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Abstract: Cracks and cavities belong to two basic forms of damage to the concrete structure, which
may reduce the load-bearing capacity and tightness of the structure and lead to failures and catastro-
phes in construction structures. Excessive and uncontrolled cracking of the structural element may
cause both corrosion and weakening of the adhesion of the reinforcement present in it. Moreover,
cracking in the structure negatively affects its aesthetics and in extreme cases may cause discomfort
to people staying in such a building. Therefore, the following article provides an in-depth review
of issues related to the formation and development of damage and cracking in the structure of
concrete composites. It focuses on the causes of crack initiation and characterizes their basic types. An
overview of the most commonly used methods for detecting and analyzing the shape of microcracks
and diagnosing the trajectory of their propagation is also presented. The types of cracks occurring
in concrete composites can be divided according to eight specific criteria. In reinforced concrete
elements, macrocracks depend on the type of prevailing loads, whereas microcracks are correlated
with their specific case. The analyses conducted show that microcracks are usually rectilinear in
shape in tensioned elements; in shear elements there are wing microcracks with straight wings;
and torsional stresses cause changes in wing microcrack morphology in that the tips of the wings
are twisted. It should be noted that the subject matter of microcracks and cracks in concrete and
structures made of this material is important in many respects as it concerns, in a holistic approach,
the durability of buildings, the safety of people staying in the buildings, and costs related to possible
repairs to damaged structural elements. Therefore, this problem should be further investigated in the
field of evaluation of the cracking and fracture processes, both in concrete composites and reinforced
concrete structures.

Keywords: cement concrete; reinforced concrete structures; microcrack; crack; crack detection;
cracking; critical stresses; interfacial transition zone (ITZ)

1. Introduction

One of the main tasks of modern material engineering in the field of construction
is the design and implementation of buildings in such a way as to achieve the greatest
possible safety of the structure with the least possible financial outlay [1,2]. The properties
of concrete materials, including their durability, are mainly determined by structural factors
and the interrelations between the micro- and macrostructure of the material [3–6]. Cracks
and cavities belong to two basic forms of damage to the concrete structure, which may:

• Reduce the load-bearing capacity and tightness of the structure [7,8];
• Cause the structural element to lose its stiffness and stop working as a full reinforced

concrete cross-section [9,10];
• Lead to failures and catastrophes in construction structures [11,12];
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• Increase the carbon footprint of concrete and energy consumption as a result of
complete destruction (resulting from damage and cracks) and the need to build new
structures using non-ecological and energy-consuming cement binder [13–15].

For these reasons, knowledge and understanding of the phenomena causing the for-
mation of cracks in reinforced concrete structures and indication of the places of their most
frequent occurrence is of great significance in many respects [16,17]. It is also important
to determine how to identify these material discontinuities in structural elements so that
their further propagation can be effectively inhibited, thus protecting the concrete—and,
consequently, the structure it forms—from their progressive destruction [18–21].

The following article provides an in-depth review of issues related to the formation
and development of damage and cracking in the structure of concrete composites [22,23].
The main focus is on the causes of crack initiation and the characteristics of their basic types.
The final part presents an overview of the most commonly used methods for detecting and
analyzing the shape of microcracks and diagnosing the trajectory of their propagation.

The article contains a thorough review of the existing literature concerning the forma-
tion and propagation of cracks in non-reinforced concrete elements and reinforced concrete
structural elements reinforced with flaccid reinforcements. On the basis of the conducted
studies, it has been determined that there is no precise characterization in the literature of
the propagation of cracks in reinforced concrete elements depending on the type of loads
existing in the structure. Additionally, no information has been found regarding the nature
of concrete microcracks in terms of the type of stress that led to their initiation. This article
attempts to fill this gap.

For this purpose, in the field of reinforced concrete element cracks, morphologies
and trajectories of crack propagation depending on the loads and stresses occurring in
the structure have been distinguished. In addition, on the basis of our own studies of the
microstructure of damaged concrete elements subjected to tension, shearing, and torsion,
three different morphological images of microcrack propagation trajectories occurring in
the material structure have been distinguished.

Thanks to these new analyses not described previously in the subject literature, it is
possible to link the images of microstructural analysis with images of the destruction of
full-size reinforced concrete structural elements. Such knowledge may be helpful in the
diagnosis of macroscopic damage in reinforced concrete structures when it is required to
determine the cause of cracks or damage and when there is no precise or unambiguous
data concerning the case that has occurred.

At this point, however, it should be noted that in current concrete structures, concrete
reinforcement or the strengthening of tension or shear zones can also be performed using
materials other than traditional reinforcing steel. Various types of composite materials
or fibers are used for this purpose. In the literature, numerous examples presenting the
benefits of using such materials can be found, such as:

• Glass fiber-reinforced polymer (GFRP) composites [24–29];
• Carbon fiber-reinforced polymer (CFRP) [30–33] composites.

2. The Mechanism of Cracking in Concrete Composites and the Main Concepts
Related to This Issue

It should be noted that cracks in concrete and reinforced concrete structures are quite
common. It can be said that they are a natural feature of concrete, and even an inherent
part of its structure [34–36]. Furthermore, it has been observed that the microstructure
of concrete contains a huge number of microcracks prior to any loading [37]. Due to
differences in properties between aggregate and cement paste, as well as shrinkage and
thermal stresses, the first defects appear in concrete before load is even applied in the zones
of contact between the inclusions and the matrix [38–40].

According to [41], crack formation in concrete structures depends on the mechanical
interaction between inclusions (gravel or crushed stone) and the cement-based matrix.
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Initially, damages in the form of microcracks are so small that their detection or analysis is
possible only with the use of modern detection techniques [42–45].

In most cases, the appearance of cracks in a reinforced concrete structure is a typical
phenomenon, and only in some cases does it indicate the possibility of exceeding the
load-bearing capacity of the structure and raise justified concerns [46–50]. Nevertheless,
cracks are a common type of structural damage that jeopardize the health of concrete
buildings (e.g., roads, bridges, tunnels, and dams) [51]. The occurrence of cracks in the
structure significantly reduces the tightness of concrete and thus deteriorates its durability.
Excessive and uncontrolled cracking of the structural element may cause both corrosion and
weakening of the adhesion of the reinforcement present in it. It is also obvious that cracked
structures negatively affect aesthetics and, in some extreme cases, may cause discomfort to
people staying in such a building [52–54].

The above-mentioned facts lead to the statement that the formation and spreading of
microcracks cause irreversible negative changes in the structure of concrete, i.e., [55–57]:

• The formation of voids;
• Reduction in the working cross-section of structural elements;
• Dissipation of energy in the form of heat and mechanical vibrations;
• The emergence of new surfaces.

Therefore, although, cracking in reinforced concrete elements is a usual or even natural
symptom of the structure’s operation, it calls for a thorough knowledge of the etiology of
crack formation. In certain cases, structural cracks may be the result of alarming phenomena,
the reaction to which would prevent the occurrence of emergency conditions. The process of
structure damage, once initiated in the process of increasing external loads, causes internal
cumulation of defects in the form of microcracks and sub-microcracks that inosculate to
form increasingly larger chains of cracks, ending with total destruction of the whole concrete
structure. A thorough knowledge of the cracking processes occurring in elements made of
concrete is essential for understanding destruction and the mechanisms of destruction of
the concrete composite [58–60]. Cracks are a partial form of damage in the material that has
already occurred, and according to [61], an analysis of the concrete destruction mechanism
that ignores the presence of microcracks in its structure is fundamentally false.

The existence of microcracks and the heterogeneity of concrete cause an uneven
distribution of stresses and strains in the concrete elements. In addition, initial microcracks
(see Section 3), by limiting the working cross-section, cause the strength of concrete obtained
in practice to be lower than the theoretical strength while also causing a wider range of
fluctuations [62,63].

For these reasons, the causes of cracks and their type should be known and the
inventory and monitoring of the development of these damages should be carried out
with particular care since they determine the degree of the critical stress–strain state within
the structure. Knowing this can be decisive in assessment of the safety of the operating
facility [64,65]. Therefore, a brief description of the basic defects occurring in the concrete
structure and concepts closely related to this issue should be presented at the outset.

A crack is a real defect within the material that is characterized by a certain size and
shape. A crack is a discontinuity in the structure of the material and occurs on surfaces
where the forces of atomic bonds do not work. In the unloaded state, the crack surfaces
may be in contact with each other, while in the loaded state, they may open or shift against
each other. Cracks may penetrate the element, may exist inside it, or partially penetrate the
material. The radius at the bottom of the crack (ρ) is always different from zero because,
even in extreme cases, it is close to the distance between atoms (Figure 1a) [66–68].
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Figure 1. Diagrams of material defects in concrete: (a) crack, (b) gap [66–68].

A gap, on the other hand, is a real crack model that has been created to determine the
fracture toughness of materials. The gap as a mathematical model of the crack has a zero
radius ρ of fillet at its apex (Figure 1b) [66–68]. It is also assumed that the surfaces of the
unloaded gap are flat and that its front has a regular shape, most often in the form of a
straight line. Such assumptions, which do not differ significantly from the actual conditions,
allow for clear and unambiguous calculations. In the case of elements subject to complex
stress states, three diagrams are used to describe the way loading occurs across the element
with the gap, which are referred to as cracking models. Their description and the formulas
necessary to determine the fracture toughness of material for cracking models I, II, and III
are available in numerous publications in this subject area [69–73].

However, due to the fact that diagrams showing the propagation of the primary
crack depending on the type of load and the cracking model assigned to it are standard
and thoroughly described in the literature, as well as formulas that form the basis for
measurements of the cracking resistance of concrete elements, these issues are not included
in the article below. Detailed information on the determination of cracking resistance in
concrete elements for different cracking models can be found in works [74–79], among
others.

In concrete elements, internal material cracks are cracks, microcracks, and sub-microcracks
that differ in terms of the width of the opening. A detailed breakdown of the cracks, taking
into account these and other features, is presented in Section 4.

A crack is a discontinuity of the material that has a width of up to 1.0 mm, characterized
by the fact that its third dimension (opening) is much smaller than the others (length and
depth). However, looking at the structure of the cracks, they are nothing more than a
primary or secondary lack of cohesion in the contacts of adjacent particles of the material
skeleton.

On the other hand, microcracks are characterized as material discontinuities with
a width not exceeding 0.1 mm. In practice, it is considered that these are the smallest
cracks that can still be seen with the naked eye, or the smallest visible cracks noticed
under an optical microscope. The surface density of microcracks ranges from 0.04 to 0.14
mm/mm2 [80].

According to the authors of [80], it is also possible to distinguish damage in concrete
in the form of sub-microcracks. Such tests are performed using a Scanning Electron
Microscope (SEM) at magnifications of at least 1250 times in the case of cracks with a
width of more than 2.5 µm, or at a minimum magnification of 2500 times when assessing
smaller cracks. Sub-microcracks can be observed in the cement paste, in the cement matrix
phase area (i.e., calcium hydroxide (CH) and calcium silicate hydrate (C-S-H)), and in the
contact zones between the sand grains and the matrix in the mortar. The surface density of
sub-microcracks is over 10 times higher than the density of microcracks [80].

The initial stage of the formation of the first defects in the microstructure of concrete
is referred to as crack nucleation. This problem and the main causes of microcracks and
cracks in concrete are discussed in more detail in Section 3.
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The first microcracks and sub-microcracks, which are the source of microcracks in
the material and arise before the application of loads, are referred to as initial microcracks.
These initial damages in the process of concrete cracking are most often [81–83]:

• Local discontinuities;
• Breakages in the cohesion of the material;
• Damage caused in a continuous medium as a result of local exceedances in strength.

In the next stage, initial microcracks under the influence of external factors (increasing
load, temperature, etc.) [84,85] or internal factors (e.g., weak bonds between the components
of the concrete composite) [86–89] enlarge, spread, and connect with adjacent defects,
microcracks, or pores [89]. This stage of the defect accumulation process in a local approach
is called microcrack propagation. In turn, the evolution and growth of cracks in relation
to the entire volume of the analyzed damaged concrete element is the so-called fracture
process [90].

The brittle fracture process, i.e., the increase in the length of accumulated spatial mi-
crocracks, is usually a dynamic, irreversible phenomenon with catastrophic consequences.
This is related to the fact that, in the advanced stage of the composite fracture process, an
extensive system of microcracks and cracks is created, which, after reaching a certain level
due to external load, leads to the complete disintegration of its structure [63].

The damage and fracture evolution process of cement composites under loading can
be used in the study of concrete damage behavior [91]. Initially, after the occurrence of the
so-called first level of critical stresses (σI

22) in the concrete structure, simple microcracks
appear. According to various data, the stress values that initiate this process vary between
approx. 20% and approx. 50% of the compressive strength of the material ( fc) [92–95].
With progressive load and the accumulation of energy transferred from the outside by the
concrete element, the stresses in the material structure increase in value. This results in
a change in the characteristics of the internal microcracks. Straight microcracks develop
successively in the structure of the material, and then, at some point, wing microcracks
appear (see Section 4). This stage indicates the imminent destruction of the material.
The determinant that indicates when in the fracture process the actual and not yet real
destruction of the structural element will occur is determined by the so-called second level
of critical stresses (σI I

22) [92–95]. This indicator is a point on the stress increase curve beyond
which, as a result of the global development of fracture processes in concrete, the inner
bonds between the components of the concrete composite are broken. In such a situation,
the moment of destruction of a given element is then only a matter of time, and it is not
possible to physically stop such a process [92–95]. The stress level σI I

22 corresponds to the
final strength of the material in the range of 70–90%. A diagram showing the progressive
process of a concrete element’s destruction, taking into account both levels of critical
stresses, is shown in Figure 2 [88]. However, on the basis of [88–91], Table 1 lists the main
factors (material, technological, and operational) influencing the levels of critical stresses
and the process of destruction of ordinary concrete.
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Table 1. The main material, technological, and operational factors influencing the levels of critical
stresses and the process of destruction of ordinary concrete (according to [95–101]).

No. Group of Analyzed Factors Types of Analyzed Factors

1 Material

• Type of aggregate.
• Maximum grain size of aggregate.
• Aggregate grading.

2 Technological

• Normal heat–moisture conditions
of curing.

• Low or sub-zero temperature
during curing.

• Heat treatment in low-pressure
steam.

• Heat treatment in microwave
field.

3 Service

• Moisture content.
• Age.
• Oiling up with mineral oil.

Crack propagation in concrete is analyzed by fracture mechanics. Its primary objective
is to determine whether an element of a given shape with a given state of initial crack
and under a given load can still be used. As part of fracture mechanics, the method of
crack development in the material, the directions of crack propagation, the impact of the
environment on the fracture process, and the behavior of structures containing defects are
also analyzed [102,103].

3. Causes of Damage and Cracks in Concrete

Cracks occurring in concrete can be classified according to various criteria due to [104–108]:

• The cause of the crack;
• Location in the structure;
• Width;
• Arrangement;
• The possibility of admission of the damaged element for use;
• Methods of observation.

On the basis of the above classification, it can be concluded that, to thoroughly analyze
defects in the concrete structure, one should know the causes of damage, damage location,
and the type and size of cracks. Such information is helpful in determining the factors
responsible for the discontinuity in the material, as well as in selecting an effective repair
technique for the damaged element. Knowing the cause initiating the damage in the
concrete element, the user of the facility is able to counteract its further destruction through
reinforcement or renovation. Otherwise, the progressive development of damage may lead
to failure over time, or even a construction disaster [108].

There are two types of causes of damage in concrete and reinforced concrete elements,
although they are varied and often difficult to determine:

(A) Primary defects—resulting from the natural properties of the material or from design
and execution errors.

(B) Secondary defects—occurring during exploitation.

The group of determinants that cause the formation of primary defects includes the
following:

(a) In the group of causes of natural material crack formation:
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• Early thermal stresses occurring during the first several hours after formation of
the concrete element;

• Concrete shrinkage resulting from the physico-chemical transformation of cement
components;

• Material heterogeneity.

(b) In the group of causes of cracks related to the applied reinforcement:

• Reinforcement surface condition;
• Adhesion of the applied reinforcement;
• Method of distribution of inserts in the cross-section of the element;
• Reinforcement diameters;
• Distance of the inserts from the edge of the element.

(c) In the group of causes of cracks as a result of design errors:

• Faulty design assumptions for the working conditions of the structure;
• Loads incorrectly assumed by designers, e.g., omission of temperature loads;
• Improperly assumed conditions of construction execution;
• The insufficient knowledge of the designers;
• Calculation errors during project development;
• Negligence of the authors of the project.

(d) In the group of causes of cracks as a result of technological and workmanship errors:

• Insufficient strength of materials and products;
• Poor quality of assembly and structural connections;
• Extended technological breaks in laying successive layers of concrete mix;
• Poor compaction and insufficient vibration of concrete in places of technological

breaks;
• Too shallow and porous a covering of concrete reinforcement;
• Deviations from the project during implementation;
• The insufficient qualifications and knowledge of contractors;
• Insufficient supervision and cooperation with the designer;
• Negligence of contractors.

In this group of causes, the crack-creating factors included in subpoint (a) are par-
ticularly important as they are connected with cracks caused by changes occurring in
the composite mainly at the beginning of structure formation. A detailed presentation of
the causes of crack formation in concrete elements in the advancing maturation process
of concrete mix and concrete can be found in [107–109]. In these and other studies, the
early stages of crack formation are considered depending on the development phase of
its structure [109–111]. It is noted that the durability of concrete structures is seriously
endangered in the first stages of curing of concrete because of the possibility of cracks,
especially in the case of massive or high-strength concrete [112–114].

However, as tests results show in [115,116], it is possible to limit the negative effects of
damage in the initial phase of the curing of such concretes through partial replacement of
the cement binder with fly ash or through the use of lightweight aggregates. Due to the
reduced heat of hydration in composites with a modified binder composition [117], the
risk of microcrack initiation resulting from a highly exothermic curing process in massive
structures is also reduced [118].

Based on [119], Figure 3 provides a summary list of some common types of cracks that
are distinguished according to their age, i.e., whether they appear before or after hardening.
A classification of cracks occurring in cement composites, together with the reasons for the
formation and approximate time of occurrence of a given type of cracks, is also provided
in [120].
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Figure 3. Common causes for cracking in concrete structures (according to [119]).

Next, the group of determinants that cause the formation of secondary defects includes
the following:

(a) Errors during the use of the facility:

• Excessive and inadequate loads in relation to the design assumptions;
• Change in the static diagram or the purpose of the facility;
• Inadequate protection of the structure against the impact of the environment;
• Insufficient technical supervision over the operation;
• Insufficient knowledge of users.

(b) Design errors:

• Improper foundation of the building;
• Insufficient number of expansion joints;
• Incorrectly designed damp insulation;
• Incorrectly designed roofing and terraces;
• Errors in structure dimensioning.

(c) Execution errors:

• Use of materials with properties worse than designed;
• Negligent execution of works;
• Failure to comply with the correct technology of works, e.g., inappropriate

selection of technology for work at low temperatures.

(d) Aggressive impact of the external environment:

• Erosion and corrosion of concrete;
• Impact of moisture;
• Ground settlement;
• Shocks and vibrations;
• Lateral wind pressure on walls and roofs;
• Snow deposition on roofs and the influence of biological factors.

(e) Exceptional loads:

• Excessive wind and snow loads;
• Gas explosions and technological failures;
• Fires and random damage;
• Seismic loads;
• Hurricanes;
• Floods.



Buildings 2023, 13, 765 9 of 34

4. Types of Microcracks and Cracks

Strength reduction in brittle materials such as concrete is associated with flat and
spatial defects in their microstructure [120]. Moreover, the structure and the degree of
development of a cracking pattern have a key impact on the durability of cement compos-
ites [121]. On the other hand, it is possible to diagnose which stresses caused the damage by
analyzing its location, as well as the shape and trajectory of crack propagation in structural
elements. With this knowledge, it is possible to quickly determine the factor that triggered
the destructive process in the structure and to take appropriate steps to minimize or reduce
any further negative effects caused by the situation [122–125]. Therefore, an overview of
the most common cracks occurring in both concrete and reinforced concrete structures is
summarized below.

4.1. Cracks in the Concrete Structure

In the analysis of cracks occurring in concrete composites, it is important to know
the structure, shape, and number of cracks. The first cracks occurring in concrete can be
divided according to the criteria given in Figure 4.
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Figure 4. Breakdown of structural cracks in concrete.

Moreover, besides the division of structural cracks presented in Figure 4, the following
types of cracks can be distinguished due to the occurrence of complex physical phenomena
at the contact of coarse aggregate with paste:

• Dilatational cracks, i.e., those opening as a result of external loads, aggregate surface
roughness, or internal water pressure;

• Cracks with contact friction when the pressed edges of the crack are slipping;
• Cracks with a cohesive layer between the edges of the crack;
• Cracks with the so-called “fracture process zone” at the top of the macrocrack caused

by the development of plastic deformations or microcrack arrangements.

It should also be added that, apart from the several characteristic divisions above of
microcracks and cracks where various criteria of their qualification are taken into account
(Figure 4), there are also other divisions of these concrete defects that are described in some
experimental works. An interesting characterization and division of microcracks into three
categories and cracks into four categories was based on research using X-ray tomography
(see Section 5) [126]. Since the first damage in the concrete structure usually occurs in its
weakest zone, i.e., the interfacial transition zone (ITZ) between aggregate and cement paste,
the authors focused on this zone in their analyses when assessing damage in composites.
A classification of the types of microcracks and cracks according to the authors of [126]
is presented in Table 2. In addition, Table 3 presents exemplary photos of each type of
classified crack that correlate with the data from Table 2 [126].
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Table 2. Crack classification [126].

No. Type of Crack Characteristics

1 Type-I microcrack Cracks developed completely along the outline
of coarse aggregates.

2 Type-II microcrack

Cracks developed along the outline of coarse
aggregates but there was a phenomenon
whereby the bangs cut through the corners of
the coarse aggregates.

3 Type-III microcrack

Cracks developed along the outline of coarse
aggregates but there was a phenomenon
whereby the crack cut through the center of the
coarse aggregates.

4 Type-I crack

The development direction of the crack was
entirely along the outline of the coarse
aggregates, and the cracks were relatively
slender.

5 Type-II crack

The development direction of the cracks was
basically along the outline of the coarse
aggregates but there was a phenomenon
whereby the cracks cut through the corner of
the coarse aggregate, and the cracks were
relatively slender.

6 Type-III crack

The development direction of the cracks was
not completely along the outline of the coarse
aggregates. The cracks directly cut through the
center of the coarse aggregate, and the cracks
were thicker.

7 Type-IV crack

Crack development followed the outline of the
coarse aggregates, causing fragmentation in
the area where fine aggregates gathered. The
fragmentation was mainly strip-shaped or
block-shaped.

Table 3. Examples of particular types of cracks [126].

No. 1 2 3 4 5 6 7

Type of
Crack

Type-I
microcrack

Type-II
microcrack

Type-III
microcrack Type-I crack Type-II crack Type-III crack Type-IV crack

Examples
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4.2. Cracks in Reinforced Concrete Structures

In addition to the various types of cracks occurring in concrete listed in Section 4.1,
whose causes of formation have been characterized in Section 3, another group of cracks is
distinguished related to the type of actions occurring in the structure. Knowledge of the
characteristic morphology of cracks, correlated with the dominant type of loads, is basic
in the diagnosis of the possible causes of cracking in structural elements. This allows for
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the determination of whether cracks in the structure are the result of loads implying the
presence of tensile, shear, or torsional stresses in the cross-sections [127–132]. In addition,
each type of stress is connected with the formation of characteristic microcracks in the
structure of the material [133–135].

Therefore, cracks in structural elements resulting from four typical cases of present
loads are characterized and graphically presented below [135]. On the basis of microscopic
analyses, the characteristic shapes of microcracks corresponding to macrocracks visible on
the concrete surface are also shown.

4.2.1. Macroscopic Image of Cracks in Reinforced Concrete Elements

(a) Cracks from tension:

Cracks caused by axial tension or tension on the small eccentricity develop perpen-
dicularly to the direction of the force, causing tension in the reinforced concrete element.
Such cracks pierce the construction “through”. Sometimes, they may also have a slightly
oblique direction (Figure 5). Cracks of this type are most often the result of the operational
loads or thermal shrinkage deformations of the structure [136]. As a result, tensile forces
(N) arise in the cross-sections of reinforced concrete elements, and, consequently, character-
istic cracks (Figure 5). Axial or eccentric tensions occur in such structures as the strips of
lower reinforced concrete trusses, reinforced concrete strings, and the middle strips of the
cylindrical walls of liquid tanks or silos.
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(b) Cracks from bending:

Cracks from bending, which also causes tensile stresses at the points of their initiation,
arise just in this part of the concrete cross-section and, propagating, tend to occur before
the zone of zero tensile stresses [137] (Figure 6). In heavily reinforced elements, despite
typical single perpendicular cracks or only slightly curved cracks (1), collective cracks (2)
can also be observed (Figure 6).
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(c) Cracks due to shear:

Cracks from shear are caused by inclined main tensile stresses. Their occurrence is
caused by the occurrence of transverse forces. As shearing is a complex phenomenon that
occurs as a result of the interconnected impact of the transverse force (V) and bending
moment (M), the crack pattern occurring on the surface of the reinforced concrete element
always depends on each of these internal forces in the concrete cracking process.

For this reason, in the middle zone of the element, where the influence of transverse
forces is limited and the effort of the sections is determined by the bending moment,
there are cracks perpendicular to the beam axis (Figure 7). However, in the support zone,
where the transverse force has a dominant role in shearing, there are cracks inclined to the
longitudinal axis of the bar (so-called diagonal cracks) [138] (Figure 7). Often, such cracks
develop from previously formed cracks due to bending, as shown in Figure 6.
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(d) Cracks due to torsion:

In the case of torsion of reinforced concrete elements, which are a rather small group
of reinforced concrete structures (such as edge floor joists, balcony slab ring beams, spa-
tial frames, spiral stairs, and reinforced concrete arches loaded perpendicularly to their
plane [139,140]), there arises shear stress (τT) in the cross-sections of the elements due to
the torsional moment (T). These stresses may cause the formation of cracks that have a
characteristic shape similar to a helix, wherein the line is inclined at an angle of 45◦ to
the axis of the torsion element. Cracks with this type of stress characteristically occur
on all surfaces of the reinforced concrete element. Their beginning, however, starts on
the side surface along the longer edge of the element’s cross-section [141]. As the load
increases, cracks begin to appear on the surface along the shorter edge. At the next stage of
crack development, they also arise on the opposite longer edge. In the final phase of the
development of cracks from torsion, they merge so that the crack grid covers all surfaces of
the bar before the element is destroyed [142] (Figure 8). This helps to distinguish between
cases where cracks result from shear in the structure and cases where cracks are caused
by torsion [143,144]. As shown in Figure 7, in the case of shearing, cracks similar in shape
(i.e., inclined at some angle to the longitudinal axis of the element) occur only on the side
surface of the beam.

(e) Summary and comparison of macroscopic crack morphology in reinforced concrete
elements:
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It should be noted that cracks in reinforced concrete elements occur when the concrete
reaches the limit of tensile strength. Depending on the type of reinforced concrete structure,
they occur in specific sections and zones of construction. Cracks in structural elements may
differ both in shape and the direction of propagation and are related mainly to the type
of interaction causing the formation of a given type of crack. There are four basic types of
interactions in reinforced concrete structures, which result in cracks that differ from each
other by shape, location, and propagation trajectories. Therefore, based on the information
provided in the above subsections, Table 4 summarizes the relevant data corresponding to
cracks resulting from different types of interactions in reinforced concrete structures.
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Table 4. Summary of relevant data corresponding to cracks in reinforced concrete structures resulting
from various interactions; N, M, V, T—description in the text.

Interaction
Causing Formation
of Crack

Crack Characteristics

Tension

• Direction (shape) of crack: cracks arise perpendicularly to the direction of the force causing tension,
pierce the structure through, and may sometimes also have a slightly oblique direction.

• Cause of formation: operational loads and thermal shrinkage deformations of the structure.
• Structures (places) of occurrence: strips of lower reinforced concrete trusses, reinforced concrete

strings, and the middle strips of cylindrical walls of liquid tanks or silos.
• Characteristic view:
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4.2.2. Characteristics of Microcracks Correlated with the Type of Stresses Occurring in the
Damaged Element

Apart from the characteristic pattern of cracks on the surface of reinforced concrete
elements indicating almost unambiguously which type of load caused their formation,
the type of stresses that led to the destruction of concrete can also be diagnosed on the
basis of the appearance of the microstructure of its defects. Figure 9 shows characteristic
arrangements of microcracks corresponding to cases of macroscopic damage caused by
the basic types of stresses (Figures 5–8). The presented cracks mainly concern the area
of the ITZ phase, i.e., the weakest and main place of microcrack initiation in the concrete
composite, as mentioned in Section 4.1. In order to present the differences between the
various types of microcracks as accurately as possible, the photos selected have the same
scale and magnification.
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In structures where tension predominates, cracks are usually rectilinear in shape. They
appear most often in the ITZ area and develop successively along the entire length of
aggregate grains (Figure 9a). As the load increases, they may propagate into the structure
of the cement matrix or into the depth of an inclusion, as is the case where the matrix
is characterized by greater strength than that of the coarse aggregate, such as in high-
performance concretes [145].

As in the macroscopic approach, shear stress causes straight cracks to curve and
also causes curves at the ends of microcracks to begin to appear, with the direction of
their propagation also changing. In the vertices of simple microcracks, wings are initiated
(Figure 8b). Depending on the value of the present loads, the wings may deviate at a greater
or lesser angle to the straight section of the microcrack. Change in both the morphology
and the trajectory of such microcracks may cause the aggregate grains to lose their local
cohesion with the matrix surface, which may lead to their separation from its surface.
Cavities are then formed in the concrete structure. The characteristic shape of the wing
microcrack, which is the result of shear, is observed at the place where the aggregate grain
crumbles out of the paste (Figure 9b).

In turn, torsion, which in the macroscopic approach causes the formation of spatial
cracks on several surfaces of the structural element (Figure 8), also changes the shape
of microcracks in the concrete structure. As a result of the existing state of stress, the
tips of the wings are twisted, often combined with additional local micro-damages at
stress concentration points, i.e., in places where straight segments of microcracks curve
(Figure 9c). Other arrangements of microcracks due to torsion that have been observed
include microcracks propagating radially from the center of the sample towards its outer
edge [146] and damage in the shape of a semicircle [147].

5. Detection and Observation of Cracks and Microcracks in Concrete
5.1. The Core of the Problem in the Field of Concrete Cracking Research

Randomness of the geometric arrangement, the size and shape of concrete composite
filler grains, and variability in its mechanical and physical properties—both in relation to
the adjacent grains and the cement matrix—make analysis of the concrete cracking process
a difficult task. Hence, the process of the formation and development of microcracks and
cracks in concrete has, for a long time, been concluded only on the basis of external symp-
toms and effects, such as deformability under load. With the development of numerous
measurement techniques, there opens up the possibility of not being limited to certain
average values (e.g., stresses, deformations), but instead searching for the causes of damage
formation and propagation due to no longer being confined to analyses of the effects of
the destruction processes occurring in concrete. For these reasons, there has been a rapid
development of techniques and devices used for detecting microcracks and assessing their
propagation over the last few decades [148].

Depending on the adopted reference scale, the accuracy of observations, and the
assumed research objectives, various methods are available that can be used to detect and
analyze cracks and microcracks in concrete.

Therefore, the characteristics and the advantages and disadvantages of the most
commonly used methods and devices used for localization and analysis are given below:

• Cracks on the concrete surface;
• Microcracks located inside the concrete structure.

5.2. Diagnostics of Surface Cracks

Tools for identifying and observing cracks occurring on the surface and in the mi-
crostructure of composites with cement matrices have been successively developed since
the 1960s. However, in recent years, due to the alarmingly deteriorating state of the world’s
concrete infrastructure, particular emphasis has been put on the development of non-
destructive methods that could be used in the diagnosis of structures, as well as in the
recognition and analysis of the degree of their defects [149]. For this purpose, attempts
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were made to adapt new non-destructive techniques for assessing the structure of materials
that previously had been effectively used in medicine, the aviation industry, geotechnics,
and metal research, among others [150].

In the case of damage occurring on the surface of concrete elements, width is of special
importance because large-width cracks can significantly reduce the stiffness, strength, and
tightness of the structure. This, in turn, can cause progressive corrosion of the reinforcement
bars. For this reason, the opening width of such cracks is usually standardized within
the range of 0.2–0.4 mm. However, for structures working in aggressive environments,
and those with tightness requirements, the limit norm of cracks is only 0.1 mm [151].
Additionally, the diagnostic methods used to assess surface and subsurface cracks have a
large range of various partially standardized measuring tools. The techniques used can be
generally divided into non-destructive, semi-non-destructive, and destructive, while the
most commonly used are visual tests, the ultrasonic method, and more modern methods
used recently in the analysis of surface cracks, i.e.:

• Thermographic methods;
• Digital image correlation (DIC).

A description of the thermography method, with an example of a thermal imaging camera
used for the analysis of near-surface cracks in a bent element, is presented in [152–154]. This
methodology includes initial scanning of the concrete surface by the infrared camera at
the time of maximum heat exchange between the structure and the environment after
direct sunlight. The information from the temperature field (local fluctuations), as well as
the cooling down curve (different rate of cooling relative to the neighboring areas), will
indicate subsurface defects [152]. This technique is especially successful in the detection of
cracks in “troublesome” areas. In addition, this method could be used in the evaluation of
concrete delamination in some concrete structures [155], as well as in damage detection
in composite materials [156]. Recently, novel methods of testing defects in buildings have
appeared, such as time-lapse thermography [157] parallel to the traditional thermographic
technique.

It should also be noted that, in the literature, one can find numerous examples of
the use of the thermographic method in the assessment of adhesion defects caused by
the development of cracks in concrete reinforced with CFRP fabrics [158]. This technique
has also been used for this type of experiment in conjunction with other non-destructive
methods [159]. The benefits of using this method of locating damage were also observed
when detecting cracks in ceilings [160] and elements of road infrastructure [161].

The DIC technique, on the other hand, is designed for non-contact measurement of
displacements and crack assessment in flat and spatial concrete elements subjected to
load [162]. It is a non-invasive optical method that consists of taking a series of photos of
the analyzed area of the tested structure under various loads and then analyzing the photos
taken. Such activities are aimed at calculating the displacements of selected points of the
analyzed area [45,163,164].

The measuring system in the DIC technique consists of a set of cameras recording
changes in the shape of the examined object and a suitably adapted and programmed com-
puter that stores and processes the recorded images. Depending on the configuration, i.e.,
the number and speed of the cameras, the system can be used to analyze the displacement
and deformation fields of flat or spatial elements loaded statically or dynamically. Thanks
to the analysis of photos taken along with the progressing loading process, it is possible
to identify cracks in unreinforced and reinforced concrete elements. This advanced and
very precise technique of detecting macrocracks is also useful in the study of microcracking
processes in the concrete structure [165]. Thanks to the exceptional precision of this method,
it is possible to analyze cracking processes in concretes subjected to exposure not only
to mechanical loads [166], but also to other types of loads, e.g., thermal loads [167]. The
unique qualities of the DIC technique also allow for accurate tracking of the development
of microcracks and cracks in the concrete structure [168].
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According to [169], the DIC technique also allows for the visualization and quantifi-
cation of the fracture properties of reinforced concrete. Moreover, the DIC technique was
found to be an effective means for measuring crack opening displacements [170,171]. On
the other hand, the Crack Tip Tracking (CTT) method developed by [172] helps, among
others, to determine the highly approximated total length of microcracks despite the fact
that its complicated and complex trajectory is located inside the damaged structure of the
material. Such studies allow for later conclusions to be drawn about the difference between
the behavior of different types of materials in the process of their damage [173].

Based on the above data, Table 5 provides a comparison of the advantages and disad-
vantages of the thermal imaging method and the DIC method [174,175].

Table 5. Comparison of advantages and disadvantages of the thermography and DIC methods.

Method Advantage Disadvantage

Thermal imaging

• Fast
• Non-contact measurement;
• Large detection area;
• Intuitive results.

• Mathematical calculation model is
needed to determine the depth of
defects for structural parts, mainly
in relation to complex shapes;

• The detection depth is not deep
enough.

DIC

• Non-contact measurement;
• Possibility of studying very precise

cracking and fracture processes in
structural concrete elements;

• Obtains the full field of deformation;
• Evaluates the extended picture of

structure performance;
• Provides reliable data on a micro-

and macroscale;
• Used in static and fatigue tests;
• Possibility of obtaining stress–strain

data along the whole studied area.

• Is susceptible to disturbances
caused by external factors, e.g.,
vibrations;

• Requires preparation of the sample
surface via spraying and a thorough
calibration procedure;

• High-intensity and time-consuming
calculations in precision mode;

• Requires more and additional
attention during research into
damaged concrete structures, i.e., in
these areas, the stress–strain map in
some cases is non-continuous,
which causes additional
inaccuracies in obtained data.

5.3. Detection of Structural Microcracks
5.3.1. General Division of the Diagnostic Methods Used

Contrary to surface cracks, the width of microcracks that occur inside the concrete
structure is not limited by any standards. Neither are there any adopted uniform standards
for their detection and observation. In the literature, one can find numerous available
methods to identify microcracks in concrete elements, which are classified on the basis of
various criteria.

According to [173], the methods of detecting cracks in concrete can be divided into
three categories, i.e., radiography, replica, and impregnation categories, while according
to [176], such tests include microscopic, acoustic, and radiographic methods. One of the
methods of locating internal cracks in material proposed by the author of [177] is also based
on acoustic phenomena. Moreover, the study of microcracks in concrete can be conducted
basing on interferometry techniques [178].

It should be noted that some of the available methods of microcrack analysis described
above have been modified and successively developed over recent years. To illustrate this,
Figure 10 presents (in several subgroups) most of the methods used to track and observe
damage in a concrete structure. In the classification prepared, emphasis is placed on well-
known methods of crack analysis (e.g., X-ray and neutron radiography), as well as those
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containing new potential as measurement techniques in crack analysis (e.g., the possibility
of spatially modeling damage in concrete using computer tomographs [126,179–182] or
magnetic resonance imaging [183,184]). Additional detailed information on each of the
measurement techniques presented in Figure 10 can be found in the selected literature
added to the presented classification (Figure 10). Below, a brief description and historical
outline of the most characteristic and important diagnostic methods is also included.
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5.3.2. Radiographic Methods

Most of the methods listed in Figure 10 have been known for several decades, such
as microscopic, radiographic, ultrasonic, and acoustic emission methods. One of the first
methods of analyzing microcracks in concrete was radiographic examination. This method
was introduced in the early 1960s by Stale and Olsefski [185] and consisted, similarly to its
use in medicine, of recording the weakened radiation intensity γ or X that penetrated the
analyzed concrete element. Taking recourse to the principles of “brightness” and “shading”
used in radiography and X-ray image analysis, it was possible to estimate which parts of
concrete samples had discontinuities in the material structure in the form of pores or cracks.
Such areas in the photographs taken were characterized by black points or lines, which
indicated that the radiation in this area was not absorbed by the sample and could reach
the photographic film through the void in the concrete. In the 1980s and 1990s, Otsuka
made a significant contribution to the analysis of cracking processes in concrete using the
radiographic method. In his research, he mainly dealt with assessment of the fracture
process zone’s [186] development before the microcrack tip and the impact of maximum
aggregate grain size (Dmax) on its size and structure. On the basis of the photographs
taken, he determined that even before the clear break on the curve force (F), known as crack
mouth opening displacement (CMOD) or F-CMOD, the beginning of damage development
is already visible. In addition, the value of cracking energy increases proportionally to the
size of the coarse aggregate used.

In order to analyze the fracture process zone in concrete elements even more thor-
oughly, the authors of [187] used a spatial acoustic emission analyzer together with the
radiographic method with contrast. Interpretation of the results obtained from both measur-
ing devices showed that, as load increases, the fracture process zone consists of numerous
cracks, and the effects of their development are accompanied by AE events. In addition,
with increases in the Dmax of concrete, the width of the cracking zone also increases, while
its length decreases. Thus, it is shorter; however, it occupies a larger volume in the structure
of the damaged material [187]. The main advantage of the X-ray radiography method is the
ability to visualize discontinuities occurring in the material and perform visual assessment.
However, concrete defects such as cracks, pores, and honeycombs can only be analyzed
in flat images and only in directions favorably oriented to the wave beam. A further
disadvantage of the radiographic method is its poor resolution and low sensitivity when
detecting defects.

Another important step in the development of tools for assessing the distribution of
defects in concrete was the development of a radiographic method involving the use of
active neutrons instead of X-rays (Figure 10a). Over time, neutron radiography, as a more
accurate method and more sensitive to the identification of microcracks in concrete, has
become a much more competitive method for image mapping than X-ray radiography.
This is mainly due to the fact that the images obtained in studies using neutrons are of
much better quality and sharpness than the results obtained with the older radiographic
method. According to [188–190], the neutron radiography method is useful in assessment
of concrete damage and is more effective than the traditional X-ray radiography method.
Currently, neutron radiography is used not only in construction and nuclear research, but
also in biology and the aircraft and missile industries.

The higher sensitivity and greater possibilities of the neutron radiography method in
relation to the X-ray radiography method in the context of identifying microcracks in the
concrete structure are also evidenced by the results of the research presented in [191]. They
show that the minimum size of a defect that can be identified by neutron radiography is 25
times smaller than the damage visible in X-ray radiography images. In addition to testing
the size of internal microcracks in concrete, the neutron radiography method has also found
wide application in assessment of the durability of composites through measurements of
the penetration of water or aggressive substances into their structure [192,193]. According
to [192], this is an excellent way to assess the penetration of media through concrete
because they weaken neutrons much more than the basic components forming its structure,
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i.e., cement and aggregate. Such tests are particularly important in reinforced concrete
structures because a sudden transport of moisture or corrosive agents can lead to the
rapid destruction of reinforcements and to the occurrence of emergency conditions in the
structure. An example of how the neutron radiography method is used in the assessment of
water penetration into the area of reinforcement bars is provided, among others, by [193].

5.3.3. Microscopic Observations

Microscopes have been used for careful observation of microcracks occurring in
concrete structures for many years. Among the electron microscopes commonly used,
the scanning electron microscope (SEM) (Figure 10b) has the greatest advantages for the
analysis of microcracks [194,195]. According to [196], an SEM is one of the most versatile
instruments available for the examination and analysis of the microstructural characteristics
and defects of solid objects, whereas, according to [197], an SEM is the main tool for the
evaluation of concrete microstructures. The method of observing the cracking and fracture
processes in concrete by means of an SEM is frequently applied to assess the impact of the
initial structure of the composite or the type of prevailing loads on the size of the occurring
damage [198], as well as to assess the degree of defects in materials exposed to corrosive
agents [199]. Figure 9 presents various types of microcracks visible in the SEM images
depending on the type of stress inducing them.

Currently, in order to conduct more advanced research on the structure of cracks in
concrete and to learn the exact causes of their initiation, new advanced types of electron
microscopes are used, such as TEM, ESEM, and modern AFM microscopes (Figure 10b).
These microscopes are widely employed as one of the most important imaging techniques
for the atomic analysis of interfaces, structures, and chemical compositions in cement
concretes [200–202]. Thanks to their use, it is possible to diagnose damage while taking
into account the type of concrete composite phase and to estimate the orientation of the
crack in relation to the direction of fibers in the analyzed phase, e.g., C-S-H phase [203,204].

Diagnosis of damage and microcracks in concrete elements can also be carried out
with microscopes of other types, e.g., traditional optical microscopes [173,205] (Figure 10b).
In [173], a thorough analysis of geometric parameters characterizing cracks at the mesoscale
level was presented, including length, width, surface area, and density. The results pre-
sented in [173] also showed good correlation between crack density and concrete compres-
sive strength.

5.3.4. Methods Using Acoustic Waves

Another group of methods used to analyze the development of microcracks in concrete
are techniques based on acoustic phenomena. These include the ultrasonic method and the
acoustic emission method (AE) (Figure 10c).

Ultrasonic methods have been used for many years as a non-destructive method for
the assessment of concrete strength. They also have the advantage of being able to detect
internal defects in the structure and are even able to estimate their size with a high degree
of approximation. Ultrasonic methods are so accurate that they are used to determine
subtle differences in the measurements performed, such as the type of load causing cracks
(cracks occurring as a result of bending or shearing) [206] or differences in the length of
the microcrack [207]. The ultrasonic method can be used to analyze the development of
damage not only in loaded concrete, but also in mortars and pastes.

Another method applying acoustic phenomena in the study of concrete microcracks
is the AE method. It is based on the phenomenon of the formation and propagation of
elastic waves in a given medium, which arise in the material as a result of the release of
stored elastic energy. One of the reasons for the occurrence of AE in construction materials
is the initiation and development of microcracks appearing in cracking processes. The
beginning of research on the relationship between AE and the development of damage in
concrete is assumed to be the year 1970, when Green conducted comprehensive experi-
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ments that clearly demonstrated the relationship between the generated AE signal and the
development of damage in a loaded concrete element [208].

Currently, the spectrum of applications of the AE phenomenon in the study of defects
in concrete composites is quite wide. AE analyzers are mainly used in laboratory tests,
which include, among others, assessment of critical stress levels in concrete [209], tests of
the fracture toughness of concrete in Type-I, Type-II, and mixed-mode fractures [210–212],
and analysis of the impact of curing time on the development of destructive processes in
concrete [213]. Thanks to this method and on the basis of analysis of the values of specific
parameters, it is also possible to draw conclusions about the stage of damage development
in the material. On this basis, in [214], the following stages of damage development in
concrete were identified:

• Micro-cracking before the main fracture;
• The main fracture;
• After main fracture.

The AE phenomenon is not only used in laboratory tests, but also in the assessment of
damage and cracks in facilities and engineering structures, mainly bridges [215].

5.3.5. Methods Based on Interferometry Phenomena

In the 1980s and 1990s, methods based on the phenomenon of electromagnetic wave
interference were very popular in detecting external damage in concrete (Figure 10d). The
main assumptions regarding holography, and other methods based on interferometry
applied to the study of deformation of concrete elements, were presented by Jacquot
and Rastogi in one of the chapters of their monograph on the mechanics of concrete
cracking [216].

Interferometry is a group of methods that includes holography, speckle interferometry,
moiré interferometry, and others (Figure 10d), which are used in experimental mechanics
to observe the displacement of structural elements. In this type of research, in the initial
stage, the surface of the tested object is illuminated with a carrier wave beam that is treated
as the primary signal; in the case of holography, the so-called stripe pattern is created. As a
result of changes in the surface of the tested element subjected to loads, disturbances in the
original signal then occur. Locating and analyzing anomalies in the light beam may be the
basis for detecting even minor damage.

Interferometry has been applied to locate cracks in both concrete elements [217,218]
and reinforced elements [220], which could be observed even in real time [217]. A compre-
hensive review of publications describing the use of the above methods in researching the
destructive processes of concrete was presented by Maji in [177].

5.3.6. Methods Using Tomographs

Computerized tomography is an effective way to accurately visualize defects occurring
inside the concrete structure (Figure 10e). This non-invasive method allows for cross-
sections of the examined element to be obtained by assembling projections of the object
made from different directions. The result of the conducted tests may be 2D flat images
or 3D spatial images. A more advantageous solution is to obtain, as a result of the tests,
three-dimensional tomograms that allow for accurate localization of the smallest material
defects in the entire volume of the tested sample.

The first studies of concrete structures using computerized tomography were carried
out in the early 1980s [181]. The information presented on three-dimensional tomograms
was also used to assess the location of reinforcements in reinforced concrete elements [179].
Over time, this section of non-destructive testing of concrete has become so important that
an entire chapter in the fifth part of the monograph is devoted to describing the advanced
experimental techniques used for testing concrete composites with this method [180]. Cur-
rently, computer tomographs are used to assess the degree of defects in the microstructure
of concrete exposed to adverse weather conditions or corrosive factors. The authors of [182]
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present the results of tests assessing the level of damage in concrete exposed to cyclic
freezing and thawing.

5.3.7. Other Effective Methods Used for the Detection and Analysis of Microcracks

In recent years, methods based on the assessment of surface fractures in damaged
concrete elements have also been used to analyze cracking processes in concrete. This type
of technique includes stereology, fractography, and impregnation (Figure 10f) [220–232].
At present, these methods are used, among others, for the analysis of surface cracks in
concretes and mortars subjected to exposure to high temperatures [223].

Numerical simulations, as well as artificial intelligence methods, are also an effective
tool in the analysis of the microcrack and crack propagation process [224]. Here, particularly
favorable results were obtained with the extended finite element method (XFEM) [225,226]
and machine learning (ML) techniques [227,228] (Figure 10f).

At this point, it is worth underlining that the widely understood AI systems, which
are currently being developed on a large scale, are new computational tools that cover a
wide range of issues. However, among the most frequently used techniques based on these
new measurement possibilities, the following methods can be distinguished [229–232]:

• Fuzzy sets;
• Approximate sets;
• Artificial neural networks;
• Machine learning;
• Evolutionary calculations;
• Genetic algorithms;
• Artificial life;
• Robotics.

In analysis of the formation and propagation of cracks in concrete elements and struc-
tures, AI methods are mainly used in situations where problems related to the creation of
mathematical models that allow complex relationships between input signals and selected
output signals to be mapped appear. Growing interest in these heuristic systems is also due
to the possibility using them when standard methods fail or are not very effective [233].

It should also be added that, recently, methods for diagnosing damage and cracks
in concrete structures based on non-invasive techniques, the so-called non-destructive
techniques (NDTs), have been widely developed. In general terms, the NDTs used in
concrete and reinforced concrete structures are mainly used to detect discontinuities in
the concrete structure. In addition to the methods already well known and used for many
years in this field, such as the sclerometric, ultrasonic, radiological, pull-out, and pull-off
methods, there are also modern and recently used NDTs that use various types of sensors
during research. These include NDTs such as:

• Sweep frequency [234];
• Ground penetration [235];
• Techniques using infrared [236];
• Techniques using fiber optic sensors [237];
• Techniques using cameras [238];
• Techniques using laser monitoring systems [239].

Assessing the possibilities and existing limitations of the above measurement methods,
it can be concluded that these modern and useful NDTs have the following characteris-
tics [240]:

• They provide very accurate measurement results;
• They minimize the costs of additional monitoring of the cracking process in the

structure by reducing the need to use it;
• They reduce the time needed to carry out the diagnostic process;
• They can minimize the number of sudden failures resulting from uncontrolled cracking

development because they provide accurate, specific, and invisible data in real time,
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e.g., data related to the development of the microcracking process in the material
structure or the corrosion of reinforcing bars in a reinforced concrete element.

5.4. Conclusions Resulting from the Review of Methods Used to Detect Cracks and Microcracks in
Concrete Elements

It should be noted that most of the currently known and used methods for the ob-
servation of defects in concrete and concrete elements and structures (Figure 10) can only
be used in an effective manner if they are applied after being closely correlated with the
scale of observation of a given defect in the material. Therefore, based on [241], Figure 11
shows most of the diagnostic methods previously described, with some significant details
added. The measurement methods were assigned to appropriate scales in terms of which
are capable of tracking damage in the concrete structure effectively. The diagram has
been thought of as an overview of the majority of the available methods in the field of
microcrack and crack assessment, beginning with the methods used for observation of
material structures at the molecular and nanoscale level and ending with measurement
techniques used in macroscale structures.
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It is worth mentioning that, in order to achieve the intended effect of the experiment
and properly estimate the size and morphology of the microcracks or cracks, an appropriate
damage analysis technique should be selected. It should be characterized by the following
parameters [242]:

• It should be relatively economical;
• It should detect defects quickly;
• It should be characterized by high resolution, i.e., capable of detecting very small

microcracks;
• It should provide quantitative information readily associated with an image analysis

system.
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In addition, the choice of the method for crack observation should depend on the type
of prevailing loads (static, dynamic, impact). It is then possible to detect even a very subtle
difference in the obtained research results. For example, in [208] and based on the analysis
of images obtained under an optical microscope, it was determined that the lengths of
cracks in the ITZ of concrete subjected to fatigue loads are 15% greater than cracks occurring
in the elements subjected to static loads.

Often, in order to assess the occurring damage accurately, two or even three research
methods are used in parallel, such as a combination of radiographic methods, laser holog-
raphy, or computerized tomography with AE or SEM [178,182,218,242,243]. In many cases,
AE or thermography with the ultrasonic method is used to analyze the location of damage
and the directions of its propagation [206,214].

Very good results in terms of the detection of concrete microcracks were also obtained
by combining the AE and DIC techniques [244,245] or AE with computational geome-
try [246]. It was found that the AE technique is useful in identifying the location of fracture
growth due to microcracks and macrocracks; however, DIC is useful in measuring crack
openings at their various locations. Moreover, the location of the crack tip is also estimated
with both techniques [247].

An accurate picture of cracking paths is obtained by juxtaposing several independent
concrete crack-tracking devices. For this purpose, a test stand consisting of an AE analyzer,
a computer microtomograph, and an SEM can be used [242]. During the analysis of the
structure of concrete samples, the AE sensor locates the damage occurrence, the tomograph
enables spatial scanning of the resulting defects, and the microscope takes photos of the
microstructure of the damaged material [242].

Currently, having computer tomographs applied, it is possible to precisely recognize
the structure of microcracks in the three-dimensional space of the sample. Subsequently,
by using the program to visualize the detected damage, an accurate spatial image of
discontinuities occurring in concrete is generated [248].

It should also be noted that recently, in the field of crack diagnosis in concrete elements,
NDTs have also been developed. AI-based methods are also being used more and more
often in such research.

When summarizing the characteristics of the methods that allow for effective diagnos-
tics of the process of microcracking and cracking in elements made of concrete, it should be
stated that all the techniques presented in Figures 10 and 11, and briefly characterized in the
text, confirm the progressive process of microcrack initiation and the phenomenon of their
multiplication and successive propagation alongside increasing load. Moreover, due to
different ways of detecting defects and different degrees of sensitivity, these measurement
methods can be used to identify microcracks and to analyze the effects of cracks in very
different types of brittle composites and at different intensities of occurring stresses [186].

6. Final Remarks

The strength and durability of concrete structural elements is largely determined by
defects and damage occurring in the structure of first young and then mature concrete.
This is due to the fact that weaker places in the concrete composite cause the concentration
of stresses and facilitate the penetration of various external factors. In the locations where
microcracks and cracks propagate, strength decreases, with local material destruction
and emergency conditions thus occurring. Therefore, the issues dealt with in the article
concern important aspects related to both the safety and serviceability of concrete structures.
These problems are quite difficult to analyze because the cracking of concrete in structural
elements results both from the specificity of reinforced concrete structures and from the
properties of inherent composites within a cement matrix.

Therefore, the article provides an in-depth review of issues related to the process of
the formation and propagation of microcracks and cracks in cement concretes. The content
of the dissertation focuses mainly on the reasons for the formation of microcracks in the
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material structure, the basic criteria classifying these defects, and the most commonly used
methods for their detection and analysis.

There are two types of causes of damage in concrete and reinforced concrete elements,
namely:

• Primary defects—resulting from the natural properties of the material or from design
and execution errors;

• Secondary defects—occurring during construction exploitation.

At this point, particular attention was paid to the danger of initiating microcracks
in the initial period of concrete curing, i.e., at an early age. The materials most exposed
to this phenomenon are massive concretes and high-performance concretes. It was also
established that it is possible to limit these adverse phenomena by modifying the binder of
such concretes with fly ash.

In the analyses, the types of cracks occurring in concrete composites were divided
according to eight specific criteria. The images of cracks occurring macroscopically in
reinforced concrete elements were studied depending on the type of prevailing loads, and
characteristic images of microcracks correlated with a specific case of macrocracks were
then extracted.

Due to the lack of complete data regarding the relationship between the trajectories of
macrocracks and the morphology of microcracks occurring in the structure of the material,
proprietary microscopic analyses of the damaged structures were carried out. Structural
elements damaged due to stretching, shearing, and torsion were considered. As a result of
the conducted analyses, the following has been established:

• In tensioned elements, microcracks are usually rectilinear in shape and occur primarily
in the ITZ area (Figure 9a);

• In shear elements, there are wing-type microcracks with straight wings that deviate at
different angles from the plane of the straight section of the microcrack (Figure 9b);

• Torsional stresses cause changes in wing microcrack morphology. While twisting, the
tips of the wings are twisted, and the concrete at the connection with the straight part
of the microcrack, i.e., places of stress concentration, is evidently crushed (Figure 9c).

In the second part of the manuscript, a broad review of diagnostic methods used to
locate and describe the propagation directions of cracks and microcracks in concrete was
performed. Both traditional and well-known measurement methods, as well as modern
and constantly developing diagnostic methods, were taken into account. It has been
determined that the first damage in concrete structures can be detected via one of several
diagnostic methods (Figure 10). The most common methods include microscopic, acoustic,
radiographic, and fractal methods, as well as those involving computerized tomography.
On the other hand, thermography and DIC belong to the group of modern methods used
to analyze cracks on the surface of concrete elements. However, it should be added that the
DIC technique is also effectively used in the process of tracking microcracks.

With regard to these two useful and relatively new diagnostic methods, a comparison
of their advantages and limitations in relation to their use was made. On this basis, it
was found that the main advantages of both thermography and the DIC method are the
non-contact method of conducting measurements and the possibility of locating damage
regardless of the dimensions of the structural element. Unfortunately, their disadvantages
include the complicated mathematical algorithms used to generate specific results from
the experiments. In case of the DIC method, preparation of samples for testing is also
problematic. However, this is compensated by very accurate results in the conducted
experiments and reductions in the costs related to the procedure of damage measurement.

In addition, based on the review of the latest literature in this field, it has been found
that, in the field of crack diagnostics in concrete elements, NDTs have undergone significant
development in recent years. Several brand new and useful ways of detecting defects in
materials have emerged in this area. It has been established that modern diagnostic tests in
this area include the use of methods such as sweep frequency and ground penetration, as
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well as those using infrared, fiber optic sensors, or laser monitoring systems. Moreover,
methods based on the phenomenon of AI are also increasingly used.

In order to entirely understand the processes of the formation and propagation of
microcracks and cracks in concrete, it is recommended to combine two or even three
measurement methods at the same time. In the future, such studies could help to sharpen
the criteria of the initiation and propagation of cracks, to predict the direction of the growth
of cracks, and to analyze complex problems related to the propagation of cracks.

It should be noted that the subject matter of microcracks and cracks in concrete and
structures made of concrete is important in many respects as it concerns, in a holistic
approach, the durability of buildings, the safety of people staying indoors, and costs related
to possible repairs to damaged structural elements. Therefore, this topic calls for further
studies concerning the development of modern non-destructive measurement techniques
that can be used for precise analysis of the formation and propagation of cracks in the
material. These techniques would enable the diagnosis of primary defects long before they
change into macroscopic damage and eventually cause form change in concrete. Such an
approach would prevent the need for costly repairs to damaged elements.
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82. Barnat-Hunek, D.; Grzegorczyk-Frańczak, M.; Szymańska-Chargot, M.; Łagód, G. Effect of eco-friendly cellulose nanocrystals on

physical properties of cement mortars. Polymers 2019, 11, 2088. [CrossRef]
83. Zhang, P.; Han, S.; Golewski, G.L.; Wang, X. Nanoparticle-reinforced building materials with applications in civil engineering.

Adv. Mech. Eng. 2020, 12, 1687814020965438. [CrossRef]
84. Chen, H.; Liu, D. Fracture and damage properties of high-strength concrete under cyclic loading. Constr. Build. Mater. 2022, 360,

129494. [CrossRef]
85. Zhang, P.; Han, X.; Guo, J.; Hu, S. High-temperature behavior of geopolymer mortar containing nano-silica. Constr. Build. Mater.

2023, 364, 129983. [CrossRef]
86. Golewski, G.L. Combined Effect of Coal Fly Ash (CFA) and Nanosilica (nS) on the Strength Parameters and Microstructural

Properties of Eco-Friedly Concrete. Energies 2023, 16, 452. [CrossRef]
87. Tu, Y.; Yu, H.; Ma, H.; Han, W.; Diao, Y. Experimental study of the relationship between bond strength of aggerates interface and

microhardness of ITZ in concrete. Constr. Build. Mater. 2022, 352, 128990. [CrossRef]
88. Naija, A.; Miled, K. Numerical study of the influence of W/C ratio and aggregate shape and size on the ITZ volume fraction in

concrete. Constr. Build. Mater. 2022, 351, 128950. [CrossRef]
89. Golewski, G.L. The Role of Pozzolanic Activity of Siliceous Fly Ash in the Formation of the Structure of Sustainable Cementitious

Composites. Sustain. Chem. 2022, 3, 520–534. [CrossRef]
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116. Radlińska, A.; Kaszyńska, M.; Zieliński, A.; Ye, H. Early-Age Cracking of Self-Consolidating Concrete with Lightweight and
Normal Aggregates. J. Mater. Civ. Eng. 2018, 30, 04018242. [CrossRef]

117. Szostak, B.; Golewski, G.L. Rheology of Cement Pastes with Siliceous Fly Ash and the C-S-H Nano-Admixture. Materials 2021, 14,
3640. [CrossRef] [PubMed]
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199. Łowińska-Kluge, A.; Jóźwiak, K. A study of the Resistance of Concrete to Corrosion using SEM and Microanalysis. Micros. Anal.

2006, 20, 9–11.
200. Gatty, L.; Bonnamy, S.; Felessoufi, A.; Clinard, C.; Richard, P.; van Damme, H. A Transmission Electron MicroscopySstudy of

Interfaces and Matrix Homogeneity in Ultra-High-Performance Cement-Based Materials. J. Mater. Sci. 2001, 36, 4013–4026.
[CrossRef]

201. Ouyang, Q.; Xie, Z.; Liu, J.; Gong, M.; Yu, H. Application of Atomic Force Microscopy as Advanced Asphalt Testing Technology:
A Comprehensive Review. Polymers 2022, 14, 2851. [CrossRef] [PubMed]

202. Shi, C.; Qian, B.; Wang, Q.; Zunino, F.; Zhao, J.; Shen, X. Structure analysis of beta dicalcium silicate via scanning transmission
electron microscope (STEM). Constr. Build. Mater. 2022, 348, 128720. [CrossRef]

203. Rybczynski, S.; Schaan, G.; Dosta, M.; Ritter, M.; Schmidt-Döhl, F. Discrete Element Modeling and Electron Microscopy Investi-
gation of Fatigue-Induced Microstructural Changes in Ultra-High-Performance Concrete. Materials 2021, 14, 6337. [CrossRef]
[PubMed]
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