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Abstract: Free-form architecture is a prominent trend in contemporary architecture where streamlined
geometric buildings are constructed. The main problem in free-form architecture is rationalization,
which involves realizing free-form surfaces at a reasonable cost while meeting design requirements.
Balancing the design intents and construction costs simultaneously is essential for successful rational-
ization. This study proposes parametric and generative program flows to balance both requirements
efficiently. The suggested parametric program flow, which is based on a mathematical algorithm,
classifies a free-form surface into multiple areas, which are favorable to flat, single-curved, and
double-curved panels. The proposed generative program flow optimizes the double-curved panels’
area through the integration of Multi-Objective Optimization and Pareto optimality. Designers can
select the best design option that fits their design objectives through trade-offs using the results of the
program flows. Eventually, more efficient and mindful decisions can be made in the early design
process by using the results of this study for successful free-form architecture.

Keywords: generative design; parametric design; rationalization; free-form architecture; multi-
objective optimization; pareto optimality

1. Introduction

Recently, free-form architecture, which is streamlined geometric buildings, has been
one of the most striking trends emerging from the development of Computer-Aided Design
(CAD). Many landmark buildings in the world have been built by adapting geometrically
complex free-form surfaces and structures. The new trends have resulted in bringing
innovations and many challenges to the realization of such buildings [1].

The essential problem of free-form architecture is rationalization, which is a process
in order to realize free-form surfaces at a reasonable cost while respecting the design
intents [2]. A good rationalization requires balancing the design intents and construction
costs simultaneously, because both aspects are used to judge how well free-form buildings
were constructed [3]. While meeting the design and construction requirements, the best
way of rationalization is dividing a free-form surface into as many same sized flat panels
(FP) as possible, a lesser number of single-curved panels (SP), and a few double-curved
panels (DP) in conformance. Using only one type of panel could not meet the design intent,
and using many curved elements results in high costs.

As the computational power increases over time, the design process of free-form
architecture becomes more advanced and complex, which increases the project cost and
time of free-form buildings and requires designers’ efforts in computer programming
languages with steep learning curves [4]. This presents additional challenges in the design
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process. Therefore, it is also important to create user-friendly interfaces to incorporate
advanced logic and digital tools into the rationalization of free-form architecture.

Most studies regarding rationalization of free-form architecture have been focused
on the optimization of free-form surfaces in terms of daylight, energy use, and life cycle
assessment (LCA). These studies were performed not from an architectural perspective but
an engineering perspective. The creativity of architects could be limited by just focusing on
the engineering aspects. The rationalization process should be performed considering both
aspects together. Hence, the goal of this research is to suggest parametric and generative
program flows in an efficient and user-friendly way for the free-form architecture balancing
between the design intents and construction costs.

2. Literature Reviews
2.1. Paneling for Free-Form Surface

The early research in free-form architecture was conducted by Gehry Technologies [5],
an AEC technology company, which focused mainly on surfaces that were nearly devel-
opable [6]. Gehry Technologies provides web-based 3D project collaboration, building
information modeling, and advanced project delivery services. This company also designed
many representative atypical buildings in the world. This was a result of the specific design
process that involved creating digital models based on materials that assumed (nearly)
developable shapes. The Smart Geometry group [7] is an organization focusing on the use
of the computer as an intelligent design aid in Architecture, Engineering, and Construction
(AEC). The Smart Geometry group, on the other hand, promotes research on free-form
architecture and has mostly concentrated on parametric design tools that have built-in
panel properties. While these tools can be useful for shape generation, it can be challenging
to achieve desired shapes and satisfactory paneling solutions for highly complex geometries
using this approach. This organization encourages collaboration between practicing AEC
professionals, academics, and students using computational and parametric software tools.

Previous research on paneling has mainly focused on planar panels, and the initial
work in this area focused on specific types of surfaces [8]. Covering free-form surfaces with
planar quad panels required the use of methods from discrete differential geometry, which
led to new ways of supporting beam layout and computing multi-layer structures [9–11].
More recently, researchers have extended this approach to cover free-form surfaces with
SP arranged along surface strips [12]. Some researchers have also explored optimizing
for repeated elements by changing the vertex positions of a given mesh, with the goal of
creating reusable prefabricated tiles. For example, Fu et al. [13] explored this idea in the
context of quad meshes, while Singh and Schaefer explored it in the context of triangle
meshes [14].

The method we are using to approximate a surface with simple geometric shapes is
similar to variational methods [15]. This method was originally used by [16] for surface
approximation with planes, but extensions have been proposed for other surface types such
as spheres, cylinders, quadrics, and developable surfaces [17]. Recently, an optimization
method has been proposed to divide the input surface and determine the type and number
of shape proxies required to reduce the approximation error [18]. Our approach optimizes
position and tangential continuity at the panel boundaries, allowing systematic deviation
from the reference surface while improving paneling quality and reducing cost. Our
approach is substantially different from other methods because we need to enable mold
reuse and aesthetic control, which are important for architectural rationalization. State-of-
the-art methods in surface fitting and local registration are integral to our system but are
insufficient to solve large-scale freeform paneling problems [19,20].

In the field of shape analysis, symmetry detection and regularity detection problems
involve identifying and extracting repeated elements, both exact and approximate, from
3D geometry [21]. Once these repetitions are detected, the underlying meshing structure
can be modified to make them exact using techniques such as summarization. However,
these methods are not effective for handling architectural designs with large non-repetitive
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sections. Our optimization approach has a similar effect to summarization by enabling
trade-offs between approximation error and mold reuse, resulting in significant cost savings
during manufacturing.

2.2. Computational Architectural Rationalization

During the 1990s, Gehry Partners’ [22], which is a full-service firm established by
an architect Frank Gehry, innovative and complex designs played a significant role in
introducing computer-aided 3D modeling and manufacturing to traditional architecture.
This period is also noted for its emphasis on rationalization, which is often attributed to
discussions surrounding Gehry’s work at that time. The term “rationalization” was first
used in an architectural context by [8], who described it as the process of transforming
Gehry’s intricate designs into constructible geometry. This process involved the intro-
duction of mathematical “rules of constructability” to make these designs feasible [6].
Shelden [6] described Gehry Partners’ rationalization process in his Ph.D. thesis, which
entailed translating handmade physical models into digital representations that were grad-
ually refined based on the results of analytical simulations. Two years after Lindsey and
Shelden’s works, [21], an architect in Gehry Partners, defined rationalization as a process
where physical models are transformed into digital models with programmed geometric
constraints that guarantee their constructability. He credited this approach to the devel-
opment of CATIA V5 [23], which is a 3D CAD software used to design aircraft in the
aerospace industry, and predicted that advanced form-finding methods could be based
on this process. Meanwhile, Fischer [24] discussed how rationalization is used in Foster +
Partners [25], a British architectural, engineering, and integrated design studio founded
by architect Norman Foster, to introduce fabrication logic into a design. He distinguished
between projects that were first designed with free-form surfaces and then transformed into
easy-to-construct arc-based geometry and those deliberately designed with constructible ge-
ometry such as torus patches or ruled surfaces. Whitehead [26] also differentiated between
pre-rationalization and post-rationalization methods, based on when they are applied in the
design process. Gehry Partners uses CATIA to perform the AEC project. The main project
that this organization pursues is, similar to Gary Technology, unstructured architecture.

The author of the text advocates using pre-rationalized approaches in design as
they can solve many issues related to production and design. Fischer, a scholar, defined
rationalization as a process of approximating a shape using a generative algorithm, and he
introduced the temporal division of rationalization strategies [25]. According to Hesselgren
in 2007, pre-rationalization involves incorporating constraints into the geometry of a design
using basic shapes, which he considered a better approach due to its ability to produce
superior results [27]. Attar argued that in pre-rationalization, the final shape of a building
is determined by geometric constraints by providing the example of the Sage Gateshead
center designed by Foster + Partners to illustrate this point [28]. Pottmann used the
term “construction-aware design” to describe pre-rationalization and referred to post-
rationalization as “design optimization” [29]. Dritsas highlighted that post-rationalization
requires extensive computational optimization, and he cited the Walt Disney Concert Hall
as an instance of this process [30].

In 2012, Fischer [31] wrote a review of rationalization in architecture, which focused
on the early 2000s and provided a historical perspective on the subject. However, Fischer’s
review did not cover more recent projects, digital fabrication, or general rationalization
methods [32]. Therefore, our review aims to fill in these gaps.

In 2015, Pottmann et al. wrote an article about rationalization in architecture from
a mathematical perspective [33]. They argued that fields such as differential geometry,
discrete mathematics, numeric optimization, and computer graphics processing are highly
relevant to the discourse and collectively form a field of research called “architectural
geometry” [34,35]. Their article categorizes algorithms according to the type of geometry
being rationalized (developable, double curved, etc.) or the goal of the rationalization
(structure, paneling, repetition, etc.). Although their review covers many contemporary
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built examples of each category, it does not critically examine the position of rationalization
in the design process or the relationship between digital fabrication and rationalization.
Our review is concerned with this relationship, which we believe is a crucial issue in the
discourse [35,36].

Most of the paneling and rationalization-related studies reviewed focused on the
design aspect [10–12]. Although several studies are considering various aspects along
with the design aspect [2,3,13], these studies are inefficient and not user-friendly to present
several design alternatives. Therefore, it is required to develop an efficient methodology
that can consider various aspects and present many design alternatives.

3. Research Methods

Figure 1 shows the overall research process. This study mainly focuses on classifying a
free-form surface through parametric designs in the Dynamo-Revit interface and optimizing
the designs through generative designs in Project Refinery developed by AutodeskTM by
integrating with two optimization methods.
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Figure 1. The overall research scope and process.

One method is Multi-Objective Optimization (MOO) [37]. MOO is a field of study that
deals with mathematical optimization problems where more than one objective function
needs to be optimized simultaneously. This type of vector optimization has been applied in
various fields of science, including economics, logistics, and engineering, where optimal
decisions need to be made despite trade-offs between two or more conflicting objectives.
The other method is Pareto optimality [38], which is one way to find good solutions to
multi-objective problems. The best solution can be chosen by finding Pareto front or optimal
through Pareto improvement (more mathematically elegant definitions of Pareto optimality
exist in the literature).

As a basic platform, AutodeskTM Dynamo 2.0.2 was used for this research, which acts
as a plug-in to Revit. Dynamo is a parametric design tool and visual programming language
specifically developed for designers exploring and customizing various RevitTM building
information workflows. The designers are allowed to create a variety of strategies beyond
the traditional design methods with its algorithmic capabilities. In this tool, ‘program flow’
can be developed using ‘nodes’ without the need for learning computer programming
languages. While this program flow is being developed, various add-ons, which serve
different purposes, can be easily included in the ‘library’ as preprogrammed nodes [39].
For example, the Clockwork add-on [40] was developed for list management, mathematical
operations, string operations, geometric operations, and paneling. Generative form making,
paneling, rationalization, and interoperability are handled with the Lunchbox add-on [41].
Machine learning can be applied by the Lunchbox Machine Learning (ML) add-on [41].
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3.1. Classification of a Free-Form Surface by Using Principal, Mean, and Gaussian
Curvatures (CPMGC)

Curvature of a curve is a measurement describing how much a curve deviates from
a straight line. At a given point p of a surface s, numerous curves c in s exist touching
p; for all curves c, the principal curvatures, denoted as k1 and k2, are the maximum and
minimum ones (Figure 2).
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Gaussian curvature (GC) is defined as the product K = k1·k2 of two principal curva-
tures [43]. There are four conditions based on the combination of the curvatures, k1 and
k2 [44]:

• Condition 1: If k1 and k2 have the same sign and are not 0 at one point, it results in a
positive GC and is called an elliptic surface point.

• Condition 2: If k1 and k2 have opposite signs at one point, it results in a negative GC
and is called a hyperbolic surface point.

• Condition 3: If either k1 or k2 vanishes and is equal to 0 at one point, while the other
one is not equal to 0, it results in a vanishing GC to and is called a parabolic surface
point.

• Condition 4: If k1 and k2 both vanish and are equal to 0 at one point, it results in a
vanishing GC similar to that in condition three and is called a flat point.

Developable surfaces which can be unrolled into a plane without any stretching,
tearing, or distortion can be determined, if all points on a surface meet Conditions 3 and
4 and the GC equals zero. Thus, even if the GC of ruled surfaces is not always zero,
developable surfaces are part of the ruled surface, since it is not ensured that the straight
lines carried in ruled surfaces have the same direction with any principal curvatures [2].

Because the GC cannot distinguish any one of Condition 3 and 4 of surface points
from the other one, mean curvature (MC), H = (k1 + k2)/2, is introduced. This curvature is
the arithmetic mean of two principal curvatures [45].

Table 1 shows the combination of GC and MC to divide surface points. Generally,
feature-curves are located where curvature reaches its minimum or maximum. By changing
the value threshold closely to its extreme, feature-curves shall be detected. Thereby, the
logic of Table 1 was translated into Dynamo nodes, and it was tested on the base surface
design.
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Table 1. Feature-curve detection (adapted from He [46]).

GC
MC

Minimum to 0 0 0 to Maximum

Minimum to 0
Convex feature-curve;

k1 > 0, k2 < 0; and
|k1| < |k2|

Saddle point;
k1 > 0, k2 < 0 or k1 < 0, k2 > 0;

and |k1| = |k2|

Concave feature-curve;
k1 > 0, k2 < 0; and

|k1| > |k2|

0
Ruled surface point;

k1 = 0, k2 < 0; or
k1 < 0, k2 = 0

Flat surface points;
Ruled surface point;

k1 = 0, k2 > 0; or
k1 > 0, k2 = 0

0 to maximum Convex round area;
k1 and k2 < 0

Concave round area;
k1 and k2 > 0

Parametric designs can be applied to solve free-form design problems. The freedom
of adapting to the particular needs of the user is offered through algorithmic modeling.
A reasonable connection between design intents and responses is defined, established,
and clarified by parameters and objective functions [47]. Parameters, which are linked to
geometry, are selected by designers and modified gradually through trial and error in order
to improve the design [48].

The number of UV grids was used as parametric values and inputs. The maximum
panel size was limited to 76 sqft (7.06 m2) based on previous research and multiple literature
reviews [49]. In order to panelize a free-form surface with a panel size smaller than 76 sqft,
the UV grid ranged from 20 to 40 (u grid) and from 35 to 50 (v grid); the maximum value
can be changed. The imported surface was divided by the UV grids and classified into
multiple paneling areas through the proposed program flow, CPMGC (see Figure 3).
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The CPMGC process involved 6 steps:

• Step 1: A free-form surface was designed in Revit and imported into Dynamo by a
node, ‘Select Face’. The surface was divided using a UV grid into quadrilateral panels
through ‘Panel.PanelQuad’. The principal curvatures of each divided panel were cal-
culated by using ‘Surface.PrincipalCurvatureAtParameter’, and then k1, the maximum
curvatures, and k2, the minimum curvatures, were taken by ‘List.MaximumItem’ and
‘List.MinimumItem’. The node, ‘List.Flatten’, was used to take a nested list and flatten
levels of the list by combining the first levels into a single level.

• Step 2: The signs of k1 and k2 were identified through ‘Python Script’ because Dynamo
2.0.2 cannot recognize the number in the sixth decimal place.

• Step 3: Four nodes were used, which were the Less Than operator, ‘<’, the Equal To
operator, ‘==’, the Greater Than operator, ‘>’, and the multiplication operator, ‘*’, to
calculate the GC by multiplying k1 and k2, and the signs of GC were identified.

• Step 4: The MC was calculated through the node, ‘Math.Average’, and three cases of
MC were analyzed.

• Step 5: The feature-curve areas were detected by the combinations as described in
Table 1. For example, flat surface area was classified as both GC and MC are equal to 0.
The convex feature-curve area was detected as k1 is larger than 0, k2 is smaller than
0, the absolute value of k2 is larger than the absolute value of k1, and both MC and
GC are negative. ‘Math.Abs’ was used to calculate the absolute values of k1 and k2,
and two Boolean values were taken by ‘&&’, the And operator, and returned true if
both values were true. The Or operator, ‘||’, took two Boolean values and returned
true if one or both values were true. Other areas were also detected based on each
requirement by the algorithm.

• Step 6: Through the parametric program flow, CPMGC, seven areas were classified
and colored by the nodes as shown in the ‘Visualization’ box in Figure 3.

3.2. A Generative Program Flow by Applying MOO

Generative design is an algorithmic process based on objective functions and algo-
rithms, along with parameters such as performance or spatial requirements, materials,
manufacturing methods, and multiple constraints. Various potential permutations of a
solution can quickly be generated and automatically explored by these rules. Architects
can utilize many optimization methods for the maximum possible performance of a given
model based on concrete objectives and can select the promising options for further analysis
and review [50]. Recently, as the boundary between the definitions of parametric design
and generative design has been blurred, both parametric and generative designs are used
together or in the same sense.

In order to find better solutions, clear objective functions are essential for the process of
generative designs, because it is difficult to determine better design options for a computer.
Hence, it is required to take such architectural and practical factors into consideration
during the design stage for clear design objectives. In addition, input parameters can be
controlled and tuned intelligently by the algorithms used for generative designs. These
algorithms are called Multi-Objective Genetic Algorithms (MOGA), which are the most
promising algorithms [51]. In this paper, a generative program flow applying MOGA,
which is based on MOO, Pareto optimality, and Genetic Algorithm (GA), was suggested.

MOO is one of several solutions for most real problems that have multiple objectives.
Because these multi-objectives conflict with each other and obstruct concurrent optimization
of each objective, it is difficult to solve these practical multi-objective problems compared
to single scalar objective problems. Two different approaches, such as classical methods
and non-traditional methods, are applied in MOO [52]. Classical methods combine multi-
objective functions using mathematical principles into a single scalar objective problem by
integrating a user-provided weight for each objective (e.g., the weighted sum methods) [53].
In the nontraditional methods, a set of Pareto-optimal solutions that are non-dominated
with respect to each other is determined by stochastic rules. Pareto efficient or optimal, the
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set of choices, is called a Pareto frontier set or front that corresponds to the boundary of
the feasible objective function space. The final solution represents a set of good trade-offs
between two or more conflicting objectives. The methods address a large search space
compared to the classical methods [3].

GAs are popular meta-heuristic algorithms. In the GA approach, a designer defines
various inputs and plugs them into a MOO so that the algorithm is widely integrated with
generative and parametric designs. If a multi-objective function for a specific problem was
not satisfied, the next population of agent points is generated by the GA, and geometry
is altered by using the agent points in the hierarchical agent system. The simulation is
repeated with the changed geometry until the multi-objective function is satisfied or the
maximum iteration will be reached.

A clear design goal for the balance between design and cost requirements has to
initially be established. The set of output values is formed by the design objective, and then
it is used to evaluate the performance of each design option generated automatically and
to discover more efficient designs.

For the rationalization of free-form surfaces, the easiest paneling or panelization is
using flat panels, which are composed of triangular, Planar Quadrilateral (PQ), and/or
Planar Hexagonal (PH) meshes. The free-form surfaces can be represented closer to the
original curvedness by utilizing developable panels, which are one type of single-curved
panels, if the given original surface has one low principal curvature. According to the
definition of a single-curved panel, the panel can be unfolded into a plane without any
stretching, tearing, or distortion. All developable surfaces in three dimensions are ruled
surfaces, but not in four dimensions. One of principal curvatures of ruled surface equals
zero [46].

Because of these features, planarity is one of the important factors for flat and single-
curved panels. Many variables, such as angle and distance, are used for the measurement
of planarity. If the sum of four angles in a rectangular surface is equal to 2π, this surface is
planar. Planarity is also defined by the distance between two surfaces in space [43]. The
least-square methods as applied for determining the planarity of flat and single-curved
panels as described by Equation (1). The planarity constraint was proposed for a N-polygon,
f = v0v1 · · · vN−1; a plane, p = n̂ f ·x + d f = 0 (n̂ f is the unit normal of p) is first identified
to fit f in the least-square sense. If the distance between every vertex of f and the fitted
plane p is zero, the planarity of f could be determined. Pdist is established by adapting the
least-square methods as described by Equation (2).

As mentioned previously, it is most important to take the requirements of design
intent and construction cost into consideration for free-form surface modeling. Closeness
and smoothness have been applied for design requirements in other studies [11,43,54–56].
However, the cost requirement was not adequately considered. Angle differences between
panels are mostly used for smoothness. Eigensatz et al. [2] developed two algorithms to
compare panels for surface smoothness as a parameter by applying a divergence threshold
(a spatial gap between adjacent panels) of 6 mm (0.24 in.). For planarity or closeness,
the distances between generated and original surfaces were measured, and the distance
threshold was assigned as a form-finding method.

∑n
i=1 r2

i = ∑n
i=1(yi − f (xi))

2 (1)

Pdist = ∑i‖si,0 − si‖2 (2)

f (x) = ∑n
i=1[(Pdist)n + (Parea)n + (Pcost)n] (3)

where si,0 is the initial surface of si and Pdist is the distance between si and si,0.
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Parea is the sum of each double-curved panel’s area. It is minimized to maximize the
use of FP and SP. Parea is not essential because it is connected to Pcost. It is required to
show the result. Pcost is the sum of all panels’ cost. Panel costs per square meter USD 701
for a flat panel, USD 766 for a single-curved panel, and USD 1518 for a double-curved
panel) are assigned based on the research [57]. Thus, the objective function is defined to
minimize the paneling cost, DP area, and distance between the original and rationalized
surface (Equation (3)). In Project Refinery, the optimization method, such as ‘maximize’,
‘minimize’, and ‘ignore’, can be selected.

The suggested Multi-Objective Generative Design (MOGD) divide a free-form surface
into two areas as shown in Figure 4 (the SP area is represented by FP according to the
definition of single-curved panel so that the cost of a single-curved panel is not used). One
area is favorable to FP and SP (colored by green), and the other area is advantageous to DP
(colored by red).
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Figure 4. A generative program flow of MOGD.

Through the parametric program flows of CPMGC, a free-form surface was classified
into multiple areas. Areas favorable to FP or SP did not need optimization, as the cost of
FP and SP is around half of the cost of DP. By minimizing the DP area, more cost could be
saved. The MOGD was developed by adopting a distance threshold, 3 mm (0.12 in.), as
shown in the ‘Planarity’ in Figures 4 and 5. The identified factors, including the number of
UV grids, size, and cost of panels, were set as parameters. The objective functions defined
in Equation (3) were applied with the distance threshold so that areas that deviated from
the original design by less than the threshold were optimized by panelizing with FP instead
of DP.

Figure 6 shows the result of classifying some of the free-form surface of Dongdaemun
Design Plaza (DDP), divided by the UV grid of 37× 49 panels. The surface was categorized
into three areas: concave, convex feature areas favorable to DP, and flat surface favorable to
FP. Thus, it is necessary to optimize the entire surface (except for the 2 FP areas).
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4. Validation and Case Study
4.1. Validation

For the validation of the suggested program flow, CPMGC, multiple case studies
were performed. The algorithm in Table 1 was mathematically proven through several
studies [46,58,59]. Due to the definition of single-curved surfaces, which can be unrolled
into a plane without any stretching, tearing, or distortion because they have zero Gaussian
curvature at every point [43], developable surfaces can be represented as flat surfaces
(see Figure 7).
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One example of double-curved surfaces [59], a hyperbolic paraboloid, was classified
into two areas with both concave and convex feature-curve areas through the program
flow, CPMGC (see Figure 8).

Buildings 2023, 13, x FOR PEER REVIEW 11 of 17 
 

 
Figure 7. The classified results of typical flat and developable surfaces. 

One example of double-curved surfaces [59], a hyperbolic paraboloid, was classified 
into two areas with both concave and convex feature-curve areas through the program 
flow, CPMGC (see Figure 8). 

 
  

Figure 8. A hyperbolic paraboloid surface and the classified areas. 

The algorithm in Table 1 was converted into Excel and compared to the result of 
CPMGC in Dynamo. The numbers in Excel range from 0 to 24 and match the areas from 
the right-bottom side to the left-top side of the picture on the right side of Figure 8. The 
Excel result in Figure 9 shows the same classifications as the result in Figure 8, demon-
strating that the program flow works properly. 

 
Figure 9. The Excel result. 

Figure 8. A hyperbolic paraboloid surface and the classified areas.

The algorithm in Table 1 was converted into Excel and compared to the result of
CPMGC in Dynamo. The numbers in Excel range from 0 to 24 and match the areas from the
right-bottom side to the left-top side of the picture on the right side of Figure 8. The Excel
result in Figure 9 shows the same classifications as the result in Figure 8, demonstrating
that the program flow works properly.
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To validate the case of single-curved surfaces, the k1s of two areas, Nos. 2 and 5 in
Figure 10, were forcibly changed to 0. The k2s of the two areas are less than 0, and the k1s
of the two areas are equal to 0; the two areas must be classified as ruled-surfaces. As shown
in Figure 10, two classified results are the same and are ruled-surfaces.
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4.2. DDP Case Study

Figure 11 shows the entire process of the DDP case study. The surface in Figure 6 was
optimized by using the proposed generative program flow, MOGD, and the results are
shown in Figure 12. Inputs, the number of UV grids ranged from 20 to 40 (u grid) and
35 to 50 (v grid) to make each panel smaller than 1.92 m2, the size limitation, considering
multiple factors [49]. The objective function was set to minimize Total Cost, Total Planarity,
and DP Area. The selected surface has 1812 areas, and some of those areas (709 areas) have
threshold distances within 3 mm (0.12 in.), so these areas are panelized by FP.

In order to choose the best design solution, Pareto optimality was applied along with
two conflicting objective functions: Total Planarity and Total Cost. As shown in Figure 13,
the blue line in the upper graph included seven points that formed the Pareto optimality or
front. The big purple circle on the top-left side in the bottom graph is the closest design
option to the original design (the bigger circle has a larger DP area). The small sky-blue
circle on the bottom-right side in the bottom graph has the lowest total cost. The other
pareto fronts represent other possible trade-offs. As shown in Table 2, design option No. 20
has the minimum total planarity with the maximum cost for the 1013.7 m2 (10,911.4 sqft)
of DP and 226.2 m2 (2434.8 sqft) of FP. Compared to design option No. 1, which has the
minimum total cost and the maximum total planarity, there are differences of 0.193 m
(0.63 ft) in total planarity and USD 215,822 in total cost.
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Table 2. The MOGD analysis results.

No. Total Planarity
(m)

DP Area
(m2)

Total Cost
(USD)

FP Area
(m2) U Grid 1 V Grid 2

1 * 12.157 749.3 1,481,515 490.8 37 49

2 * 12.145 769.5 1,498,004 470.6 35 49

3 12.131 777.7 1,504,659 462.4 34 50

4 * 12.125 801.3 1,523,991 438.7 37 42

5 12.117 809.8 1,530,863 430.3 36 42

6 12.097 817.1 1,536,819 423.0 38 38

7 12.092 825.6 1,543,783 414.5 37 38

8 12.085 827.6 1,545,437 412.4 35 39

9 12.085 837.3 1,553,362 402.7 36 38

10 12.081 844.2 1,558,958 395.9 35 38

11 12.078 853.3 1,566,411 386.8 34 38

12 12.077 861.3 1,572,985 378.7 33 38

13 * 12.076 873.1 1,582,570 367.0 32 38

14 * 12.070 881.7 1,589,617 358.3 31 38

15 12.040 899.3 1,603,998 340.7 27 39

16 12.027 905.1 1,608,678 334.9 26 39

17 11.999 967.0 1,659,249 272.9 23 38

18 * 11.988 985.8 1,674,564 254.1 22 35

19 11.968 1000.5 1,686,577 239.4 21 35

20 * 11.964 1013.7 1,697,337 226.2 20 35
1 Range of U grid, 20–40. 2 Range of V grid, 35–50. * Pareto optimality.

5. Conclusions

This study proposes parametric and generative program flows for the rationalization
of free-form architecture with a user-friendly interface that balances design intent and
construction costs. When a free-form surface was designed in Revit TM and imported
into Dynamo, the proposed parametric program flow, CPMGC, classified the surface into
multiple areas. In AutodeskTM Project Refinery, the classified area for double-curved panels
was optimized through the generative program flow, MOGD, by integrating MOO and
Pareto optimality. Two conflicting objectives, design intent and construction cost, were
applied to the MOO through the generative designs, and the best solutions were chosen by
integrating the distance threshold with Pareto optimization. The DDP case study, as shown
in Table 2 and Figures 11 and 12, demonstrates overall promising results, with seven design
solutions for Pareto optimality. Depending on the areas of DP and FP, each different solution
has a different total planarity and total cost. Design solution 1 has the minimum cost and
maximum planarity, while design solution 20 has the minimum planarity and maximum
cost. From a design perspective, solution 20 is the most appropriate alternative as it is
closest to the original design. In terms of construction, solution 1 is the most appropriate
alternative. Among the best solutions on Pareto optimality, designers can select the design
option that best fits their design objectives through trade-offs. Designers can use the results
of this study to make more efficient and informed decisions in the early design process,
considering both design and constructional aspects for good free-form architecture.

However, this study has some limitations that need to be addressed in future research:
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• This study focuses on the design and cost aspects, which are the most important design
factors in free-form architecture. However, other factors, including support structures,
statics, repetition, patterns, and shading and other functional aspects, should also
be considered.

• Dynamo has fewer available optimization nodes than Grasshopper, another parametric
design tool. Future research should develop more nodes to enable further analysis
with more advanced algorithms.

Future research should aim to improve the proposed program flows by considering
additional variables and design factors.
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