Experimental Research on Hybrid Hardwood Glue-Laminated Beams
Abstract
:1. Introduction
- A glued element from a combination of several wood species can be functional;
- It is possible to combine beech and poplar wood in one element;
- Decreasing the weight of an element in the inner zone should not have a major effect on its bearing capacity.
2. Materials and Methods
2.1. Materials
- The homogeneous glue-laminated timber (h)—testing bodies were made from beech timber (marked BE (h));
- The hybrid glue-laminated timber (hyb)—testing bodies were made from beech and poplar timber (marked BE-PO (hyb)).
2.2. Methods
3. Results
3.1. Load-Bearing Capacity and Failure Modes
3.2. Strength of the Glue-Laminated Beams in the Four-Point Bending Test
3.3. Modulus of Elasticity of the Glue-Laminated Beams in the Four-Point Bending Test
3.4. Statistical Analyses
3.5. Strength Class Grading
4. Discussion
5. Conclusions
- (a)
- Both of the tested homogenous beech (BE (h)) and hybrid beech–poplar (BE-PO (hyb)) beams showed high values of strength characteristics. The characteristic values were determined according to the standard [19] although the number of tested elements was lower than the standard requires. The determined characteristic values for the hybrid GLT beams were even higher than those specified by standard [14] for class GL48hyb;
- (b)
- The tested hybrid beech–poplar beams (BE-PO (hyb)) were approx. 16% lighter than the homogeneous beech beams (BE (h));
- (c)
- The bending strength of the tested hybrid beech–poplar beams (BE-PO (hyb)) was comparable to the bending strength of the homogeneous beech beams (BE (h));
- (d)
- The modulus of elasticity of the tested hybrid beech–poplar beams (BE-PO (hyb)) was comparable to the modulus of elasticity of the homogeneous beech beams (BE (h));
- (e)
- Upon reaching approx. half of the maximum load, the homogeneous (BE (h)) and the hybrid (BE-PO (hyb)) beams behaved very similarly.
- The possibility of increasing the percentage of beam weight reduction;
- The effect of lamellae layup on the bending strength of GLT beams;
- The cohesion of glued joints, particularly the beech–poplar joint;
- The effect of moisture fluctuation on the bond line.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glavinić, I.U.; Boko, I.; Torić, N.; Vranković, J.L. Application of hardwood for glued laminated timber in Europe. Gradevinar 2020, 72, 607–616. [Google Scholar] [CrossRef]
- Tran, V.; Oudjene, M.; Méausoone, P. Experimental and numerical analyses of the structural response of adhesively reconstituted beech timber beams. Compos. Struct. 2015, 119, 206–217. [Google Scholar] [CrossRef]
- Bourreau, D.; Aimene, Y.; Beauchene, J.; Thibaut, B. Feasibility of glued laminated timber beams with tropical hardwoods. Eur. J. Wood Wood Prod. 2013, 71, 653–662. [Google Scholar] [CrossRef]
- Ammann, S.; Schlegel, S.; Beyer, M.; Aehlig, K.; Lehmann, M.; Jung, H.; Niemz, P. Quality assessment of glued ash wood for construction engineering. Eur. J. Wood Wood Prod. 2016, 74, 67–74. [Google Scholar] [CrossRef]
- Messmer, N.R.; Anjos EG, R.; Guerrini, L.M.; Oliveira, M.P. Effect of geometry and hybrid adhesive on strength of finger joints of Pinus elliottii subject to humidity and temperature. J. Adhes. 2018, 94, 597–614. [Google Scholar] [CrossRef]
- Požgaj, A.; Chovanec, D.; Kurjatko, S.; Babiak, M. Štruktúra a Vlastnosti Dreva; Príroda: Bratislava, Slovakia, 1997; p. 485. ISBN 8007009604. [Google Scholar]
- Kytka, T.; Gašparík, M.; Sahula, L.; Karami, E.; Teterin, D.; Das, S.; Novák, D.; Sarvašová Kvietková, M. Bending characteristics of glued laminated timber depending on the alternating effects of freezing and heating. Constr. Build. Mater. 2022, 350, 128916. [Google Scholar] [CrossRef]
- Muraleedharan, A.; Reiterer, S.M. Combined Glued Laminated Timber Using Hardwood and Softwood Lamellas. Master’s Thesis in Structural Engineering, Linnaeus University, Faculty of Technology, Växjö, Sweden, 2016. Available online: http://www.diva-portal.org/smash/get/diva2:1051604/FULLTEXT01.pdf (accessed on 15 October 2019).
- Aicher, S.; Ohnesorge, D. Shear strength of glued laminated timber made from European beech timber. Eur. J. Wood Wood Prod. 2011, 69, 143–154. [Google Scholar] [CrossRef]
- EN 1995-1-1; Eurocode 5—Design of timber structures—Part 1-1: General—Common Rules and Rules for Buildings, 2004/A1: 2008, A2:2014. European Union: Luxembourg, 2014.
- EN 14 080; Glued Laminated Timber and Glued Solid Timber—Requirements. European Union: Luxembourg, 2013.
- EN 15497; Structural Finger Jointed Solid Timber—Performance Requirements and Minimum Production Requirements. European Union: Luxembourg, 2014.
- Aicher, S.; Ahmad, Z.; Hirsch, M. Bondline shear strength and wood failure of European and tropical hardwood glulams. Eur. J. Wood Wood Prod. 2018, 76, 1205–1222. [Google Scholar] [CrossRef]
- Deutsche Instutut für Bautechnik (DIBt). Zulassungsgegenstand: BS-Holz aus Buche Z-9.1-679 (Glulam and Hybrid Glulam Made of Beech); DIBt: Berlin, Germany, 2019. [Google Scholar]
- EN 14081-1; Timber Structures—Strength Graded Structural Timber with Rectangular Cross Section—Part 1: General Requirements, 2016, A1:2019. European Union: Luxembourg, 2016.
- EN 1912; Structural Timber—Strength Classes—Assignment of Visual Grades and Species. European Union: Luxembourg, 2012.
- DIN 4074-5; Sortierung von Holz Nach der Tragfähigkeit—Teil 5: Laubschnittholz (Strength Grading of Wood—Part 5: Sawn Hard Wood). DIN Deutches Institut für Normung e.V. (German Institute for Standards): Berlin, Germany, 2008.
- EN 338; Structural Timber—Strength Classes. European Union: Luxembourg, 2016.
- EN 384; Structural Timber—Determination of Characteristic Values of Mechanical properties And Density. European Union: Luxembourg, 2022.
- Šuhajdová, E.; Novotný, M.; Pěnčík, J.; Šuhajda, K.; Schmid, P.; Straka, B. Evaluation of suitability of selected hardwood in civil engineering. Gradjevinski Mater. I Konstrukcije. 2018, 61, 73–82. [Google Scholar] [CrossRef]
- Ehrhart, T.; Palma, P.; Steiger, R.; Frangi, A. Numerical and experimental studies on mechanical properties of glued laminated timber beams made from European beech wood 2018. In Proceedings of the WCTE 2018—World Conference on Timber Engineering, Seoul, Republic of Korea, 20–23 August 2018. [Google Scholar] [CrossRef]
- Blaß, H.J.; Frese, M. Biegefestigkeit von Brettschichtholz-Hybridträgern Mit Randlamellen Aus Buchenholz Und Kernlamellen Aus Nadelholz; Universitätsverlag Karlsruhe: Karlsruhe, Germany, 2006; ISBN 13:978-3-86644-072-2. ISSN 1860-093X. [Google Scholar]
- Sciomenta, M.; Spera, L.; Peditto, A.; Ciuffetelli, E.; Savini, F.; Bedon, C.; Romagnoli, M.; Nocetti, M.; Brunetti, M.; Fragiacomo, M. Mechanical characterization of homogeneous and hybrid beech-Corsican pine glue-laminated timber beams. Eng. Struct. 2022, 264, 114450. [Google Scholar] [CrossRef]
- Walker, A. Dřevo—Velká Encyklopedie; Grada Publishing: Praha, Czech Republic, 2009; ISBN 978-80-247-2858-2. [Google Scholar]
- Lexa, J. Mechanické a fyzikálne vlastnosti dreva. In Technologie Dreva; Bratislava, Práca, 1952. [Google Scholar]
- Kramer, A.; Barbosa, A.R.; Sinha, A. Viability of hybrid poplar in ANSI approved cross-laminated timber applications. J. Mater. Civ. Eng. 2014, 26, 06014009. [Google Scholar] [CrossRef]
- Hematabadi, H.; Madhoushi, M.; Khazaeyan, A.; Ebrahimi, G.; Hindman, D.; Loferski, J. Bending and shear properties of cross-laminated timber panels made of poplar (Populus alba). Constr. Build. Mater. 2020, 265, 120326. [Google Scholar] [CrossRef]
- Haftkhani, A.R.; Hematabadi, H. Effect of Layer Arrangement on Bending Strength of Cross-Laminated Timber (CLT) Manufactured from Poplar (Populus deltoides L.). Buildings 2022, 12, 608. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, H.; Chui, Y.H.; Gong, M. Feasibility of using poplar as cross layer to fabricate cross-laminated timber. In Proceedings of the World Conference on Timber Engineering, Quebec City, QC, Canada, 10–14 August 2014. [Google Scholar]
- Hematabadi, H.; Madhoushi, M.; Khazaeian, A.; Ebrahimi, G. Structural performance of hybrid Poplar-Beech cross-laminated- timber (CLT). J. Build. Eng. 2021, 44, 102959. [Google Scholar] [CrossRef]
- Timbolmas, C.; Bravo, R.; Rescalvo, F.J.; Gallego, A. Development of an analytical model to predict the bending behavior of composite glulam beams in tension and compression. J. Build. Eng. 2022, 45, 103471. [Google Scholar] [CrossRef]
- Castro, G.; Paganini, F. Mixed glued laminated timber of poplar and Eucalyptus grandis clones. Eur. J. Wood Prod. 2003, 61, 291–298. [Google Scholar] [CrossRef]
- Ehrhart, T.; Steiger, R.; Lehmann, M.; Frangi, A. European beech (Fagus sylvatica L.) glued laminated timber: Lamination strength grading, production and mechanical properties. Eur. J. Wood Prod. 2020, 78, 971–984. [Google Scholar] [CrossRef]
- Šuhajdová, E.; Novotný, M.; Pěnčík, J.; Šuhajda, K. Experimental research on load bearing capacity of adhesively jointed beech timber lamellas. In Proceedings of the 13th International Conference Modern Building Materials, Structures and Techniques, Vilnius, Lithuania, 16–17 May 2019; Vilnius Gediminas Technical University: Vilnius, Lithuania, 2019. [Google Scholar] [CrossRef]
- MRWood, Roman Million Wood, Czech Producer of Glued Solid Timber and Glued Laminated Timber Prisms. Website of the Company Roman Million Wood s.r.o. Available online: https://www.ceskekvh.cz (accessed on 21 April 2019).
- PUR-adhesive 2010, Technical Data Sheet. AkzoNobel, Casco Adhesives. Available online: https://woodadhesives.akzonobel.com/en (accessed on 14 January 2011).
- ČSN 49 0108; Drevo. Zisťovanie Hustoty. Wood. Determination of the Density of the Physical and Mechanical Testing. Český Normalizační Institut: Praha, Czech Republic, 1993.
- EN 408:2010+A1:201; Timber Structures—Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties. European Union: Luxembourg, 2012.
- ČSN 49 0115; Drevo. Zisťovanie Medze Pevnosti v Statickom Ohybe. Wood. Determination of Ultimate Strength in Flexure Tests. Český Normalizační Institut: Praha, Czech Republic, 1979.
- ČSN 49 0116; Drevo. Metóda Zisťovania Modulu Pružnosti pri Statickom Ohybe. Wood. Determination of the Modulus of Elasticity in Static Bending. Český Normalizační Institut: Praha, Czech Republic, 1986.
- EN 14358; Timber Structures—Calculation and Verification of Characteristic Values. European Union: Luxembourg, 2016.
- Zhou, X.Y.; Cao, L.; Zeng, D.L. Experimental Study on the Size Effect on Flexural Behavior of Larch Glulam Beams. Appl. Mech. Mater. 2016, 847, 3–9. [Google Scholar] [CrossRef]
- Kuklík, P. Dřevěné Konstrukce. 1. vyd. In Praha: Pro Českou Komoru Autorizovaných Inženýrů a Techniků Činných ve Výstavbě (ČKAIT), Informační centrum ČKAIT; Technická Knižnice: Praha, Czech Republic, 2005; ISBN 80-86769-72-0. [Google Scholar]
fm,12 v N/mm2 | BE (h) | BE-PO (hyb) |
---|---|---|
A | 89.1 | 83.0 |
Median | 92.7 | 83.4 |
Standard deviation (SD) | 8.2 | 3.85 |
Coefficient of variation (CV) | 9.2% | 4.6% |
fm,12 v N/mm2 | Beech | Poplar | Spruce |
---|---|---|---|
Average | 113.4 | 63.6 | 63.3 |
Median | 115.4 | 63.4 | 63.5 |
Standard deviation (SD) | 7.4 | 2.7 | 10.2 |
Coefficient of variation (CV) | 6.5% | 4.2% | 16.4% |
Em,l,12 v N/mm2 | BE (h) | BE-PO (hyb) |
---|---|---|
Average | 22,439 | 22,185 |
Median | 22,982 | 22,773 |
Standard deviation (SD) | 767 | 1859 |
Coefficient of variation (CV) | 3.4% | 8.4% |
Em,l,12 v N/mm2 | BE/Beech | PO/Poplar | NS/Spruce |
---|---|---|---|
Average | 19,554 | 12,916 | 16,504 |
Median | 18,947 | 12,923 | 16,727 |
Standard deviation (SD) | 1030 | 616 | 1921 |
Coefficient of variation (CV) | 5.0% | 4.8% | 12.0% |
fm,12 | Mean | Var. | t Stat | df | p-Value |
---|---|---|---|---|---|
BE (h) | 89.11 | 84.57 | 1.76 | 12 | 0.104 |
BE-PO (hyb) | 82.97 | 16.67 |
Em,l,12 | Mean | Var. | t Stat | df | p-Value |
---|---|---|---|---|---|
BE (h) | 22,439 | 735,831 | 0.27 | 12 | 0.79 |
BE-PO (hyb) | 22,185 | 3,888,237 |
Statistic | p-Value | |
---|---|---|
Bending strength fm,12 | 21.46 | 2.19 × 10−5 |
Modulus of elasticity Em,l,12 | 31.82 | 1.23 × 10−7 |
Bending Strength fm,12 | Modulus of Elasticity Em,l,12 | |||
---|---|---|---|---|
p-value | Differences between the group mean values | p-value | Differences between the group mean values | |
Beech–poplar | 1.2 × 10−4 | Statistically significant | 5.9 × 10−7 | Statistically significant |
Poplar–spruce | 0.57 | Statistically NOT significant | 1.1 × 10−4 | Statistically significant |
Spruce–beech | 3.2 × 10−5 | Statistically significant | 0.07 | Statistically NOT significant |
Samples | Property | Value | Class Corresponding to Value |
---|---|---|---|
Beech lamellae | ρk | 574 kg/m3 | D40 |
fm,k | 53 N/mm2 | D50 | |
E0,mean | 17,400 N/mm2 | D60 | |
Poplar lamellae | ρk | 311 kg/m3 | <D18 |
fm,k | 29 N/mm2 | D27 | |
E0,mean | 11,800 N/mm2 | D30 | |
Spruce lamellae | ρk | 328 kg/m3 | C18 |
fm,k | 24 N/mm2 | C24 | |
E0,mean | 15,250 N/mm2 | C45 |
Samples | Property | Value | Class Corresponding to Value |
---|---|---|---|
BE (h) | ρk | 566 kg/m3 | D40 |
fm,k | 46 N/mm2 | D45 >GL44c | |
E0,mean | 20,750 N/mm2 | D70 >GL48c | |
BE-PO (hyb) | ρk | 486 kg/m3 | D24 |
fm,k | 49 N/mm2 | D45 >GL48hyb | |
E0,mean | 20,500 N/mm2 | D70 >GL48hyb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šuhajdová, E.; Schmid, P.; Novotný, M.; Pěnčík, J.; Šuhajda, K.; Uhlík, O. Experimental Research on Hybrid Hardwood Glue-Laminated Beams. Buildings 2023, 13, 1055. https://doi.org/10.3390/buildings13041055
Šuhajdová E, Schmid P, Novotný M, Pěnčík J, Šuhajda K, Uhlík O. Experimental Research on Hybrid Hardwood Glue-Laminated Beams. Buildings. 2023; 13(4):1055. https://doi.org/10.3390/buildings13041055
Chicago/Turabian StyleŠuhajdová, Eva, Pavel Schmid, Miloslav Novotný, Jan Pěnčík, Karel Šuhajda, and Ondřej Uhlík. 2023. "Experimental Research on Hybrid Hardwood Glue-Laminated Beams" Buildings 13, no. 4: 1055. https://doi.org/10.3390/buildings13041055
APA StyleŠuhajdová, E., Schmid, P., Novotný, M., Pěnčík, J., Šuhajda, K., & Uhlík, O. (2023). Experimental Research on Hybrid Hardwood Glue-Laminated Beams. Buildings, 13(4), 1055. https://doi.org/10.3390/buildings13041055