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Abstract: The purpose of this study is to investigate the performance changes in steel-stranded
hangers under complicated loads in moist or corrosive environments. First of all, corrosion tests were
carried over three time periods (360 h, 720 h, 1080 h) on glossy and galvanized steel strands and
different levels of corrosion were obtained. Subsequently, tensile tests were carried out on strands
with different degrees of corrosion (including no corrosion) at different deflection angles. The test
results showed that the ultimate bearing capacity of the uncorroded steel strand at the deflection
angle decreased by 21.8%, while the ultimate bearing capacity of the glossy strand with the longest
corrosion time decreased by 27.1%. For the same corrosion time, the ultimate bearing capacity of the
glossy steel strand decreased at a higher rate than that of the galvanized steel strand. In addition,
numerical simulations show that the angle of deflection reduces the ultimate bearing capacity of
the steel strand. It is also found that both deflection angle and corrosion pit depth have a positive
correlation on the maximum stress of the pit, and that the stress of the pit is highest near the fixed
end. This study provides meaningful guidance for the design and maintenance of bridge hangers,
which can extend the service life of the hangers.

Keywords: steel strand; corrosion; deflection angle; corrosion pit

1. Introduction

Seven-wire strands are an important part of various prestressed structures, especially
in bridges where they are widely used [1]. The main unit of hangers is the seven-wire
strand, which mainly bears the tensile load. In recent years, many half-through and through
arch bridges with floating decks have failed due to the breakage of their hangers [2–4],
such as the South Gate Bridge (2001), the Peacock River Bridge (2011), and the Nanfang Ao
Bridge (2019). The hangers of these bridges all broke at the anchorage and showed obvious
signs of corrosion, which was the main cause of failure [5–8]. The technical report of the
FHWA presents cases of prestressed strands breaking on existing bridges, and finds that
corrosion of prestressed strands occurs mainly at weak locations in the protective jacket,
namely the protective jacket’s seam at the anchorage. Corrosive substances and air enter
through the seams, causing corrosion of the steel strands inside the hangers, a process that
occurred at the Sunshine Skyway Bridge and the Niles Channel Bridge [9].

The corrosion of steel strands has become a common problem, so many experts and
scholars are conducting research on this phenomenon. Zeng and Gu et al. [10] conducted
an experiment on the electrochemically accelerated corrosion of steel strands and on the
static load tensioning of precorroded steel strand samples, and concluded that the ultimate
strength of a steel strand decreases rapidly with the increase in the degree of corrosion.
Chi-Ho Jeon [11] proposed that the degree of corrosion of steel strands depended on three
crater structures and introduced a formula for calculating the cross-sectional loss area
according to present the crater structure. Moreover, the degree of stretching of corroded
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strands was evaluated by tensile tests, and the reduction in the degree of stretching was
greater than the reduction in the cross-sectional area. The tensile tests showed that corroded
strands or prestressed strands always failed at their minimum cross section [12,13]. The
yield strength and elongation of steel strands were reduced by corrosion [14]. Static tensile
tests indicated that the deformation capacity of corroded strands was significantly reduced,
and the shrinkage of necking tended to disappear as the damage mode changed from
plastic fracture to brittle fracture [15,16]. Liu showed through tests that with the increase
in the average degree of corrosion, there was a significant change in the cross-sectional
area around the corrosion pit and the longitudinal direction of stress concentration [17].
The above tests on corroded strands were conducted in axial tension, but in reality, the
mechanical properties of the steel strands are changed, because the steel strands have a
certain angular deviation caused by loading and installation.

Corrosion is the main factor causing steel-stranded hangers to break, but in recent
years, some scholars believe that the bending deformation generated at the two fixed ends
of the hangers is also the cause of their sudden breakage [18–20]. Bending loads can result
in variations in the axial force of the space truss [21]. Similarly, the steel strands inside
the hangers were stressed by combined axial and bending loads [22]. Bending loads were
mainly caused by wind loads or mechanical systems [23]. Steel wire rope is easy to fatigue
under bending loads, resulting in the service life of the wire rope being shorted [24]. Diego
tested steel strands by applying bending and axial loads. It was found that the maximum
stress occurred at the maximum bending moment and that the damage to the strands was
controlled by the axial forces [25]. Costello proposed a theory that predicted the stresses
in multistranded steel strands under axial, bending, and torsional loads [26]. Hristo I.
Ivanov discussed the stresses in multistranded steel strands by testing them under different
diameters of wire ropes, structures, levels of friction, and other parameters, and found that
bending leads to a reduction in the wire rope’s fracture force [27].

According to the above literature, scholars have studied steel strands mainly in terms
of the effect of corrosion on their mechanical properties. There are not many studies on
steel strand bending, and what studies exist all study the effect of individual factors on steel
strands. However, in reality, under loads, the arch ribs are displaced relative to the deck
plate and the hangers create a deflection angle [28], as in Figure 1. The deflection angle
and corrosion together act on the hangers, causing changes to the mechanical properties
of the hangers and shortening their service life. Therefore, it is necessary to investigate
the effect of the deflection angle on corroded strands to complement the theoretical and
experimental data from related studies and provide scientific guidance for subsequent
hanger monitoring. In this paper, tensile tests on steel strands with different degrees of
corrosion are carried out at different deflection angles, based on corrosion tests. The finite
element model analysis is then used to verify the correctness of the test results and the
effect of corrosion pit depth and location on the maximum stress in the steel strand.

In this paper, corrosion tests were carried out over three time periods (360 h, 720 h,
and 1080 h) on glossy and galvanized steel strands to obtain different levels of corrosion.
Subsequently, anchor plates with different deflection angles were designed and installed on
the counterweight frame to perform tension tests. The test results show that the ultimate
bearing capacity of uncorroded strands can be reduced by 21.8% at the deflection angle and
by 27.1% for corroded strands. The ultimate load bearing capacity of the glossy steel strands
decreases more than that of the galvanized steel strands. Secondly, in order to achieve
better test accuracy, a new model of “ loaded and fixed ends” is proposed. Compared with
the simulation results, the model proves to be in good agreement with the test process
and close to reality. In addition, a model of a steel strand with corrosion pits is built to
analyze the variation in stresses in the depth and location of the pits at the given deflection
angles. The study finds that the deflection angle and depth are positively related to the
maximum stress of the pit, and that the stress of the pit is greatest near the fixed end. From
the above analysis, the deflection angle should be given more attention, especially in the
design and maintenance of hangers. Moreover, the new numerical model allows for a better
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reproduction of the test process and provides a more realistic approach to the study of steel
strands. It is recommended that galvanized steel strands are used in the construction of
hangers, which can slow down the rate of corrosion and extend the life of the hangers.
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Figure 1. Deflection angle of a hanger.

2. Corrosion Test
2.1. Test Process

The corrosion tests were conducted on glossy seven-wire steel strands and galvanized
seven-wire steel strands. The length of all strands is 1900 mm, their diameters are 15.2 mm,
and their tensile strength is 1860 MPa. The static test was carried out using the copper
salt spray test, and corrosion times of 360 h, 720 h, and 1080 h were used. Glossy steel
strands and galvanized steel strands were divided into groups 1 and 2, which included
8 strands for each of the 3 corrosion time periods, for a total of 24 corroded strands per
group. The corrosion of steel strands was conducted in a salt spray test chamber, and the
influence of temperature, humidity, and other factors on the concentration of the chloride
ion field was comprehensively considered. Sodium chloride, cupric chloride dihydrate,
glacial acetic acid, and distilled water were used to prepare a salt spray corrosion solution,
with its concentration controlled at 0.26 g/L and pH value controlled between 3.1 and 3.3.
See Table 1 for the components of the salt spray corrosion solution. The temperature of
the salt spray corrosion chamber was controlled at 50 ◦C, the temperature of the saturated
air cylinder was controlled at 65 ◦C, the pressure was set at 1.0 kg/cm2, and the timing
function was used to strictly control the time.

Table 1. Chemical composition of salt spray corrosion solution.

Chemical Composition H2O NaCl CuCl2·2H2O CH3COOH

Amount/10 L 1 9437.4 g 500 g 2.6 g 60 mL
Content/10 L 1 94.37% 5% 0.03% 0.6%

1 These are contents of each substance per 10 L of solution.

After the completion of the corrosion test, the impurities on the surface of the steel
strands due to corrosion were brushed. In order to prevent small impurities and chloride
ions from corroding the steel strand matrix, after cleaning, steel strands were immersed in
chromic acid solution to completely neutralize the impurities and chloride ions remaining
on the surface of the steel strands (Table 2). Then, the strands were washed with clean
water, and weighed and recorded after drying.

Table 2. Chromic acid solution.

Chemical Composition H2O CrO3 AgNO3

Amount/1 L 1 790 mL 200 g 10 g
Content/1 L 1 79.0% 20.0% 1.0%

1 These are contents of each substance per 1 L of solution.
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2.2. Comparative Analysis of Corrosion Patterns

Corrosion patterns on the steel strands before cleaning are shown in Figures 2 and 3.
When the corrosion time is 360 h, yellow-brown substances quickly appear on the surfaces
of the glossy steel strands, while the surfaces of the galvanized steel strands are only
partially covered in reddish-brown substances, not fully subjected to the corrosion effect.
Because the galvanized steel strands contain protective galvanized layers, the corrosion
solution reacts with the galvanized layers first, and the corrosive substances do not come
into contact with the strand inside. When the corrosion time is 720 h, a large number of
yellow-brown substances appear on the surfaces of glossy steel strands, and the corrosion
rate is faster. The surfaces of galvanized steel strands still have a large number of red-brown
substances, but a small quantity of local yellow-brown substances begin to appear. At
this time, the steel strands are into the rapid corrosion stage. When the corrosion time
reaches 1080 h, the degree of corrosion of the glossy steel strands is larger, and iron oxide
and other black mixtures appear on the strands’ surface. The surfaces of galvanized steel
strands are covered with reddish-brown substances, the areas of yellow-brown substances
are relatively expanded and there is a mixture similar to iron oxide.
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After a series of cleaning and drying procedures, the corrosion products on the surface of
the steel strand are removed, and the patterns of the steel strands are shown in Figures 4 and 5.
After 360 h of corrosion, the surfaces of the glossy steel strands are no longer smooth, and
there are a lot of smaller corrosion pits. Meanwhile, the galvanized steel strands have white
substances on the surface, and the galvanized layers begin to corrode, with small corrosion
pits locally. After 720 h of corrosion, the corrosion pits of the glossy steel strands become
larger and develop more rapidly; some join together to become larger corrosion pits. The
galvanized protective layers of the galvanized steel strands are almost completely corroded,
revealing corrosion pits on the inside steel strand; at this time, the corrosion pits are still
relatively small. After 1080 h of corrosion, the area of the corrosion pits of glossy steel
strands is larger. The development of corrosion pits slows down compared to 720 h, but
the depth of the corrosion pits on the steel strand deepens, and the volume of the strand is
obviously reduced. The galvanized protective layers of the galvanized steel strands have
all been corroded, exposing the internal steel strand, and larger corrosion pits appear on
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the inner steel strands. From corrosion tests of the glossy steel strands and galvanized
steel strands, corrosion pits develop rapidly in the early stage of corrosion, and gradually
expand in depth in the later stage; with the corrosion time prolonged, their degrees of
corrosion of both the glossy steel strands or galvanized steel strands are gradually deepened;
for galvanized steel strands, because of the galvanized layer of protection, the corrosion
solution reacts with the surface zinc first, which can slow down the corrosion rate of the
internal steel strand.
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2.3. Degree of Corrosion

For steel strands, the material shape shows no obvious change before and after cor-
rosion, which is not convenient for directly measuring or calculating its defect area. The
degree of corrosion is the most important parameter to evaluate the mechanical properties
of the tested steel strands. In electrochemistry, this is usually defined by mass loss [29–31],
so the weight loss method is used to quantitatively analyze the degree of corrosion of steel
strands. The quality of the steel strand before the corrosion test is recorded. After cleaning
the impurities and drying the steel strand, the quality of the steel strand after corrosion is
recorded again. The degree of corrosion of the steel strand is calculated using Equation (1).
To see the degree of corrosion of the steel strand in the unstressed state, see Tables 3 and 4.

S =
mbe f ore − ma f ter

mbe f ore
× 100% (1)

where S is the degree of corrosion (%), mbefore is initial mass (g), and mafter is mass after
corrosion (g).

Table 3. Degrees of corrosion of glossy steel strands.

Categories Corrosion
Time (h) Number Initial

Mass (g)
Mass after

Corrosion (g)
Degree of

Corrosion (%)
Average

(%)

Glossy
steel

strands

360

1-1-1-1 2473.1 2401.0 2.92

2.28

1-1-1-2 2456.0 2401.3 2.23
1-1-2-1 2459.8 2406.2 2.18
1-1-2-2 2473.5 2416.7 2.30
1-1-3-1 2478.8 2415.5 2.55
1-1-3-2 2451.4 2401.5 2.04
1-1-4-1 2460.3 2408.4 2.11
1-1-4-2 2459.7 2411.7 1.95

720

1-2-1-1 2460.0 2378.4 3.32

3.37

1-2-1-2 2455.4 2367.4 3.58
1-2-2-1 2464.7 2377.8 3.53
1-2-2-2 2469.3 2387.2 3.32
1-2-3-1 2462.7 2376.1 3.52
1-2-3-2 2454.5 2375.4 3.22
1-2-4-1 2454.0 2371.1 3.38
1-2-4-2 2462.1 2386.9 3.05

1080

1-3-1-1 2491.0 2376.3 4.60

4.81

1-3-1-2 2489.6 2379.3 4.43
1-3-2-1 2479.3 2364.2 4.64
1-3-2-2 2486.3 2346.6 5.62
1-3-3-1 2488.2 2360.3 5.14
1-3-3-2 2485.3 2378.6 4.29
1-3-4-1 2487.4 2371.9 4.64
1-3-4-2 2494.3 2366.1 5.14

It can be seen from Tables 3–5 and Figure 6 that the average degree of corrosion of the
glossy steel strands increases with the corrosion time, and the average degree of corrosion
of steel strands increases by 0.35% every 100 h of corrosion. The average degree of corrosion
of galvanized steel strands also increases with the corrosion time, and the average degree of
corrosion of steel strands increases by 0.24% every 100 h of corrosion. However, compared
with glossy steel strands, the average degree of corrosion of the galvanized steel strands is
lower over the same corrosion time, and the corrosion rate of the galvanized steel strands
is also lower than that of the glossy steel strands. In the corrosion time of 360 h, the
average degree of corrosion of the glossy steel strands is 2.85 times that of the galvanized
steel strands, and after 720 h and 1080 h of corrosion, the average degree of corrosion of
the glossy steel strands is 1.98 times and 1.86 times that of the galvanized steel strands,



Buildings 2023, 13, 795 7 of 24

respectively. With the prolongation of corrosion time, the average degrees of corrosion of
the two gradually become similar. Because the glossy steel strands directly react with the
corrosion solution in the early stage, the galvanized coating of the galvanized steel strands
reacts with the corrosion solution, and the corrosion rates of the two are different. In the
later stages of corrosion, the galvanized layers of the galvanized steel strands are corroded
off and the internal steel strands are exposed to corrosion, which have a similar corrosion
rate as the glossy steel strands. Therefore, the corrosion rate and degree of corrosion of
glossy steel strands are greater than those of galvanized steel strands, and the galvanized
protective layers can effectively slow down the corrosion rate of the steel strands.

Table 4. Degrees of corrosion of galvanized steel strands.

Categories Corrosion
Time (h) Number Initial

Mass (g)
Mass after

Corrosion (g)
Degree of

Corrosion (%)
Average

(%)

Galvanized
steel

strands

360

2-1-1-1 2466.6 2450.5 0.65

0.80

2-1-1-2 2462.5 2443.4 0.78
2-1-2-1 2464.3 2442.4 0.89
2-1-2-2 2470.0 2448.2 0.88
2-1-3-1 2458.0 2436.9 0.86
2-1-3-2 2468.9 2446.4 0.91
2-1-4-1 2470.7 2452.2 0.75
2-1-4-2 2469.4 2452.2 0.70

720

2-2-1-1 2455.9 2416.8 1.59

1.70

2-2-1-2 2461.7 2418.3 1.76
2-2-2-1 2467.1 2421.9 1.83
2-2-2-2 2464.7 2433.9 1.25
2-2-3-1 2472.2 2424.2 1.94
2-2-3-2 2463.2 2427.6 1.45
2-2-4-1 2471.3 2425.7 1.85
2-2-4-2 2467.7 2420.4 1.92

1080

2-3-1-1 2462.5 2395.9 2.70

2.58

2-3-1-2 2480.6 2407.8 2.93
2-3-2-1 2467.5 2401.0 2.70
2-3-2-2 2470.7 2401.0 2.82
2-3-3-1 2466.7 2408.0 2.38
2-3-3-2 2471.9 2412.0 2.42
2-3-4-1 2468.9 2410.0 2.39
2-3-4-2 2467.0 2410.9 2.27

Table 5. Significant analysis of the degrees of corrosion of glossy and galvanized steel strands.

Corrosion
Time Categories Average Standard

Deviation p-Value

360 h
Glossy steel strands 2.28 0.31

4.22 × 10−9
Galvanized steel strands 0.80 0.10

720 h
Glossy steel strands 3.37 0.18

3.19 × 10−10
Galvanized steel strands 1.70 0.25

1080 h
Glossy steel strands 4.81 0.44

5.46 × 10−9
Galvanized steel strands 2.58 0.24
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3. Tension Test of Steel Strands with Deflection Angles

The deflection angle of the hanger is due to the relative displacement of the two
anchorage ends. This deflection angle causes the strand to bend and leads to stress being
concentrated on one side of the strand. A deflection angle tensile test was carried out using
equipment specifically designed for the test. Figures 7 and 8 show the schemes of the test
devices used. In order to realize the deflection angles of the strand, anchor plates with four
deflection angles are set: 0 mrad, 10 mrad, 20 mrad, and 30 mrad. A and 1 correspond to
the deflection angle of 0 mrad, and the other deflection angles are shown in Figure 9.
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The test objects are steel strands with different degreed of corrosion (including no
corrosion), with lengths of 1900 mm, which is about one-quarter of the actual short hanger
length. According to Fu [32], if the actual length of the hanger is more than ten times longer
than the length of the tested steel strands, the size effect needs to be considered. Therefore,
this test does not need to consider the effect of size, and the results are close to the actual
scenario. In the test, the bending and tension do not occur simultaneously, while the hanger
works under the influence of both tension and bending. However, it was pointed out by
Qin [33,34] that the final stress results of the bridge hangers were not influenced by the
sequence of the load imposed, but rather the prestress initially applied to the hangers.
According to Qin’s study, the bending and tensioning of the steel strand in this test does
not affect the final results.

Chen discusses sensor deployment positions by means of articulated and fixed bound-
aries, where the sensors are installed at a certain distance from the boundary [35]. The
steel strand is therefore polished clean, and strain gauges are attached 3 cm from the
manometer to capture the strain placed on the strand during tension. In the test, one end of
the steel strand is anchored and the other end is stretched by a hydraulic jack, as shown
in Figures 7 and 8. The test is first loaded at a rate of 10 kN per grade until reaching 90 kN,
after which loading is increased at 5 KN per grade. The test stops with the failure of one of
the seven wires, and the final tension is recorded.

4. Test Results
4.1. Uncorroded Steel Strand Results

The steel strand enters the yielding stage after the tension reaches 220 KN at a deflec-
tion angle of 0 mrad, while at a deflection angle of 30 mrad, the tension enters the yielding
stage with only 180 KN of tension. With the increase in the deflection angles, the tensile
force required for the steel strand to enter the yielding stage is gradually reduced. After
reaching the yielding stage, it is difficult to impose tension until the strand breaks, and
the steel strand breaks, as shown in Figures 10 and 11. The tension end of the steel strand
shows an unhelix phenomenon, where the steel strand’s twisting direction reverses and
the strand unwinds. At the fixed end of the steel strand, the first wire breaks. This initial
break results in stress being redistributed as well as concentrated, and the rest of the wires
break in turn, with the tension end of the steel strand unhelixed, so the fixed end of the
steel strand presents a scattered fracture. The bearing capacity of the steel strand is shown
in Table 6.
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Table 6. Bearing capacity of steel strands with different deflection angles.

Deflection Angle (mrad)
Ultimate Bearing Capacity of Steel Strand (KN)

Experimental Results Average

0
268.9

269.5269.5
270.1

10
252.8

251.7252.6
249.9

20
225.6

224.6224.5
223.8

30
210.4

210.6210.6
210.8

The fitting equation is fitted based on the average of the test results, as

F = −2.038θ + 269.67 (2)

where F is the bearing capacity (KN) and θ is the deflection angle (mrad).
From Figure 12 and Equation (2), it can be seen that the bearing capacity of the steel

strands is negatively linearly related to the deflection angles, i.e., the larger the deflection
angle, the smaller the bearing capacity of the steel strand. From Figure 13, the deflection
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angle affects the deformation of the steel strand, and the mechanical properties of the steel
strand decay as the deflection angle increases. With a deflection angle from 0 mrad to
30 mrad, the bearing capacity of the steel strand decreases by 58.9 KN, a reduction of about
21.8%. For every 1 mrad increase in the deflection angle, the bearing capacity of the strand
is reduced by 1.96 KN, a reduction of about 0.73%. When the steel strand is subjected to a
deflection angle and tensioning, the steel strand is not only influenced by the tensile force,
but also by the bending stress generated by the deflection angle, resulting in a reduction in
the bearing capacity of the steel strand. Comparing the steel strand breakage phenomenon,
most of their fractures occur at the fixed end. This is the impact of the deflection angle
caused by the bending stress, which is the largest at the fixed end.
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4.2. Corroded Steel Strand Results

Glossy and galvanized steel strands were stressed by static tensile tests under different
deflection angles, and the following test results are obtained. The shapes of corrosion
damage on the tested strands are as shown in Figure 14. The entire strand appears to
have an “exploded” shape, where the wires are scattered around the middle wire in the
opposite direction. Compared with the location of damage occurring in the uncorroded
strand, damage in the corroded steel strand occurs near the fixed end, where the corrosion
level is the largest. Here, the cross-sectional area is reduced by the concentration of tension,
so the wire is more likely to enter the yield stage and be pulled off. The uneven degrees
of corrosion in various parts of the steel strand leads to uneven force distribution and
uneven fracturing.

As shown in Tables 7 and 8, the deflection angles are negatively correlated with the
ultimate bearing capacity of both the glossy strand and galvanized strand after the same
corrosion time. Specifically, the larger the deflection angle, the smaller the ultimate bearing
capacity. For glossy steel strands tested at a deflection angle, when the corrosion times
ranged from 360 h to 1080 h, the ultimate bearing capacity decreases from 24.6%, to 27.4%.
For galvanized steel strands, the ultimate bearing capacity decreases from 12.9% to 16.1%
in the same case.
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Table 7. Bearing capacity of corroded glossy steel strands with different deflection angles.

Categories Corrosion
Time (h)

Deflection
Angles (mrad)

Ultimate Bearing
Capacity (KN)

Average Ultimate
Bearing Capacity (KN)

Glossy steel
strands

0

0 - 269.5
10 - 251.7
20 - 224.6
30 - 210.6

360

0
263.6

263.4263.2

10
235.5

238.3241.1

20
210.6

211.8212.9

30
199.5

198.5197.4

720

0
259.0

258.8258.6

10
237.4

236.0234.5

20
202.1

203.9205.6

30
186.4

188.6190.7

1080

0
253.4

251.6249.8

10
223.2

222.2221.2

20
193.4

194.2194.9

30
181.5

182.6183.6
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Table 8. Bearing capacity of corroded galvanized steel strands with different deflection angles.

Categories Corrosion
Time (h)

Deflection
Angles (mrad)

Ultimate Bearing
Capacity (KN)

Average Ultimate
Bearing Capacity (KN)

Galvanized
steel

strands

0

0
260.2

260.2260.2

10
254.3

255.6256.8

20
243.7

243.8243.9

30
236.4

236.5236.5

360

0
256.2

258.0259.8

10
253.3

253.3253.3

20
236.5

236.2235.8

30
233.8

224.6215.4

720

0
252.5

253.3254.1

10
242.5

244.3246.1

20
230.6

236.6242.6

30
220.4

221.8223.2

1080

0
242

246.1250.2

10
232.2

232.4232.6

20
231.7

226.7221.7

30
204.3

206.5208.7

As shown in Figures 15 and 16, the ultimate bearing capacity decreases with increasing
corrosion time at the same deflection angle. For the glossy steel strand, before the corrosion
time of 720 h, the reduction rate of the ultimate bearing capacity is faster than after 1080 h.
This is because in early stage of the corrosion, the corrosion pits rapidly grow, and the
contact area between the steel strand and the corrosion solution expands, which results
in a larger corrosion area. In the later stages of corrosion, the corrosion pits are already
connected, and the corrosion rate is decreased, which makes the change in the steel strand’s
degree of corrosion small and also slows down the reduction rate of the ultimate bearing
capacity. For the galvanized steel strands, at the corrosion times of 0 and 360 h, the ultimate
bearing capacity of the strand at the same deflection angle is not much different. The
reason for this is that within 360 h of corrosion, the corrosion solution only reacts with the
galvanized layer, so the reaction time is longer. The degree of corrosion of the galvanized
steel strand is not deepened, so its ultimate bearing capacity does not change significantly.
According to Figure 17 and Table 9, the ultimate bearing capacity of the glossy steel strand
is lower than that of galvanized steel strand at the corrosion time of 1080 h. When the
deflection angles increase, the difference between the ultimate bearing capacity of the two
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strands also increases. In other words, in the same corrosion time, the degree of corrosion
of the galvanized steel strand is less than that of the glossy steel strand, which is why its
ultimate bearing capacity is superior. The deflection angle and corrosion together have a
deeper effect on the ultimate bearing capacity of the glossy steel strand. Hence, galvanized
steel strands have a better corrosion resistance and can extend the life of the hangers.
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Table 9. Significance analysis of the deflection angle and corrosion of glossy steel strands.

Source of
Difference

Sum of
Squares of
Deviations

Degree of
Freedom

Mean Sum
of Squared
Deviations

F p-Value

Deflection angle 20,693.69 3 6897.90 1897.63 1.27 × 10−20

Corrosion time 2934.46 3 978.15 269.09 6.74 × 10−14

Deflection angle
and Corrosion

time
157.65 9 17.52 4.82 0.003

Error 58.16 16 3.63
Sum 23,843.96 31

5. Finite Element Simulation
5.1. Effect of Deflection Angle on Steel Strand

Based on the finite element software ANSYS Workbench 2021, a seven-wire steel
strand model is established to propose tensile tests with different deflection angles, to
obtain more data on the ultimate bearing capacity of steel strands at different deflection
angles, and to verify the law of the influence of deflection angles on the ultimate bearing
capacity. The geometrical parameters and material properties of the steel strands are shown
in Table 10. The SOLID186 unit is used for modeling, and there are 143,587 units. The
model length is 1500 mm, and the friction between each wire is 0.16 [36]. The contact mode
is body interaction and the solver is MPP [37]. Under the relative balance of calculation
accuracy and time, each steel wire is divided into 12 equal parts, based on the divided
section along the strand axis using a sweeping method to divide the steel wire. Under
this method of division, each microsegment is perpendicular to the wire axis, which is
conducive to the tensile deformation of the microsegment along the axis direction. The
mesh division diagram is shown in Figure 18.

Table 10. Steel strand geometric parameters and material properties.

Parameter Value

Diameter (mm) 15.2
Diameter of central wire (mm) 5.2

Diameter of side wire (mm) 5
Twisting distance (mm) 270
Elastic modulus (GPa) 198
Yield strength (MPa) 1860

Poisson’s ratio 0.3
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The von Mises yield criterion is used to describe the intrinsic structure of the steel
strand with respect to the yield criterion and the bilinear isotropic strengthening criterion,
as shown in Figure 19.
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Figure 19. Steel strand stress–strain curve.

One end of the steel strand is fixed by the anchor plate, and the other end is crossed by
the hydraulic jack. The fixed end of the steel strand is subject to complete fixation, and the
loaded end of the steel strand is free in the axial direction and restrained in the remaining
direction, as shown in Figure 8. According to the actual test situation, both ends of the
steel strand model are sliced and the nodes of the two loaded sections are coupled with the
nodes of the remaining strand sections using a shared topology, so that a strand becomes
three parts, that is, the fixed end (anchor end), the loaded end, and the strand body, as
shown in Figure 20. Setting the fixed end and the loaded end will effectively simulate the
actual conditions of the test, and the loaded end applies a displacement in the Y direction
corresponding to the deflection angle to achieve the deflection angle.
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Figure 20. Fixed end and loaded end of the steel strand model.

The deflection angles of 0 mrad, 5 mrad, 10 mrad, 15 mrad, 20 mrad, 25 mrad, and
30 mrad are set. The steel strands under different deflection angles are subjected to axial
tension until they fracture; the fracture port of the strand model is as shown in Figure 21.
The strand models fracture at both ends, in the same position as the test fracture. The
fracture is uneven and similar to the “unhelix” phenomenon in the test. Under the deflection
angle and load, the stress of the side wire opposite to the direction of deflection angle is
the largest. It is the first to break, resulting in a reduction in the strand’s stiffness. The
remaining wires are pulled off one after another and the steel strand is destroyed.
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From Figure 22, it can be concluded that there is a significant weakening of the ultimate
bearing capacity of the steel strand at different deflection angles. The ultimate bearing
capacity of the steel strand decreases to 212.2 KN at a deflection angle of 30 mrad, which is
about 21.7% less than that without deflection. Comparing the test results with the numerical
simulation results, the numerical simulation results are mostly higher than the test results.
At the deflection angle of 20 mrad, the error between the two is 1.9%, and the overall
error is within 5%, indicating that the numerical simulation and the actual test match well.
The reason for the errors between the test results and numerical simulation results are
as follows: (1) In fact, the mechanical properties of each steel strand are not exactly the
same; there are errors in the production process, while the steel strand simulation model is
consistent and the geometric parameters and material properties are the same. (2) During
the loading process, the steel strands’ cross sections are not so smooth, and the steel strands
are not subjected to the average surface load in the test, resulting in an uneven force being
applied on the wire in the strand; the numerical simulation does not have this problem.
(3) The friction coefficient between the wires in the numerical simulation is based on the
literature, and the actual steel strands in the friction coefficient between the wires are not
the same, resulting in the errors between the two results.
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5.2. Analysis of Corrosion Pit Parameters
5.2.1. Depth of Corrosion Pits

According to the relevant literature [38], it is shown that t the test piece is defective
at the location of the stress concentration, where damage is most likely to occur. For
corroded steel strands, the corrosion pits are where the stresses are concentrated. Therefore,
researching the stress of each corrosion pit in the strand is unrealistic and meaningless,
but can also cause an increase in the calculation. In the case of ensuring the accuracy
of the calculation, this paper selected the corrosion pit in the most unfavorable location
for simulation.

Based on ANSYS Workbench 2021, this paper calculates the corrosion pits of spheres
with radii from 0.2 to 0.6 mm, and the position of the pits is at one-twelfth from the fixed
end, as shown in Figure 23. The length of the steel strand model is 540 mm, and the
geometric parameters and material properties are shown in Table 10. One end of the
corroded steel strand is the fixed end, and the other end is imposed with a surface load of
500 MPa.

In the finite element software analysis, the quality of the mesh is also critical. For accu-
rate and moderate calculations, the steel strand with corrosion pits needs to be encrypted
at the level of the corrosion pits. The pit is divided by 0.1 mm, the steel strand around the
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pit is divided by 1 mm, and the mesh is divided, as shown in Figure 24. Model-related
information is presented in Table 11.
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Figure 24. Erosion pit grid diagram.

Table 11. Information on corrosion pit models.

Unit Number of Units Corrosion Pit Size Steel Strand Size

Solid186 122,195 0.1 mm 1 mm

After simulation and analysis, the stress cloud diagram for each deflection angle of
the steel strand with a 0.5 mm corrosion pit is shown in Figure 25. The stress distribution
of the pit is symmetrically distributed at the center of the circle, and the maximum stress
appears in the area near the center. Moreover, the stress is distributed in a belt pattern in
the axial direction, and the stress of the pit decreases gradually from the center to both
sides. With the increase in the deflection angle, the stress distribution area shows a band
distribution, but the maximum stress is gradually increasing. The maximum stress in the
pit is 1009.9 MPa when deflection does not occur, and increases to 1907.1 MPa when the
deflection angle is 30 mrad. The difference between the two is 897.2 MPa, which is an
88% increase in stress, equivalent to an increase of 29.9 MPa per 1 mrad of deflection. The
maximum growth in stress is 161.3 MPa when the deflection angle increases from 0 mrad
to 5 mrad, and 128.2 MPa when the deflection angle increases from 25 mrad to 30 mrad.
Because plastic transformation occurs at the corrosion pit at this time, the maximum stress
growth rate slows down with the increase in the deflection angle.
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In Figures 26 and 27, it can be seen that the deflection angle is linearly and positively
correlated with the maximum stress regardless of the corrosion pit depth; that is, the higher
the deflection angle, the higher the maximum stress. With the same deflection angle, the
depth of the corrosion pit becomes deeper and the maximum stress of the pit becomes
larger. At the initial 0.2 mm to 0.4 mm, the maximum stresses in the corrosion pits grow
faster, but at 0.4 mm to 0.6 mm, the maximum stresses grow slower. From this situation, it
can be concluded that in the early stage of corrosion pit development, shallow corrosion
pits can cause rapid increase in stress; when the pits develop to a certain depth, the increase
in stress will slow down and gradually enter the yielding stage. The deflection angle would
aggravate the corrosion of the steel strand. The effect between the deflection angle and
corrosion is mutually promoting, resulting in a reduction in the cross-sectional area of the
steel strand and an increase in stress, thus causing the steel strand to break. Therefore, we
should focus on the deflection behavior and corrosion of the steel strands and implement
strong anticorrosion measures to avoid the failure of the working ability of the steel strand.
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5.2.2. Location of Corrosion Pits

During the corrosion process, pits are generated at different locations on the steel
strand. In ANSYS Workbench 2021, the model’s length is 540 mm and the material parame-
ters are listed in Table 10. Deflection angles of 0 to 30 mrad are set, and the depth of the
pits is 0.5 mm. One end of the steel strand is the fixed end and one end is surface-loaded
at 500 MPa. The pits are located at 1/12, 1/6, 1/3, and 1/2 of the strand (that is, 45 mm,
90 mm, 180 mm, and 270 mm from the fixed end, respectively).

Figure 28 shows that the maximum stress increases with the increase in the deflection
angle at 1/12, 1/6, and 1/3. However, the maximum stress in the corrosion pit at 1/2
is negatively linearly related to the deflection angle, and the maximum stress decreases
instead when the deflection angle increases. When deflection does not occur, the maximum
stress at each position is around 1000 MPa, and there is no significant difference. However,
when the steel strand is deflected, the maximum stresses are gradually separated, and at
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the same deflection angle, the maximum stresses at 1/12 are all higher than the maximum
stresses at the other positions, which indicates that the closer the fixed end is, the higher its
maximum stress is. Figure 29 shows that at the deflection angle of 15 mrad, the corrosion
pit is located at 1/2 of the steel strand and the maximum stress is not a complete band
distribution, after which the maximum stress appears at the fixed end and the maximum
stress at the corrosion pit does not change in an obvious way. From the above observations
and data, the stress of the corrosion pit near the fixed end is the largest. Due to the bending
moment generated by the steel strand with the deflection angle, the bending moment
produces a higher bending stress near the fixed end, causing the stress of the corrosion pit
also the largest at this end. In reality, deflection also occurs in the working conditions of
hangers made of steel strands, and corrosive substances can come into contact with the
internal structure. Hanger accidents usually occur at the fixed end. This illustrates that
when the steel strands or hangers are corroded, the deflection angle will generate greater
stress at the anchorage and aggravate the degree of corrosion.
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6. Conclusions

In this paper, a series of tensile tests on steel strands at different deflection angles was
carried out on the basis of corrosion tests. A new steel strand model is proposed that is
more closely matched to the test procedure. According to the finite element analysis of the
steel strands with corrosion pits, the variation in the maximum stress in the corroded steel
strands is caused by the depth and position of the pits at the deflection angles. This paper
studies the deflection angle and corrosion, without considering fatigue. In the future, the
effects of the deflection angle, corrosion, and fatigue on the strand hangers will be further
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investigated, and a new method of monitoring stress changes at the anchored end of the
hanger will be proposed. The following conclusions are drawn:

1. The deflection angle is negatively linearly related to the ultimate bearing capacity
of the steel strand, which means that the larger the deflection angle is, the lower
the ultimate bearing capacity of the steel strand. For every 1 mrad increase in the
deflection angle, the ultimate bearing capacity decreases by 0.73%. With the deflection
angle, the steel strand assumes an “unhelix” shape at the loaded end. The deflection
angle leads to a bending moment, resulting in additional bending stress on the fixed
end of the steel strand, hence the fixed end of the steel strand is mostly broken.

2. With the increase in corrosion time, the degree of corrosion of the steel strands
increases, and the corrosion rate of steel strands is faster in the early stage of corrosion
than the later stage. In the same corrosion time, the degree of corrosion of glossy steel
strands is much greater than galvanized steel strands, and the corrosion rate is faster
than galvanized steel strands.

3. Under the same degree of corrosion, the ultimate bearing capacities of the glossy
steel strand and galvanized steel strand gradually decrease with the increase in the
deflection angle. At the same deflection angle, the ultimate bearing capacities of the
glossy steel strand and galvanized steel strand decrease with the increase in corrosion.
In the 0–360 h corrosion time, there is not much difference in the ultimate bearing
capacity and corrosion of the galvanized steel strand. This is because in 360 h, only the
galvanized layer of the galvanized steel strand is corroded, and the internal steel wire
is not really affected, so its ultimate bearing capacity is basically unaffected as well.

4. In the FE model simulation analysis, the maximum stress appears in the central zone
of the corrosion pits. The stress band forms in the central part of the pit and decreases
in layers towards the sides. At the same depth, the higher the deflection angle, the
higher the maximum stress. For the same deflection angle, the pit is deeper, and the
maximum stress is higher. The stress distribution is different when the pit is loaded
at different positions. The larger the deflection angle is for a corrosion pit at 1/2 of
the steel strand, the higher the maximum stress may appear at the fixed end. With
deflection angle, as the pit is closer to the fixed end, the higher the maximum stress is.
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