicates the energy dissipation in the hysteretic loading. Emonotonic
indicates the energy dissipation in the monotonous loading. ∆ indicates the positive failure
displacement of the monotonous loading. −∆ indicates the negative failure displacement
of the monotonous loading.

(1) Unloading stiffness degradation:

ki = k0 ·
(

1− δk
i

)
(34)

where k0 indicates the initial unloading stiffness. ki indicates the current unloading stiffness.
δk

i indicates the value of the current stiffness damage.
(2) Reloading stiffness degradation:

dmax = dmax,0 ·
(

1− δd
i

)
(35)

where dmax,0 indicates the displacement at the end of the reloading in the nonstiffness
degradation condition. dmax indicates the current displacement at the end of the reloading
in the stiffness degradation condition. δk

i indicates the value of the current stiffness damage.
(3) Strength deterioration:

fmax = fmax,0 ·
(

1− δ
f
i

)
(36)

where f max,0 indicates the initial maximum envelope strength. f max indicates the current
maximum envelope strength. δ

f
i indicates the value of the current strength damage.

As for the superimposed slab shear wall, the relevant parameters of degradation in
OpenSees are defined as set gammaK [list −0.2 −0.2 0.3 0.2 0.9], set gammaD [list 0.5 0.5
2.0 2.0 0.5], set gammaF [list 0.0 0.0 0.0 0.0 0.0], and set gammaE 10.

4. Verification of Hysteretic Model

In order to improve the calculation efficiency, the shear wall is simulated by combining
two NodeLink element models and the Pinching4 material model. The parameters de-
scribed in the Pinching4 model can be calibrated by a series of data from theoretical analysis,
and the parameter fitting method of Pinching4 is consistent with [28]. The pseudo-static
analysis of the model is carried out, and the displacement loading mode is consistent with
the comparison test [16,17].

In virtue of restoring the force model proposed in this paper, six shear wall specimens
are calculated under low-cyclic reversal loading. A comparison of the calculated results
and test results with respect to the hysteretic curve, backbone curve, and secant stiffness
degradation curve is illustrated in Figures 8–10, respectively.

From these figures, the calculated results are basically consistent with the test results,
indicating a suitable reflection of hysteretic property under low-cyclic reversal loading.
The calculated parameters, such as peak point, ultimate displacement, loading stiffness,
unloading stiffness, and pinch effect, show significant consistency with the test results.
Such phenomenon verifies the feasibility of the theoretical calculating method proposed in
this paper, and the pinch effect of the superimposed slab shear wall has also been proved
to be suitable for modeling by using the Pinching4 model in OpenSees.
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Figure 10. Comparison of the test results and the calculated results of the stiffness degradation curves.

5. Conclusions

This paper makes a theoretical inference regarding the mechanical properties of su-
perimposed slab shear wall under low-cyclic reversal loading. Moreover, it elaborates the
extent of participation of a prefabricated layer to the load resisting of the superimposed
slab shear wall. On this foundation, the restoring force model of the superimposed slab
shear wall is established in this paper. Several conclusions are summarized below:

(1) The connection influence of the rebar joint is considered in calculating the displace-
ment before yield. The bottom stiffness reduction factor is inferred from the test results.
The bend–shear ratio is considered in calculating the length of the plastic hinge under
the peak load and ultimate load. The consistency between the test results and the
calculation results verifies the effectiveness of the several displacement calculation
methods proposed in this paper.

(2) Two conditions are considered while calculating the peak load of six superimposed
slab shear walls: no connective effect and perfectly connective effect between com-
bined interfaces. Calculating the results of the perfect connection condition model
provides a better consistency with the test results, and it is therefore feasible to ignore
the bond–slip effect between the superimposed surfaces. Moreover, the no-slip prop-
erty between the combined interfaces also offers a good integral performance for the
superimposed slab shear wall.

(3) On the assumption of a plane cross section, differences of concrete strength grades
between the prefabricated layer and the cast-in-site layer result in different stresses.
Although they share an identical strain. The calculated results counting for the
enhancement of a higher concrete strength grade of the prefabricated layer are closer
to the test results. Additionally, a higher concrete strength will also prevent crack
extension. Regarding different provisions concerning the concrete strength grade of
the prefabricated wall and cast-in-site wall from different local codes, the application
of a higher concrete grade of the prefabricated wall is recommended in design.
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(4) Based on the mechanism of the superimposed slab shear wall, a quadrilinear restor-
ing force model is established with the help of the Pinching4 model from OpenSees.
The parameters of the backbone curve are determined by theoretical inference. The
hysteretic curve of the superimposed slab shear wall is simulated under the con-
sideration of the strength deterioration and pinch effect during the loading process,
which significantly meets with the test results. The established force restoring model
can be representative of the performance of the superimposed slab shear wall under
low-cyclic reversal loading.
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