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Abstract: Energy performance analysis in buildings is becoming more and more highlighted, due
to the increasing trend of energy consumption in the building sector. Many studies have declared
the great potential of soft computing for this analysis. A particular methodology in this sense
is employing hybrid machine learning that copes with the drawbacks of single methods. In this
work, an optimized version of a popular machine learning model, namely feed-forward neural
network (FFNN) is used for simultaneously predicting annual thermal energy demand (ATED) and
annual weighted average discomfort degree-hours (WADDH) by analyzing eleven input factors
that represent the building circumstances. The optimization task is carried out by a multi-tracker
optimization algorithm (MTOA) which is a powerful metaheuristic algorithm. Moreover, three
benchmark algorithms including the slime mould algorithm (SMA), seeker optimization algorithm
(SOA), and vortex search algorithm (VSA) perform the same task for comparison purposes. The
accuracy of the models is assessed using error and correlation indicators. Based on the results, the
MTOA (with root mean square errors 2.48 and 5.88, along with Pearson correlation coefficients 0.995
and 0.998 for the ATED and WADHH, respectively) outperformed the benchmark techniques in
learning the energy behavior of the building. This algorithm could optimize 100 internal variables of
the FFNN and acquire the trend of ATED and WADHH with excellent accuracy. Despite different
rankings of the four algorithms in the prediction phase, the MTOA (with root mean square errors 9.84
and 95.96, along with Pearson correlation coefficients 0.972 and 0.997 for the ATED and WADHH,
respectively) was still among the best, and altogether, the hybrid of FFNN-MTOA is recommended
for promising applications of building energy analysis in real-world projects.

Keywords: sustainable energy; machine learning; estimation; building thermal load; MTOA optimization

1. Introduction

As one of the most important fields of study, many scholars focused on solving complex
problems by the use of new scientific developments and providing novel computational
tools [1–3]. From many engineering systems, new issues have risen motivating scholars to
extend previous solutions and increase efficiency. For this reason, different techniques are
suggested such as computer-based simulations, laboratory measurements, and numerical
and empirical calculation methods, for simulating and solving complex problems [4–6].

Building energy consumption is considerably increasing due to the increase in the
population and growing economy as well as more demand for life quality [7]. In addition,
the excess consumption of energy in buildings is associated with harmful impacts such as
air pollutant emissions that affect human health such as respiratory and heart diseases [8].
In many countries, the efficiency of energy has been introduced as an important action
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path for restraining the trend of global warming and controlling energy demand [9]. The
optimization problem related to building efficiency motivated many scholars to design and
provide novel approximating methods to optimize building performance parameters of
energy consumption. The best approaches introduced in the literature are machine learning
tools which are known as precise and low-cost approaches to evaluate the energy behavior
in buildings considering different tasks such as estimating required thermal loads [10].

Previous scholars stated that the use of artificial intelligence is very effective to analyze
many scientific parameters [11–13] such as the behavior of anomalous energy consumption
in cases both generated by end-users and potential causes [14]. Programmers are currently
working on different machine-learning approaches for prediction tasks. The most important
related methods are tree-based, support vector [15], and neuro-fuzzy [16] to train the
network and obtain a trustworthy comprehension of the parameters of interest. Artificial
neural networks (ANNs) [17] have been highly regarded as well-known algorithms that
can be used for machine learning usage. ANN models have also been highly suggested to
be used for modeling different energy parameters in cases of numerous applications. One
of the applications of ANN-based methods is to analyze thermal loads and the required
energies, generally, in terms of building characteristics [18]. In these algorithms, the
network of ANN service can obtain the characteristics of buildings such as dimensions,
glazing, positions and so on. Then, neural calculations are performed for determining an
appropriate relationship among the mentioned parameters.

Hosseinnezhad, et al. [19] stated that a home energy management system has to
consider the feasible difficulties because of the uncertainty and technical limits and showed
that by the use of ANNs, an optimal operating scenario for real-time regulation can be
obtained. Khalil, et al. [20] have been concerned with energy efficiency prediction by
using ANN. They provided a new model and validated it and demonstrated that the most
important parameters related to heating load and cooling load can be identified and the
accuracy of their method was determined to be 99.60%. Jallal, et al. [21] suggested a new
predictor based on the ANN for estimating the buildings’ energy consumption. They have
demonstrated that the accuracy of the modified ANN method was better than the previous
adaptive neuro-fuzzy inference system (ANFIS) approaches.

Metaheuristic methods comprise algorithms (e.g., genetic algorithm (GA) and par-
ticle swarm optimization (PSO)) that can be used for optimizing intelligent models in
the case of the prediction of energy parameters such as building thermal loads [22,23].
Adedeji, et al. [24] investigated the efficiency of the ANFIS compared to its hybrid with
PSO to predict energy consumption from climatic elements. They have demonstrated that
the ANFIS-PSO system provided a better prediction precision that was proper for strategic
energy planning in the case of higher computational times. Moayedi and Le Van [25]
combined Harris hawks optimization with a fuzzy inference system predicting heating in
buildings (HHO−ANFIS). Considering a population size of 400, they have shown that the
HHO−ANFIS provided the highest value of R2 equal to 0.98709 and 0.98794 in the training
and testing dataset. Cao, et al. [26] evaluated the energy performance of buildings by the
use of neuro-fuzzy logic considering involved factors and found that the roof has the most
considerable effect on heating and cooling loads with an RMSE of 4.3596. Alshudukhi and
Yadav [27] introduced a model namely neuro fuzzy-clonal selection optimization (NF-CSO)
to optimize energy consumption, determine the optimal position, and improve the network
survivability. By the use of this algorithm, energy consumption was reduced around 58%.
In addition, the network life cycle was also increased by about 65% in previous research.
The NF-CSO algorithm reduced energy consumption and enhanced network survivability.
For estimating building energy demand, Alkhazaleh, et al. [28] utilized a machine learning
ANFIS. They trained the system by using the slap swarm algorithm (SSA), grey wolf opti-
mizer (GWO), Harris hawks optimization (HHO), and equilibrium optimization (EO) and
compared them with each other. Luo, et al. [29] utilized the GA to improve the adaptive
deep neural network for the prediction of energy consumption in buildings. They found
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that the mean absolute percentage error in cases of training and testing was determined to
be around 2.87% and 6.12%.

In general, machine learning is recognized as a potential approach for various energy-
related analyses, particularly, energy performance analysis in buildings. These methods
provide fast, inexpensive, and indirect solutions for the early estimation of energy con-
sumption (e.g., required thermal load) [30]. Hence, utilizing this approach can greatly
assist engineers in a more efficient design of buildings in various senses such as geometry,
construction material, and energy systems. On the other hand, it has been shown that
these models can enjoy higher effectiveness when their performance is optimized by meta-
heuristic algorithms. It necessitates keeping the metaheuristic-based solutions updated
with state-of-the-art developments. Hence, the novelty and significance of this study can
be written as follows:

• Employing a novel metaheuristic optimization, namely multi-tracker optimization
algorithm (MTOA) [31] to assist a popular predictive model, i.e., feed-forward neural
network (FFNN), for energy analysis in residential buildings. The MTOA benefits
from both local and global search merits to find the optimal solution to the problem at
hand. Scholars such as Zhao, et al. [32] and Liang, et al. [33] have professed the high
potential of this algorithm in optimizing ANNs for prediction tasks.

• Developing a predictive model capable of the simultaneous estimation of annual
thermal energy demand (ATED) and annual weighted average discomfort degree-
hours (WADDH) by analyzing the building circumstances.

• Optimizing the solution via sensitivity analysis on the model configurations.
• Comparative validation of the developed model with three similar benchmarks,

namely FFNN-SMA (FFNN optimized via slime mould algorithm [34]), FFNN-SOA
(FFNN optimized via seeker optimization algorithm [35]), and FFNN-VSA (FFNN
optimized via vortex search algorithm [36]).

• Validating the developed models with respect to the previous literature and underlin-
ing the improvements.

• Moreover, by fulfilling the above steps, this study introduces a fast, accurate, and
inexpensive way for the early prediction of building energy performance, which can
result in a more efficient design of the building itself, as well as energy-related systems
(e.g., heating, ventilation, and air conditioning (HVAC)).

2. Materials and Methods
2.1. Data and Statistics

It was noted that the models of this study try to capture the relationship between the
energy parameters with building circumstances. To accomplish this, the models must go
through two stages. First, exploring previous samples for learning this relationship and
acquiring the requested knowledge, and second, be tested to see if the learned knowledge
is reliable for further cases. These two stages are, respectively, called training and testing
procedures in machine learning simulations.

The energy records used in the present study are taken from the previous literature [8].
Referring to the cited reference, it can be derived that a two-story residential building with
an area of 140 m2 has been simulated in the transient system simulation tool (TRNSYS) [37].
The size of the dataset is 35 × 13 indicating 35 rows (number of samples) and 13 columns
(parameters). Out of these 13 parameters, two are targets ATED and WADDH, and the
remaining 11 parameters are input factors, i.e., building circumstances. Table 1 gives the
parameters of the dataset with their abbreviations. The full details of the simulation for
data provision (e.g., building plan and geometry, climate, thermal zones, etc.) can be found
in the reference paper [8].
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Table 1. Description of the dataset parameters.

Group Parameter Abbreviation

Input

External walls’ coefficient of transmission UM

Roof’s coefficient of transmission UT

Floor’s coefficient of transmission UP

External walls’ coefficient of solar radiation absorption αM

Roof’s coefficient of solar radiation absorption αT

Thermal bridges’ linear coefficient Pt

Rate of air change ACH

North-facing windows’ coefficient of shading Scw-N

South-facing windows’ coefficient of shading Scw-S

East-facing windows’ coefficient of shading Scw-E

Glazing Glz

Target Annual thermal energy demand ATED

Annual weighted average discomfort degree-hours WADDH

Figure 1 shows the pattern of the 13 parameters existing in the used dataset. This
figure shows that, except for the Glz, all input parameters follow similar behaviors in the
beginning. While the ATED records are well-correlated with most inputs, the WADDH has
a different pattern.

Figure 1. Cont.
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Figure 1. Illustration of the input and target parameters in the used dataset.

The values of UM, UT, UP, αM, αT, Pt, ACH, Scw-N, Scw-S, and Scw-E, and Glz range
in [0.10, 1.90], [0.10, 2.50], [0.10, 2.90], [0.10, 0.90], [0.10, 0.90], [0.01, 1.00], [0.10, 1.10], [0.00,
1.00], [0.00, 1.00], [0.00, 1.00], [1.00, 5.00], [48.19, 188.94], [44.55, 546.98] with average values
of 1.00, 1.30, 1.50, 0.50, 0.50, 0.51, 0.60, 0.50, 0.50, 0.50, 2.94, 96.15, and 69.53, respectively.

In order to split the dataset into the training and testing subsets, the well-accepted
ratio = 80/20 is considered so that 80% of 35 records (=28 records) constitute the training
subset and 20% of 35 records (=7 records) constitute the testing subset.

2.2. Multi-Tracker Optimization Algorithm

The MTOA algorithm has been designed and introduced by Zakeri, Moezi, Bazargan-
Lari and Zare [31] with regard to the merits and drawbacks related to other algorithms.
Unlike other metaheuristic algorithms, this algorithm is not based on physical phenomena
or the lifestyle of creatures. The MTOA consists of many population members, namely
global tracker (GT) and local tracker (GT) randomly generated in the problem space. LTs
are considered to be spreading around each GT because as convergence speed increases,
the algorithm eludes the local solution along with positional searching about this GT.
The search radius for each GT is specified according to each GT’s fitness level, as well
as the distance from the global optimum point (GOP). Figure 2 shows the flowchart of
the MTOA [31].

Equation (1) determines the search radius Rs about each GT considering Rmin and
Rmax as minimum and maximum values of radius.

Rsi =

{
R fi R fi ≥ Rdi
Rdi R fi < Rdi

(1)

R fi =
(Rki − 1)
nop − 1

(Rmax − Rmin ) + Rmin × Rdi = (GTi − GP) (2)

where Rki is the ith rank of GT. Moreover, nop stands for the total number of population members.
A so-called vector LP is used for restoring the better response situation of LTs in

the case of each GT. The LP can be replaced with a better one in the next iteration. The
movement of GTs starts to examine and obtain the best point when the local search of LTs is
finished. A random approach called random walk movement performs this movement. In
the mentioned method, two different distance and direction angle variables are considered
to perform the movement from one point to another.
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Figure 2. The flowchart of the MTOA algorithm.

In the MTOA algorithm, considering GOP and LP situation, the G point can be
specified for GT. Equation (3) shows how G can be determined.

Gi = (ε (GOP − GTi) + (1 − ε)(LPi − GTi)) (3)

In this relation, ε stands for a measure of the tenderness of GTi to move toward GOP
in comparison with LPi. It can only consist of a number between zero and one. LPi is
ignored when ε equals 1. Then, all GTs change their points and find answers in comparison
with GOP and they may be replaced if these answers are better compared to GO. After
completing the steps of the MTOA algorithm, the first step is the point of the algorithm
starting and then the algorithm iteration moves to other stages if the termination condition
is not met [38,39]. For further conceptual details of this algorithm, more programming-
oriented articles may be referred to [31,39].

2.3. Comparative Algorithms

It was stated that in addition to the MTOA as the main model, three benchmarks
of SMA, SOA, and VSA are used for comparative purposes. The SMA was proposed by
Li, et al. [34] based on the foraging behavior of slime mould. The population aims to
determine the best path leading to the biggest food source as the optimum solution. The
SOA was designed by Dai, Chen, Song and Zhu [35] based on human-seeking strategies.
It is among the most efficient optimizers and performs an inter-subpopulation strategy
to keep the solution safe from local minima. Doğan and Ölmez [36] developed the VSA
inspired by the structure of natural vortices. The VSA optimization is carried out through
the circles that search the space. The descriptive details and mathematical relationships
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of the used algorithms can be found in earlier studies such as [34,40] for SMA, [41,42] for
SOA, and [43,44] for VSA.

3. Results and Discussion
3.1. Accuracy Measurement Method

In such studies, the quality of the results is indicated by the accuracy of the training
and testing phases. Three popular indicators are used for measuring accuracy. Root mean
square error (RMSE) along with mean absolute error (MAE) are employed to measure the
error of prediction as per Equations (4) and (5), while the Pearson correlation coefficient
(RP) is applied to calculate the correlation as per Equation (6).

RMSE =

√√√√ 1
K

K

∑
i=1

[(Tireal − Tiestimate)]

2

(4)

MAE =
1
K

K

∑
i=1

∣∣Tireal − Tiestimate

∣∣ (5)

RP =

K
∑

i=1
(Tiestimated − Testimated)(Tireal − Treal)√

K
∑

i=1
(Tiestimated − Testimated)

2
√

K
∑

i=1
(Tireal − Treal)

2
(6)

In these equations, for K pairs, Tiestimate signifies the estimated output and Tireal stands
for the real target.

3.2. Integration of MTOA and FFNN

The methodology used in this study is a hybrid tool. The word hybrid here indicates
the FFNN as a basic predictive tool and the MTOA metaheuristic algorithm (as well as three
benchmarks) as the optimizer for the FFNN. Figure 3 shows the optimization flowchart
and a schematic view of the network. For developing such a hybrid model the steps below
are taken [45,46]:

(i) A general FFNN model was deployed associated with the training data. By doing
this, the non-linear contribution between the targets and inputs is established.

(ii) The structure of the FFNN was determined based on the authors’ experience sup-
ported by a trial-and-error procedure. As the topology of the FFNN is shown in
Figure 3, it has eleven input neurons (one for each input of the dataset), seven middle
neurons, and two output neurons (that release the ATED and WADDH).

(iii) The internal parameters of this network are 91 weights and nine biases that were
extracted and organized using the commands getwb (Network) and separatewb (Network,
weights and biases) in MATLAB.

(iv) The FFNN mathematical equations for predicting the ATED and WADDH were
created, wherein, the weights and biases are variables.

(v) The MTOA (as well as three benchmarks) was deployed to optimize the created
equations. For this purpose, the FFNN equations are yielded to MTOA as the problem
function. The outcome was a training error, which in this work is represented by
RMSE (Equation (4)) averaged for the ATED and WADDH.

(vi) Hyperparameters of the algorithms such as 1000 iterations were determined. The
FFNN-MTOA, FFNN-SMA, FFNN-SOA, and FFNN-VSA were implemented with
population sizes of 600, 400, 100, and 300, which were selected after trying various
viable values.

(vii) The algorithms were run to predict the ATED and WADDH so that the prediction
results best match the expected values. For this purpose, the RMSE was considered as
the objective function that is projected to be minimized by MTOA.
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(viii) The optimized weights and biases are used to reconstruct the FFNN and predict the
ATED and WADDH for the testing dataset.

Figure 3. A schematic view of optimizing FFNN using metaheuristic techniques.

Figure 4 shows the optimization results. In Figure 4a the optimization charts are
depicted for a total of 1000 iterations. All four models show great promise for reducing the
error of FFNN training. Each algorithm follows a certain path of optimization. For instance,
the MTOA has a smooth curve in comparison to the step-wise paths of the SOA and VSA.
As explained, the objective function in this diagram is the average of the WADDH and
ATED RMSE. For clarification, Figure 4b depicts the RMSEs separately.

Figure 4. Cont.
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Figure 4. Optimizing FFNN (a) error minimization and (b) calculated RMSEs.

From both parts of Figure 4, although all four models attained good results, it is
evident that the MTOA reached the best training solution for the FFNN. All three RMSEs
of this algorithm, i.e., average RMSE, ATED RMSE, and WADDH RMSE, are below the
other three algorithms.

3.3. Assessment Using Accuracy Indicators

In this section, the performance of the used four models in both the training and testing
stages is quantitatively and figuratively assessed. From here on, all values of the RMSE,
MAE, and RP are presented in the respective order for the FFNN-MTOA, FFNN-SMA,
FFNN-SOA, and FFNN-VSA.

The training results of the ATED are explained with errors of RMSEs 2.48, 2.58, 4.77,
and 4.00 and MAEs 1.87, 2.04, 3.16, and 3.21. As for the WADDH, the RMSEs are 5.88,
10.55, 22.00, and 19.40 and the MAEs are 4.03, 7.45, 11.02, and 12.37. These values show the
successful training of all models. Moreover, the goodness of the training can be supported
by the RP values for the ATED 0.995, 0.995, 0.986, and 0.988, and for the WADDH 0.998,
0.994, 0.976, and 0.978.

Figures 5 and 6 depict the training results in the form of correlation charts. As is seen,
notwithstanding some underestimations and overestimations for the extreme values of
ATED and WADDH, the fit lines (composed of the red dots) in all cases are satisfactorily
compatible with the ideal line.

By comparison, it can be deduced that while all four metaheuristic algorithms are
powerful tools for training the FFNN, there are some distinctions between their accuracy.
In this phase, the errors of the FFNN-MTOA and FFNN-SMA are considerably lower
than two other hybrids. Besides, the RPs of these two models are higher than the FFNN-
SOA and FFNN-VSA. These superiorities clearly indicate the better performance of the
MTOA and SMA in training the FFNN. However, a more detailed comparison reveals the
outperformance of the MTOA relative to the SMA. All in all, the MTOA emerged as the
most powerful trainer algorithm.

The testing results of the ATED are explained with errors of RMSEs 9.84, 9.51, 5.97,
and 10.87 and MAEs 6.73, 5.86, 4.36, and 9.86. As for the WADDH, the RMSEs are 95.96,
101.89, 81.80, and 78.53 and the MAEs are 41.11, 48.83, 43.10, and 36.73. These values
show a successful prediction for all models. Moreover, the goodness of the training can be
supported by the RP values for the ATED 0.972, 0.961, 0.990, and 0.969, and for the WADDH
0.997, 0.993, 0.991, and 0.997.
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Figure 5. ATED correlation diagrams-Training outcomes of (a) FFNN-MTOA, (b) FFNN-SMA,
(c) FFNN-SOA, and (d) FFNN-VSA.

Figure 6. Cont.
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Figure 6. WADDH correlation diagrams-Training outcomes of (a) FFNN-MTOA, (b) FFNN-SMA,
(c) FFNN-SOA, and (d) FFNN-VSA.

Figures 7 and 8 depict the testing results in the form of correlation charts. In these
charts, the fit lines (composed of the red dots) of the ATED data are satisfactorily compatible
with the ideal line which means the testing outputs are in accordance with the targets.
However, for the WADDH, the fit line is dragged by an extreme value which has been
overestimated by all models. However, other values are well compatible with reality.

In the testing phase, having a comparative point of view discloses that there are
significant disagreements between the testing accuracies, relative to the training stage of
the four models. For instance, the smallest ATED RMSE and ATED MAE are obtained
by FFNN-SOA, while the smallest WADDH RMSE and WADDH MAE are obtained by
FFNN-VSA. The largest ATED RP is obtained by FFNN-SOA, while the largest WADDH RP
is jointly obtained by FFNN-MTOA and FFNN-VSA. In the meantime, the FFNN-MTOA
and FFNN-SMA have very close competition.

Figure 7. Cont.
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Figure 7. ATED correlation diagrams—Testing outcomes of (a) FFNN-MTOA, (b) FFNN-SMA,
(c) FFNN-SOA, and (d) FFNN-VSA.

Figure 8. WADDH correlation diagrams-Testing outcomes of (a) FFNN-MTOA, (b) FFNN-SMA,
(c) FFNN-SOA, and (d) FFNN-VSA.
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3.4. Discussion

As is known, the research related to the building sector covers a wide range of subjects
from construction safety [47,48] and material analysis [49,50] to energy systems. In this
work, the focus was on energy performance analysis that was successfully carried out
using sophisticated machine learning. From Section 3.3, it was first inferred that all four
models are proficient enough for comprehending and reproducing the pattern of both
energy parameters. A significant deduction from these satisfactory performances is that the
algorithms could simultaneously capture interrelated patterns for the ATED and WADDH
by tuning 100 parameters (i.e., 91 weights and 9 biases, see Figure 3).

Since the selected algorithms are among the newest members of the metaheuristic
family, there are few studies that have addressed the optimization of FFNN using them.
For instance, Hu, et al. [41] employed an ensemble of SOA with ANN for estimating the
capacity of concrete-filled steel tube columns by considering the column’s characteristics.
Wu, et al. [51] introduced the combination of VSA and ANN as a potential hybrid tool for
analyzing the heating load in residential buildings. Additionally, a SMA and ANN were
synthesized by Lin and Wang [52] for building energy performance analysis.

As far as the MTOA is concerned, scholars such as Zhao, et al. [53] and Zhao, Hu, Song
and Wang [32] have reported successful application of this algorithm along with the ANN
for estimating the mechanical characteristics of concrete including slump and compressive
strength, respectively. In this study, this algorithm could beat all other algorithms in the
training phase; however, it obtained different rankings in the testing phase. The better
accuracy of training for this algorithm has been similarly reported by Liang, et al. [33]
where its hybrid with ANN was employed for predicting the friction capacity of driven
piles. A potential reason for the excellent optimization ability of the MTOA could be the
application two types of trackers (i.e., global and local trackers, see Section 2.2). It enables
the algorithm to thoroughly cover the search space and seek the optimum solution. In the
testing phase of this study, the FFNN-MTOA reached an outstanding accuracy, especially
for the WADDH. Therefore, altogether, it can be said that the suggested FFNN-MTOA
model can perform as a reliable hybrid model for predicting the ATED and WADHH of
residential buildings.

Based on Figure 4, it can be said that all four algorithms could attain a desirable
optimization within 1000 iterations. This number was determined by trial and error, as well
as referring to some of the previous studies. In this figure, it is evident that the solution
does not fall, and it is replaced only if the next solution shows more promise [54,55]. This
property is an advantage of using metaheuristic algorithms for approaching the global
optimum and avoiding local minima [56].

When the results are compared to previous works with the same dataset and similar
methodologies, it can be derived that apart from the novelty of the tested algorithms, the
accuracy of prediction for both ATED and WADHH has experienced some improvements.
For instance, Fallah, et al. [57] combined ANN with an electrostatic discharge algorithm
(ESDA) [58] and compared their results with several benchmarks. Their mode could achieve
the training RMSEs of 2.53 and 6.79, respectively, for the ATED and WADHH. The values are
larger than the RMSEs of the FFNN-MTOA in this study (2.48 and 5.88). Consequently, our
MTOA outperformed their benchmark algorithms (atom search optimization (ASO) [59],
future search algorithm (FSA) [60], and satin bowerbird optimization (SBO) [61]), too.
Moreover, the prediction of WADHH was enhanced in this study because the FFNN-VSA
achieved the testing MAE of 36.73 which is below all the mentioned algorithms of the cited
study. Likewise, our FFNN-MTOA algorithm could perform better than ANFIS-400-EO,
ANFIS-400-GWO, and ANFIS-400-SSA used by Alkhazaleh, Nahi, Hashemian, Nazem,
Shamsi and Nehdi [28] in the training phase of the ATED. Besides, the prediction results of
the FFNN-SOA are more accurate than the mentioned models of the cited study. Altogether,
this paragraph suggests that this research could achieve significant accuracy improvements
for both ATED and WADHH with respect to previous efforts.
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From the previous literature, it can be said that intelligent models such as machine
learning can serve better than traditional models for the practical estimations of energy
performance. From a more practical perspective, when a building is going to be designed,
energy performance comes up as a significant matter. For instance, if energy experts could
acquire an early estimation of the required thermal load, it would be viable for them to do
an efficient design of energy-related systems such as HVAC systems. As far as the architects
and civil engineers are concerned, they can benefit from the proposed methodologies to
adjust the geometry and construction material of the building. The reason for this claim is
that, as observed in this research, energy performance was considered a complex function of
building circumstances such as UM and Glz. As the above discussion denotes, the proposed
methodologies in this work are optimized versions of machine learning models that can
even enhance the contribution of state-of-the-art technology to the mentioned concepts.
Thus, sustainable development and energy conservation would be highly respected in a
fast and more inexpensive way in comparison to traditional construction strategies.

While this research could present a reliable simultaneous analysis of the ATED and
WADHH by considering building circumstances (i.e., UM, UT, UP, αM, αT, Pt, ACH, Scw-N,
Scw-S, and Scw-E, and Glz) as input factors, it can be recommended for future studies to
perform separate predictions of the ATED and WADHH and compare their results with
this study. In this regard, a few drawbacks of this research can be remedied by enriching
the dataset to comprise a larger number of samples. Performing cross-validation is also
recommended by using external datasets. Another demerit of this study was considering all
the input factors of the dataset which created a huge space for the problem. Once reduced,
the dimension of the problem can be optimized toward a more efficient simulation.

4. Conclusions

This research effort was dedicated to utilizing state-of-the-art machine learning for
efficient energy performance analysis in residential buildings. For this objective, a feed-
forward neural network was optimized using a multi-tracker optimization algorithm to
simultaneously predict the annual thermal energy demand and annual weighted average
discomfort degree hours. Based on the findings, the combination of metaheuristic algo-
rithms and FFNN is a suitable option for understanding the dependency of the ATED
and WADHH on the building characteristics. In this phase (i.e., training the FFNN), the
MTOA surpassed three similar algorithms including the slime mould algorithm, seeker
optimization algorithm, and vortex search algorithm. However, these four models emerged
in different positions in the testing phase. However, in a more general view, the Pearson
correlation coefficient was greater than 0.96 throughout the results which indicates excellent
accuracies for all models in both phases. The proposed models could also outperform some
similar methodologies in the earlier literature, and hereupon, this study could improve
intelligent energy performance analysis. To sum up, the proposed FFNN-MTOA algorithm
could reach the projected target, and therefore, it is recommended to substitute traditional
and costly methods for energy performance analysis. However, some ideas were discussed
regarding data enrichment and optimization strategies to remedy the shortcomings of
this study.
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Analyzing the energy performance of buildings by neuro-fuzzy logic based on different factors. Environ. Dev. Sustain. 2021, 23,
17349–17373. [CrossRef]

27. Alshudukhi, J.; Yadav, K. Survivability development of wireless sensor networks using neuro fuzzy-clonal selection optimization.
Theor. Comput. Sci. 2022, 922, 25–36. [CrossRef]

https://doi.org/10.1109/TGRS.2020.3023135
https://doi.org/10.1071/MF22167
https://doi.org/10.1007/s00603-022-02829-4
https://doi.org/10.1016/j.techfore.2022.122003
https://doi.org/10.1016/j.resourpol.2023.103359
https://doi.org/10.1109/TSG.2022.3197613
https://doi.org/10.1016/j.rser.2020.110287
https://doi.org/10.1016/j.enbuild.2021.110839
https://doi.org/10.1016/j.energy.2020.119605
https://doi.org/10.1016/j.jclepro.2020.120082
https://doi.org/10.1016/j.petrol.2022.110654
https://doi.org/10.1007/s11069-021-05083-z
https://doi.org/10.1016/j.jhydrol.2018.03.001
https://doi.org/10.1016/j.autcon.2022.104440
https://doi.org/10.1016/j.apenergy.2019.03.078
https://doi.org/10.1007/s10462-018-9630-6
https://doi.org/10.1016/j.asoc.2019.105748
https://doi.org/10.1109/ACCESS.2020.2968038
https://doi.org/10.1016/j.apenergy.2020.114977
https://doi.org/10.3390/app9132630
https://doi.org/10.3390/app9173543
https://doi.org/10.1080/01430750.2020.1719885
https://doi.org/10.3390/en15239187
https://doi.org/10.1007/s10668-021-01382-4
https://doi.org/10.1016/j.tcs.2022.04.008


Buildings 2023, 13, 1167 16 of 17

28. Alkhazaleh, H.A.; Nahi, N.; Hashemian, M.H.; Nazem, Z.; Shamsi, W.D.; Nehdi, M.L. Prediction of Thermal Energy Demand
Using Fuzzy-Based Models Synthesized with Metaheuristic Algorithms. Sustainability 2022, 14, 14385. [CrossRef]

29. Luo, X.J.; Oyedele, L.O.; Ajayi, A.O.; Akinade, O.O.; Owolabi, H.A.; Ahmed, A. Feature extraction and genetic algorithm
enhanced adaptive deep neural network for energy consumption prediction in buildings. Renew. Sustain. Energy Rev. 2020,
131, 109980. [CrossRef]

30. Hygh, J.S.; DeCarolis, J.F.; Hill, D.B.; Ranjithan, S.R. Multivariate regression as an energy assessment tool in early building design.
Build. Environ. 2012, 57, 165–175. [CrossRef]

31. Zakeri, E.; Moezi, S.A.; Bazargan-Lari, Y.; Zare, A. Multi-tracker optimization algorithm: A general algorithm for solving
engineering optimization problems. Iran. J. Sci. Technol. Trans. Mech. Eng. 2017, 41, 315–341. [CrossRef]

32. Zhao, Y.; Hu, H.; Song, C.; Wang, Z. Predicting compressive strength of manufactured-sand concrete using conventional and
metaheuristic-tuned artificial neural network. Measurement 2022, 194, 110993. [CrossRef]

33. Liang, S.; Foong, L.K.; Lyu, Z. Determination of the friction capacity of driven piles using three sophisticated search schemes. Eng.
Comput. 2022, 38, 1515–1527. [CrossRef]

34. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future
Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]

35. Dai, C.; Chen, W.; Song, Y.; Zhu, Y. Seeker optimization algorithm: A novel stochastic search algorithm for global numerical
optimization. J. Syst. Eng. Electron. 2010, 21, 300–311. [CrossRef]
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