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Abstract: Leveraging the properties of the first three linear moments (L-moments), this study pro-
poses an effective normal transformation for structural reliability analysis considering correlated
input random variables, in which the admissible range of the initial correlation matrix when em-
ploying this transformation is also presented. Subsequently, a practical procedure for structural
reliability analysis, grounded in the proposed transformation and first-order reliability method
(FROM), is proposed, accommodating instances wherein the joint probability density functions
(PDFs) or marginal PDFs of the relevant random variables remain unknown. In comparison to the
technique premised on the first three central moments (C-moments), the proposed method, based
on the first three L-moments, exhibits a more extensive applicability. Various practical scenarios
showcase the method’s effectiveness and precision in calculating the structural reliability index,
considering diverse distributions, numerous variables, and complex structures.

Keywords: normal transformation; L-moments; correlated variables; statistical moments; structural
reliability

1. Introduction

As a technique for quantitatively measuring the risks corresponding to the failure
events, reliability analysis plays an important role in probabilistic engineering mechanics.
The quantification of structural failure probability presents a formidable challenge, lead-
ing to the development of various methods [1–6], such as first-order reliability method
(FORM) [7], second-order reliability method (SORM) [8], moment-based approaches [9],
and simulation methods [3].

Among these, the first-order reliability method (FORM) [7–10] has emerged as the most
prevalent technique. Nevertheless, engineering practices frequently entail non-normally
distributed and correlated random variables [11], thus demanding a manageable method
for converting these into independent standard normal variables. In FORM, the Rosen-
blatt transformation [6,11] or Nataf transformation [12,13] are commonly employed for
the normal transformation, provided that the random variables exhibit known CDFs or
PDFs. However, in real-world applications, joint CDFs/PDFs and marginal PDFs of the
probability distributions often remain unknown due to data scarcity. Moreover, the avail-
able information is always expressed as statistical data or statistical moments or as a
correlation matrix.

Previous research on structural reliability with unknown probability distribution
primarily concentrates on the second-order method [1,7,14,15]. Subsequently, Zhao [16] in-
troduced a third-moment standardization function, utilizing the first three central moments
(C-moments) to address independent random variables. Lu [17] subsequently enhanced
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the third-moment transformation to accommodate correlated random variables. However,
this approach heavily depends on the first three C-moments and may exhibit inaccuracies
with small sample sizes [18]. Additionally, the skewness of each original random variable
is confined to a specific range [16], potentially neglecting other probability distributions.

Linear moments (L-moments), expressed as linear combinations of order statistics [18],
exhibit greater robustness than C-moments, as their estimates are linear combinations of
order statistics for all orders, whereas C-moments estimate amplify the powers of deviations
from the mean as the order increases [19]. L-moments have demonstrated considerable
improvement over C-moments, particularly for higher skewness [20,21], and have been
applied across various research domains, including the polynomial normal transform of L-
moments [22,23]. However, the normal transformation based on the first three L-moments
has not been thoroughly examined as an efficacious instrument in structural reliability
analysis. In addition, the explicit expression of equivalent correlation coefficients based on
a normal transformation using the first L-moments has not been proposed.

Therefore, this study aims to develop a normal transformation method based on
the first three L-moments and proposes a novel L-moments-based FORM method for
structural reliability analysis considering correlated input random variables. Additionally,
the application scope of the proposed normal transformation based on the first three L-
moments has been investigated and discussed. The remainder of this paper is organized as
follows. The first three L-moments of some common probability distributions are reviewed
in Section 2. L-moments-based Normal Transformation involving the correlated variables is
derived in Section 3. In Section 4, the proposed method for reliability analysis combined L-
moments with FORM is proposed. Then, the admissible range of the correlation coefficients
obtained by the normal transformation based on third L-moments is discussed in Section 5.
Section 6, several numerical examples involving correlated variables are presented to
demonstrate the accuracy and efficiency of the reliability index calculated by the proposed
method, in which the results have been compared with those from MCS [24,25]. Finally,
Section 7 summarizes the conclusions of the paper.

2. Review of First Three L-Moments of Some Common Probability Distributions

Let X represent a random variable characterized by a cumulative distribution function
(CDF) F(x) and a quantile function x(F). Assume a random sample of size n is extracted
from the distribution of X, with Xl:n < X2:n < . . . < Xn:n denoting the order statistics of the
sample. The quantities delineated in [18] can be employed to define the L-moments of X:

λs =
1
s

s−1

∑
k=0

[
(−1)E(Xs−k:s)

(
s− 1

k

)]
k, s ≥ 1 (1)

Here, E(Xs−k:s) denotes the expectation of the (s−k)th order statistics from a set of s
observations, and it can be expressed as:

E(Xs−k :s) =
s!

k!(s− k)!

∫
x f (x)[F(x)]k[1− F(x)]s−k−1dx (2)

Substituting Equation (2) into Equation (1), an expression for the first three L-moments
can be obtained as follows:

λ1 = E(X1:1) =
∫ 1

0
xdF(x) (3)

λ2 =
1
2

E(X2:2 − X1:2) =
∫ 1

0
[2F(x)− 1]xdF(x) (4)

λ3 =
1
3

E(X3:3 + X1:3 − 2X2:3) =
∫ 1

0

[
6F2(x)− 6F(x) + 1

]
xdF(x) (5)
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The concept of probability-weighted moments (PWM) of a random variable X firstly
introduced by [1] can be defined as:

Mp,m,r = E
{

Xp[1− F(X)]r[F(X)]m
}
=
∫ 1

0
xp[1− F(x)]rFm(x)dF(x) (6)

Given a particular type of the PWM, assuming β = M1,m,0, the following expression
can be derived:

βm =
∫ 1

0
xFm(x)dF(x) (7)

It can be observed that the L-moments are essentially linear combinations of PWMs.
From Equation (7) and Equations (3)–(5), the first three L-moments can be obtained as:

λ1 = β0 (8)

λ2 = 2β1 − β0 (9)

λ3 = 6β2 − 6β1 + β0 (10)

Similar to the C-moments, the normalized λ3 can be expressed as:

τ3 = λ3/λ2 (11)

where λ1, λ2, and τ3 are considered to be measures of location, scale, and skewness of a
probability distribution [18]. These parameters are also commonly referred to as the mean
or L-location, L-scale, and L-skewness, respectively.

Table 1 provides a list of the first three L-moments for the commonly used distributions
in structural reliability analysis, for ease of reference.

Table 1. The first three L-moments of some common distributions in structural reliability.

Distribution CDFs (F(x)) L-Location (λ1) L-Scale (λ2) L-Skewness (τ3)

Uniform F(x) = x−α
β−α

α+β
2

β−α
6 0

Exponential F(x) = 1− exp(−xλ) 1
λ

1
2λ

1
3

Normal F(x) = Φ
(

x−µ
σ

)
µ σ√

π
0

Lognormal F(x) = Φ
[
−λ+ln(x−ξ)

ζ

]
ξ + exp

(
λ + ζ2

2

)
er f
(

ζ
2

)
exp

(
λ + ζ2

2

)
6√

πer f ( ζ
2 )

∫ ζ
2

0 er f
(

x√
3

)
exp

(
−x2)dx

Gamma F(x) = γ
(

α, x
β

)
1

Γ(α)
αβ β

Γ(α+ 1
2 )√

πΓ(α)
6I1/3(α, 2α)− 3

Gumbel F(x) = exp
[
− exp

(
−x+ξ

θ

)]
ξ + 0.5772θ 0.69315θ 0.1699

When estimating L-moments in practical applications, a random sample is often drawn
from an unknown distribution. Let xl, x2, . . . , xn denote the sample, and xl:n ≤ x2:n ≤ . . . ≤ xn:n
denote the ordered sample. The first three sample L-moments, i.e., l1, l2, and l3, can be
expressed as follows:

l1 = b0 (12)

l2 = 2b1 − b0 (13)

l3 = 6b2 − 6b1 + b0 (14)
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where b0, b1, and b2 are the sample PWMs corresponding to β0, β1, and β2, respectively,
and they can be estimated using the following expressions [19]

b0 =
1
n

n

∑
i=1

xi:n, b1 =
1
n

n

∑
i=2

(i− 1)
(n− 1)

xi:n, b2 =
1
n

n

∑
i=3

(i− 1)(i− 2)
(n− 1)(n− 2)

xi:n (15)

3. L-Moments-Based Normal Transformation

Owing to the incomplete probability information of random variables in practical
engineering, access to limited statistical data is common. Therefore, in this section, the
paper pioneeringly introduces comprehensive normal transformation and inverse transfor-
mation formulas based on the first three L-moments, along with the derivation of formulas
accounting for correlated variables. These transformation formulas enable the calculation of
accurate polynomial coefficients, allowing random variables to be approximated based on
polynomials containing standard normal random variables. Consequently, the simulation
of their actual probability distributions is made possible, which plays a significant role in
the subsequent computation of structural reliability.

3.1. U-X Transformation Technique

According to the transformation technique proposed by [16], it is possible to approx-
imate a univariate random variable X through a second-order polynomial of standard
normal random variables. The approximation can be expressed as:

X = SU(U) = a + bU + cU2 (16)

The expression relates to a univariate random variable X and a standard normal
random variable U. The coefficients a, b, and c are determined such that the first three
L-moments of a polynomial function SU(U) match those of X.

Suppose F(x) = Φ(u), and substituting Equation (16) in Equation (7), one obtains

βm[SU(U)] =
∫ 1

0 xFm(x)dF(x)
=
∫ ∞
−∞ Φm(u)φ(u)

(
a + bu + cu2)du, m= 0, 1, 2

= aCm,0 + bCm,1 + cCm,2

(17)

where Φ(·) and φ(·) respectively represent the CDFs and PDFs of the standard normal
variable; m takes values 0, 1, or 2; and Cm,n is given by follows [26]:

Cm,n =
∫ ∞

−∞
unφ(u)Φm(u)du, m, n = 0, 1, 2 (18)

Thus
C0,0 = 1, C0,1 = 0, C0,2 = 1 (19)

C1,0 =
1
2

, C1,1 =
1

2
√

π
, C1,2 =

1
2

(20)

C2,0 =
1
3

, C2,1 =
1

2
√

π
, C2,2 =

√
3 + 2π

6π
(21)

Based on Equation (17) and Equations (8)–(10), the initial three L-moments of SU(U)
can be computed as follows:

λ1S = β0[SU(U)] = a + c (22)

λ2S = 2β1[SU(U)]− β0[SU(U)] =
b√
π

(23)
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λ3S = 6β2[SU(U)]− 6β1[SU(U)] + β0[SU(U)] =

√
3c

π
(24)

Therefore, explicit and straightforward expressions for the polynomial coefficients a, b,
and c can be derived as:

a = λ1X −
π√

3
λ3X (25)

b =
√

πλ2X (26)

c =
π√

3
λ3X (27)

As indicated in Equation (16) and Equations (25)–(27), the transformation technique
based on the first three L-moments does not impose any restrictions on the L-skewness.
Specifically, when λ1X = λ3X = 0 and λ2X = 1√

π
, the polynomial coefficients a and c both

equal 0, while b equals 1, thereby resulting in the degeneration of the u-x transformation
function to x = u.

3.2. X-U Transformation Technique

Based on Equation (16), the x-u transformation can be expressed as follows:

(1) λ3X 6= 0,

U =
−b +

√
b2 − 4c(a− X)

2c
=
−
√

3λ2X +
√

3λ2
2X + 4

√
3λ3X(X− λ1X) + 4πλ2

3X

2λ3X
(28)

(2) λ3X = 0, and λ2X 6= 0,

U =
X− a

b
=

X− λ1X√
πλ2X

(29)

3.3. The Equivalent Correlation Coefficient

Xi and Xj are two correlated non-normal random variables. Their first three L-moments
and the correlation coefficient (ρij) can be used to approximate them as follows:

Xi = ai + biZi + ciZ2
i =

(
1, Zi, Z2

i

)T
· (ai, bi, ci) (30)

Xj = aj + bjZj + cjZ2
j =

(
1, Zj, Z2

j

)T
·
(
aj, bj, cj

)
(31)

where Zi and Zj represent two correlated standard normal variables with a correlation
coefficient of ρ0ij. Then, the coefficients ai, bi, and ci in Equation (30), and aj, bj, and cj in
Equation (31) can be obtained using Equations (25)–(27) as follows:

ai = λ1Xi −
π√

3
λ3Xi , bi =

√
πλ2Xi , ci =

π√
3

λ3Xi (32)

aj = λ1Xj −
π√

3
λ3Xj , bj =

√
πλ2Xj , cj =

π√
3

λ3Xj (33)

The first three L-moments of Xi and Xj, can be denoted as λ1Xi , λ2Xi , and λ3Xi and
λ1Xj , λ2Xj , and λ3Xj , respectively.
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The correlation coefficient between Zi and Zj, i.e., denoted as ρ0ij, can be obtained from
the definition of the correlation coefficient. This can be expressed as follows:

ρij =
Cov

(
XiXj

)√
D(Xi)D

(
Xj
) =

E
(
XiXj

)
− E(Xi)E

(
Xj
)

σXi σXj

=
E
(
XiXj

)
− λ1Xi λ2Xj

σXi σXj

(34)

where D(Xi), D
(
Xj
)

and σXi , σXj respectively represent the variance and the standard
deviation of Xi and Xj; E

(
XiXj

)
can be computed as follows:

E
(
XiXj

)
= E

[
(ai, bi, ci)

(
1, Zi, Z2

i
)T ·

(
aj, bj, cj

)T
(

1, Zj, Z2
j

)]
= (ai, bi, ci)

 1 0 1
0 ρ0ij 0
1 0 2ρ2

0ij + 1

(aj, bj, cj
)T (35)

Substituting Equations (32), (33) and (35) into Equation (34), the correlation coefficient
between Xi and Xj, denoted as ρij, can be expressed as a function of the correlation coefficient
between the two correlated standard normal variables, denoted as ρ0ij.

ρij =
2cicjρ

2
0ij + bibjρ0ij

σXi σXj

(36)

that is

ρij =
2π2λ3Xi λ3Xj ρ

2
0ij + 3πλ2Xi λ2Xj ρ0ij

3σXi σXj

(37)

The correlation coefficient, ρ0ij, can be obtained by solving Equation (37). However, it
is important to note that the obtained value of ρ0ij must satisfy the following conditions to
meet the definition of the correlation coefficient:

−1 ≤ ρij ≤ 1,−1 ≤ ρ0ij ≤ 1, ρij · ρ0ij ≥ 0,
∣∣ρ0ij

∣∣ ≥ ∣∣ρij
∣∣, and

∂ρij

∂ρ0ij
≥ 0 (38)

By utilizing Equations (37) and (38), Table 2 summarizes the expressions of the correla-
tion coefficient ρ0ij and the upper and lower bounds of the original correlation coefficient
ρij that ensure the transformation is executable. Example 1 provides an illustration of the
derivation of Table 2.

Table 2. The formulae of ρ0ij for different cases.

Sign of A ρ0ij The Range of A and B The Upper and Lower Bounds of ρij

A > 0 ρ0ij =

√
B2+4Aρij−B

2A
B2 − 4A ≥ 0 ρij−max = min{1, A + B},ρij−min = max{−1, A− B}
B2 − 4A < 0 ρij−max = min{1, A + B},ρij−min = max

{
B2

−4A , A− B
}

A < 0 ρ0ij =

√
B2+4Aρij−B

2A
B2 + 4A ≥ 0 ρij−max = min{1, A + B},ρij−min = max{−1, A− B}
B2 + 4A < 0 ρij−max = min

{
B2

−4A , A + B
}

,ρij−min = max{−1, A− B}
A = 0 ρ0ij =

ρij
B - - - - - - - ρij−max = min{1, B},ρij−min = max{−1,−B}

In which the operator A = 2cicj/σiσj and B = bibj/σiσj > 0.

Each ρij-max and ρij-min specify the lower and upper bounds, respectively, of the initial
correlation matrix, represented as ρmax and ρmin. The boundary Θ of the initial correlation
matrix ρ, which ensures that every element of the matrix can be applied to the proposed
method, can be expressed as follows:

Θ =
[
max

(
ρij−min

)
, min

(
ρij−max

)]
(39)
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3.4. U-X Transformation Considering the Correlated Variables

The polynomial coefficients for the n-dimensional case can be determined using
Equations (25)–(27). For any two correlated non-normal random variables in the vector,
the corresponding equivalent correlation coefficients of standard normal variables can be
obtained from Table 2, subject to the boundary conditions of the initial correlation matrix.
This approach provides a practical and efficient technique for transforming correlated
non-normal random variables to standard normal variables, which can be useful in various
fields of engineering and science. The correlation matrix of the corresponding standard
normal variables, CZ, can be obtained as follows:

CZ =



1 · · · ρ01j · · · ρ01n
...

. . .
...

. . .
...

ρ0i1 · · · ρ0ij · · · ρ0in
...

. . .
...

. . .
...

ρ0n1 · · · ρ0nj · · · 1

 (40)

Using the Cholesky decomposition [2], the correlated standard normal random vector
Z can be converted into an independent standard normal vector U, i.e., which is mathemat-
ically represented as:

Z = L0U (41)

The lower triangular matrix, L0, obtained from the Cholesky decomposition can be
described as follows:

L0 =



l11 · · · 0 · · · 0
...

. . .
...

. . .
...

li1 · · · lii · · · 0
...

. . .
...

. . .
...

ln1 · · · lni · · · lnn

 (42)

In theory, the equivalent correlation matrix (CZ) should be positive semi-definite after
excluding fully correlated variables. However, computational errors during the transfor-
mation from correlated non-normal random vectors to correlated normal ones, especially
for highly non-normal random variables, may result in small negative eigenvalues of CZ.
To address this issue, a method proposed by [27] is adopted. In such cases, CZ can be
expressed as follows:

CZ = VΛVT (43)

The eigenvector matrix, V, and diagonal eigenvalue matrix, Λ, of CZ are given by the
decomposition. In cases where Λ contains small negative eigenvalues, which may arise due
to computational errors during the transformation from correlated non-normal random
vectors to correlated normal ones, these eigenvalues are replaced with small positive values
such as 0.001. This guarantees that the Cholesky decomposition is carried out correctly.

Based on Equations (41) and (42), Zi can be represented as follows:

Zi =
i

∑
k=1

Uklik , i = 1, 2, · · · , n (44)

Upon substitution of Equation (44) into Equation (30), the transformation of correlated
random variables from the U to X domain can be achieved through a second-order normal
polynomial transformation, and can be expressed as follows:

Xi = ai + bi

i

∑
k=1

Uklik + ci

(
i

∑
k=1

Uklik

)2

, i = 1, 2, · · · , n (45)
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3.5. X-U Transformation Considering the Correlated Variables

The acquisition of the normal transformation involves first transforming the correlated
non-normal random vector X into a correlated standard normal random vector Z and then
transforming Z into an independent standard normal random vector U.

The X-Z transformation can be expressed using Equations (30) and (31) as follows:

Zi = S−1
Z (Xi) =


−
√

3λ2Xi
+
√

3λ2
2Xi

+4
√

3λ3Xi (Xi−λ1Xi )+4πλ2
3Xi

2λ3X
, ci 6= 0

Xi−λ1Xi√
πλ2Xi

, ci = 0
(46)

After the X-Z transformation, the correlated vector Z can be further transformed into
an independent standard normal vector U,

U = ZL−1
0 (47)

The inverse matrix L0
−1 of L0, also a lower triangular matrix, can be expressed as:

L−1
0 =



h11 · · · 0 · · · 0
...

. . .
...

. . .
...

hi1 · · · hii · · · 0
...

. . .
...

. . .
...

hn1 · · · hni · · · hnn

 (48)

According to Equations (47) and (48), Ui is expressed as:

Ui =
i

∑
k=1

hikZk , i = 1, 2, · · · , n (49)

The X-U transformation can be expressed as Equation (49) by substituting Equation (46)
into it:

Ui =
i

∑
k=1

hikS−1
Z (Xk), i = 1, 2, · · · , n (50)

4. The Proposed Method for Reliability Analysis Combined L-Moments with FORM

Building upon the aforementioned work, the random variables in structural analysis
can be approximated as a polynomial form based on standard normal variables using the
formulas proposed in the third section, even when their probability distributions remain
uncertain. Consequently, in the subsequent structural reliability analysis, the situation
with unknown variable distributions is transformed into a common case with known
distributions (i.e., standard normal space).

In this Section, the procedure for conducting reliability analysis of a performance
function that involves correlated random variables can be described using the first three
L-moments, standard deviations, and correlation matrix through the FORM method. The
specific steps are shown below:

(1) Obtain the initial correlation matrix CX, standard deviation, and L-moments of the
correlated random variables from the correlation matrix, PDFs, or statistical data.

(2) Using Equation (30) and Table 2, determine the polynomial coefficients in Equation (32)
and the correlation coefficients between Zi and Zj. Then, calculate the inverse matrix
L0
−1 and its lower triangular matrix L0.

(3) Select the initial checking point x0, which is typically the mean vector of X.
(4) Obtain the initial reliability index β0 by obtaining the corresponding checking point

in the independent standard normal space, u0, through the use of Equation (50).
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(5) Calculate the Jacobian matrix J = ∂X
∂U at the point u0 using the elements derived from

Equation (46).
∂xi
∂uj

= lij

(
bi + 2ci

i
∑

k=1
uklik

)
, i, j = 1, 2, . . . , n (51)

(6) Calculate the performance function and its gradient vector at the point u0:

g(u0) = G(x0), ∇g(u0) = ∇G(x0) · JT (52)

where ∇g(u0) represents the gradient vector of g(u) evaluated at u0, and ∇G(x0)
represents the gradient vector of G(x) evaluated at x0.

(7) Calculate the next design point u1 based on Equation (53) in the independent standard
normal space:

u1 =
1

∇g(u0) · ∇T g(u0)

[
u0 · ∇T g(u0)− g(u0)

]
· ∇g(u0) (53)

(8) Determine the corresponding reliability index based on Equation (54):

β =
√

uT
1 u1 (54)

(9) Calculate the difference between β0 and β and take the absolute value:

εr = |β− β0| (55)

(10) If εr > ε, where ε is the permissible error (e.g., ε = 10−6), the new checking point in
the original space can be obtained based on Equation (56):

x1 = x0 + J(u1 − u0) (56)

(11) Substituting x1 for x0 in Step (3), repeat Steps (4) through (11) until convergence.

5. Discussion of the Applicable Bound of Equivalent Correlation Coefficients

For the novel structural reliability calculation method proposed in this paper, its
applicability and scope of use need to be clarified. In this section, through mathematical
derivation, detailed boundary formulas and range proofs are provided.

To simplify the description, Equation (36) was rewritten as follows:

ρij = Aρ2
0ij + Bρ0ij (B > 0) (57)

where

A =
2cicj

σXiσXj
, B =

bibj

σXiσXj
(58)

According to Equations (25)–(27), the values of bi (or bj) will always be bigger than 0,
resulting in a constant B > 0. The sign of A, however, is determined by the sign of cicj, that
is, λ3Xi λ3Xj.

If A 6= 0, then Equation (57) can be expressed as a quadratic equation in terms of c0ij,
and is equivalent to:

ρij
A = ρ2

0ij +
B
A ρ0ij (B > 0) (59)

To simplify the expression, the right-hand side of Equation (59) is expressed as h(ρ0ij),
i.e.,

ρij

A
= h

(
ρ0ij
)
= ρ2

0ij +
B
A

ρ0ij (60)
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Subsequently, the extreme value of h(ρ0ij) can be obtained as follows:

hext = h
(
−B
2A

)
=
−B2

4A2 (61)

For A > 0, Equation (56) yields two real roots, namely ρ0ij−1 = 0 and ρ0ij−2 = −B/A < 0.
Figure 1 depicts the shape of h(ρ0ij) for A > 0, where the solid line denotes the region
satisfying the condition that ρij · ρ0ij ≥ 0 and ρ0ij is an increasing function of ρij.
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Based on Figure 1, the equivalent correlation coefficient ρ0ij can be determined for
A > 0 as follows:

ρ0ij =

√
B2 + 4Aρij − B

2A
(62)

To ensure that ρ0ij obtained from Equation (62) satisfies the definition of correlation
coefficient (i.e.,−1 ≤ ρ0ij ≤ 1), an applicable bound for ρij exists, i.e., ρij ∈ [ρij−min, ρij−max],
where ρij-max and ρij-min represent the upper and lower bounds, respectively.

When hext > −1/A (B2 − 4A < 0), i.e., that is, the interval (−∞, 0] of ρ0ij can be
partitioned into two subintervals using the abscissas corresponding to ρ0ij = −B/2A, as
illustrated in Figure 1b. If ρ0ij = −1 is in Interval I, the lower bound is determined as
ρij−min = −B2/4A. On the other hand, if ρ0ij = −1 is in Interval II, the lower bound is
ρij−min = A− B to ensure ρ0ij ≥ −1. The lower bound for B2−4A < 0 can be expressed as
ρij−min = max

{
−B2/4A, A− B

}
.

When hext ≤ −1/A (B2 ≥ 4A), the interval (−∞, 0] of ρ0ij can be partitioned into two
subintervals using the abscissas corresponding to ρij = −1, as depicted in Figure 1b. If
ρ0ij = −1 is in Interval I, then the lower bound is determined ρij−min = A− B to ensure
ρ0ij ≥ −1. Conversely, if ρ0ij = −1 is in Interval II, the lower bound is set to ρij-min = −1.
For B2 ≥ 4A, the lower bound can be expressed as ρij−min = max{−1, A− B}.

Based on the previous discussion, if A > 0, the appropriate maximum value of the origi-
nal correlation coefficient, which is equivalent to the lower bound of ρij, can be summarized
as follows:

ρij−min =

{
max{−1, A− B}, B2 − 4A ≥ 0

max
{
−B2/4A, A− B

}
, B2 − 4A < 0

(63)
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Substituting Equation (58) into the above Equation (63), the lower bound of ρij can be
expressed as follows:

ρij−min =

 max
{
−1,

(
2cicj − bibj

)
/σiσj

}
, ci, cj ∈ Ω

max
{
−b2

i b2
j

σiσjcicj
,
(
2cicj − bibj

)
/σiσj

}
, otherwise

(64)

where
Ω =

{
ci, cj

∣∣∣cicj ≤ b2
i b2

j /8σiσj

}
(65)

(1) When A > 0, the upper bound of ρij can also be expressed as follows:

ρij−max = min{1, A + B} (66)

then,
ρij−max = min

{
1,
(
2cicj + bibj

)
/σiσj

}
(67)

(2) When A< 0, ρ0ij is determined by Equation (62), the applicable bound of ρij can be
expressed as:

ρij−max =

{
min{1, A + B}, B2 + 4A ≥ 0
min

{
−B2/4A, A + B

}
, otherwise

(68)

ρij−min = max{−1, A− B} (69)

(3) If A = 0, Equation (59) degenerates as a linear equation about ρ0ij as follows:

ρ0ij =
ρij

B
(70)

The applicable bound of ρij is given as follows:

ρij−min = max{−1,−B} (71)

ρij−max = min{1, B} (72)

6. Numerical Examples
6.1. Example 1: Computational Procedure with a Simplified Performance Function

Examine a cantilevered beam, as depicted in Figure 2, which is subjected to a uniformly
distributed load (q) and possesses a beam length (l) of 4.0 m. The beam materials are
characterized by Young’s modulus (E), while the inertia moment of the beam section is
denoted by (I). The permissible deflection at the unattached extremity is 1/200 of the total
beam length. As a result, the performance function can be formulated as follows:

G(X) =
l

200
− ql3

EI
= 0.02− 8

q
EI

(73)
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The performance function, G(X), is articulated as a function encompassing three
random variables: q, E, and I. The respective probability distributions and correlation
matrix for these variables are presented in Table 3.

Table 3. Random Variable Distributions and Correlation Matrix for Example 1.

Variable Distribution Mean Value Coefficient of
Variation

Correlation
Matrix

q (N/m) Lognormal 1000 0.2
1.0 0.2 0.2

0.2 1.0 0.2
0.2 0.2 1.0

E (N/m2) Lognormal 2 × 1010 0.05
I (m4) Lognormal 3.9025 × 10−5 0.1

6.1.1. Case 1: Structural Reliability with Correlated Variables

According to Equations (3)–(5) or Table 1, the first three L-moments of three random
variables (q, E, and I) can be respectively given as follows:

λ1q= 1000, λ2q= 111.369, λ3q = 10.753
λ1E= 2 × 1010, λ2E= 5.637 × 108, λ3E = 1.376 × 107

λ1I= 3.9025 × 10−5, λ2I= 2.194× 10−6, λ3I = 1.069× 10−7

Using Equations (25)–(27), the corresponding polynomial coefficients are given as
follows:

a1= 980.389, b1= 197.396, c1 = 19.504
a2= 2 × 1010, b2= 9.992 × 108, c2 = 2.496 × 107

a3= 3.883 × 10−5, b3= 3.889 × 10−6, c3 = 1.937 × 10−7

Using Equation (58), the parameter matrix A can be obtained as follows:

A =

 0.0190199 0.00486773 0.00969043
0.00486773 0.00124579 0.00248006
0.00969043 0.00248006 0.00493717


Upon observation, it can be seen that all elements of A are greater than 0. Subsequently,

by utilizing Equations (64) and (67), the upper and lower bounds of ρij can be expressed as
follows:

ρij−max =

0.993099 0.990987 0.993189
0.990913 0.999532 0.998103
0.993198 0.998095 0.997911


ρij−min =

−0.955019 −0.981263 −0.973075
−0.981249 −0.997102 −0.993372
−0.973798 −0.992997 −0.987993


The pertinent range of initial correlation coefficients matrix can be expeditiously

procured as Θ = [−0.955019, 0.990913], which infers that the initial correlation matrix
presented in this instance is suitable for the third L-moments transformation method. It is
evident that the applicable range of the original correlation coefficient is sufficiently expan-
sive, thereby rendering it satisfactory for a diverse array of general engineering problems.

Based on Equation (62), the equivalent correlation matrix is given as follows:

CZ =

1.0000 0.2019 0.2020
0.2019 1.0000 0.2005
0.2020 0.2005 1.0000


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The Cholesky decomposition results of CZ can then be expressed as follows:

L0 =

 1.0 0 0
0.2019 0.9794 0
0.2020 0.1631 0.9657

, L−1
0 =

 1.0 0 0
−0.2061 1.0210 0
−0.1744 −0.1724 1.0355


Assume initial checking point as:

x0 = (q, E, I)T =
(

1000, 2× 1010, 3.9025× 10−5
)T

The corresponding checking point in standard normal space can be readily obtained
as u0 = (0.0981, 0.0052, 0.0298)T using Equation (50). Subsequently, the initial reliability

index β0 at u0 can be calculated as β0 =
√

uT
0 u0 = 0.1025.

The Jacobian matrix at u0 can be evaluated using Equation (51) as follows:

J =

 201.214 0 0
2.0193× 108 9.7979× 108 0

7.8954× 10−7 6.3739× 10−7 3.7740× 10−6


Using Equation (52), the value of the performance function and gradient vector at the

checking point u0 can be evaluated as follows:

g(u0) = G(x0) = 0.00969

∇g(u0) =

−1.752× 10−3

6.695× 10−4

9.912× 10−4


Then, the next checking point u1 can be obtained based on Equation (53) as:

u1 =
1

∇Tg(u0) · ∇g(u0)
∇g(u0)

[
∇Tg(u0) · u0 − g(u0)

]
=

 3.8499
−1.4713
−2.1791


Then, the reliability index can be obtained as β =

√
uT

1 u1 = 4.66195.
The absolute difference between β0 and β can be determined as:

εr =
|β− β0|

β
= 0.9780 > 1.0× 10−6

Checking point in original space is determined as:

x1 = x0 + J(u1 − u0) = (1754.95, 1.93105× 1010, 0.0000327)
T

The above procedure is repeated using x1 as the new checking point until convergence
is achieved. A comparison of results from different methods for Case 1 is presented in
Table 4. The convergence criterion is met in five steps, resulting in a reliability index of
βLM = 3.395 at the design point u* = (2.7039, −1.1539, −1.7016)T in standard normal space,
which corresponds to the design point x* = (1627.03, 1.9415 × 1010, 3.3415 × 10−5)T in the
original space.
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Table 4. Comparison of results by different methods for Case 1.

Method Design Point u* Design Point x* β Pf

L-Moments (2.7039, −1.1539, −1.7016)T (1627.03, 1.9415 × 1010, 3.3415 × 10−5)T 3.395 3.40 × 10−4

C-Moments (2.7031, −1.1527, −1.6949)T (1633.32, 1.9376 × 1010, 3.3763 × 10−5)T 3.391 3.47 × 10−4

MCS - - - - 3.397 3.36 × 10−4

A comparative reliability analysis was conducted using the first three C-moments
to perform the x-u and u-x transformations for the same example. The resulting reli-
ability index, denoted as βCM, was obtained as 3.391 after convergence was achieved
(εr ≤ 1.0× 10−6) in five steps. The corresponding design point in standard normal space
was u* = (2.7031, −1.1527, −1.6949)T, and the corresponding design point in the original
space was x* = (1633.32, 1.9376 × 1010, 3.3763 × 10−5)T.

Based on the available distribution information and initial correlation matrix of the
random variables, the failure probability is determined to be 3.36 × 10−4 with a coefficient
of variation of 3.77%, using the Monte Carlo simulation (MCS) approach with a sample size
of 2 × 106. The corresponding reliability index (βMCS) is found to be 3.397. Notably, the
results obtained from the first three L-moments- and C-moments-based FORM approaches
are found to be in close agreement with those obtained from MCS. It is noteworthy that
the reliability index and failure probability ascertained via the L-moments method ex-
hibit greater proximity to the values computed using the MCS method. This observation
suggests that the L-moments approach yields superior accuracy in comparison to the
C-moments method.

6.1.2. Case 2: Examining Random Variables with Greater Skewness

The proposed method, premised on the first three L-moments in Equation (16) and
Equations (25)–(27), circumvents limitations on L-skewness, in contrast to the conven-
tional third-moment standardization. If the coefficient of variation of q is 0.8, its skew-
ness attains 2.924, which surpasses the scope of the third-moment transformation pred-
icated on C-moments. In this scenario, the initial correlation matrix is verified with
Θ = [−0.539, 0.861], facilitating reliability analysis based on L-moments. The acquired reli-
ability index βLM = 1.266, converges to u* = (1.2429, −0.1334, −0.1972)T, corresponding to
x* = (1963.9396, 2.0201× 1010, 3.9149× 10−5)T, after reaching convergence (εr ≤ 1.0× 10−6)
in five steps. Utilizing MCS, the failure probability amounts to 9.272 × 10−2 (the coefficient
of variation of MCS is 0.991%), with the corresponding reliability index of 1.319. It can
be observed that FORM, based on L-moments, yields a result comparable to that of MCS,
while FORM, based on C-moments, cannot be executed for this case.

Figure 3 illustrates the reliability indices in relation to the coefficients of variation of q,
as determined using FORM based on L-moments and C-moments, along with the MCS
results. Upon examining Figure 3, it becomes evident that the L-moments-based FORM
results consistently demonstrate superior accuracy and alignment with the MCS outcomes,
as compared to the C-moments-based FORM results, when the coefficients of variation of q
range from 0.2 to 0.778.

As the coefficients of variation of q exceed 0.778, the L-moments-based FORM contin-
ues to provide comparable results to those obtained through MCS, further emphasizing its
advantageous performance. In contrast, the C-moments-based FORM becomes impractical,
as the skewness of q surpasses the application range of the third-moment transformation
predicated on C-moments. This observation accentuates the superior performance of the
L-moments method compared to the C-moments method in the given context.
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6.2. Example 2: Reliability Analysis with Unknown Probability Distribution

The second example encompasses a roof structure subjected to a uniformly distributed
vertical load (qr), as delineated in Figure 4, which has been previously examined by [2].
The top cords and compression bars are composed of concrete, while the bottom cords and
tension bars are constituted of steel. In the structural analysis, the uniformly distributed
load (qr) was transformed into three nodal loads, each denoted as P = qrl/4. The service-
ability limit state of the structure, with respect to its maximum vertical displacement, was
considered. The performance function is expressed as follows:

G(X) = 0.035− ql2

2
(

3.81
AcEc

+
1.13
AsEs

) (74)

where l represents the roof span, and the admissible deflection is arbitrarily fixed to 0.035 m.
Furthermore, (Es, As) and (Ec, Ac) correspond to the Young’s modulus and cross-sectional
areas of the steel and concrete beams, respectively. Table 5 consolidates the statistical
information pertaining to the random variables.
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Table 5. Random Variable Distributions and Sample L-moments for Example 2.

Variables Distributions Mean Value C.O.V
First Three Sample L-Moments

l1 l2 l3

qr (N/m) Gumbel 2 × 104 0.10 2000.85 1081.72 0.1707
l (m) Gumbel 12 0.01 11.99 0.0648 0.1698

As (m2) Normal 9.82 × 10−4 0.06 9.83 × 10−4 3.31 × 10−5 3.35 × 10−4

Ac (m2) Normal 400 × 10−4 0.12 3.99 × 10−4 2.71 × 10−3 3.15 × 10−4

Es (N/m2) Lognormal 1 × 1011 0.06 9.99 × 1010 3.37 × 109 0.0292
Ec (N/m2) Lognormal 2 × 1010 0.06 1.99 × 1010 6.77 × 109 0.0297

Assuming all random variables possess known CDFs/PDFs, the reliability index and
failure probability can be effectively ascertained through the FORM procedure and MCS
method. In order to examine the efficiency of the proposed approach, which incorporates
random variables with unknown CDFs/PDFs, the CDFs/PDFs of random variables qr, l, As,
Ac, Es, and Ec are considered unknown, with only a limited number of measured samples
assumed to be known. Consequently, the first three sample L-moments can be calculated
employing Equations (12)–(14) and Equation (15) and are presented in the rightmost section
of Table 5. By utilizing the first three L-moments, the u-x and x-u transformations of the
random variables can be seamlessly executed in accordance with Section 3. Subsequently,
the reliability index and failure probability including random variables with unknown
CDFs/PDFs, can also be readily obtained.

Upon examination of the available distribution information for the random variables,
the failure probability is ascertained to be 1.96 × 10−4, accompanied by a coefficient of
variation equal to 2.87%. This is achieved through the application of the MCS method, em-
ploying a sample size of 5 × 106. The corresponding reliability index (βMCS) is determined
to be 3.542. With respect to the known distribution information of random variables, the
first-order reliability index (βFORM) is calculated as 3.679 using a general FORM procedure.
In instances where distribution information remains unknown, the reliability index (βLM)
computed by amalgamating FORM with merely the first three sample L-moments is 3.594.

It is worth noting that the results procured from the FORM approaches only based
on the first three sample L-moments exhibit close alignment with those derived from
MCS and the general FORM procedure. The comprehensive results acquired through the
utilization of the CDFs/PDFs and the first three sample L-moments of qr, l, As, Ac, Es,
and Ec are presented in Table 6. The table demonstrates that the checking points (in both
original and standard normal spaces), the Jacobian for the last iteration, employing the first
three sample L-moments of qr, l, As, Ac, Es, and Ec, exhibit a general proximity to those
ascertained using the CDFs/PDFs of qr, l, As, Ac, Es, and Ec. This observation indicates that
the first-order reliability index and calculation procedure, derived using exclusively the
first three sample L-moments of random variables, exhibit substantial coherence with the
index and calculation process ascertained via the CDFs/PDFs of random variables. This
evidence not only reinforces the feasibility of the method proposed in this paper when the
distribution of random variables is unknown but also accentuates its alignment with the
scenarios encountered in engineering practice. Consequently, it encourages the promotion
and application of the proposed method within real-world engineering contexts.

Table 6. Comparisons of FORM Procedure Using Different Methods for Example 2.

Variables

Using CDFs/PDFs Using Sample L-Moments

Checking Point Jacobian Checking Point Jacobian

x* u* du/dx x* u* du/dx

qr (N/m) 22423.79 1.343 1379.57 22447.15 1.334 1381.84
l (m) 12.09 0.432 0.119 11.97 0.479 0.122
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Table 6. Cont.

Variables

Using CDFs/PDFs Using Sample L-Moments

Checking Point Jacobian Checking Point Jacobian

x* u* du/dx x* u* du/dx

As (m2) 9.24 × 10−4 −0.981 5.78 × 10−5 9.23 × 10−4 −0.979 5.82 × 10−5

Ac (m2) 0.037 −0.863 0.0049 0.036 −0.861 0.0047
Es (N/m2) 9.47 × 1010 −0.991 5.97 × 109 9.33 × 1010 −0.997 5.97 × 109

Ec (N/m2) 1.94 × 1010 −0.402 1.19 × 109 1.94 × 1010 −0.405 1.19 × 109

6.3. Example 3: Reliability Analysis for Implicit Performance Functions

Consider a two-bay five-story frame structure subjected to lateral loads as depicted in
Figure 5. The cross-sectional areas and moments of inertia of the frame members are listed
in Table 7. The performance function is given as follows:

G(X) = ulim − u(X) (75)
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The specified limit ulim = 0.055 m and the top-floor displacement u(X), which is
determined by finite element analysis, are used in the following performance function. The
correlation matrix of basic random variables is presented below:

CX =

P1
P2
P3
E1
E2
I1
...

A7



1
0.5 1
0.5 0.5 1
0 0 0 1
0 0 0 0.9 1
0 0 0 0 0.13 1
...

...
...

...
...

. . . . . .
0 0 0 0 0.13 · · · 0.13 1


(76)
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Table 7. Probabilistic Characteristics of the Basic Random Variables.

Variable Distribution
The First Three L-Moments The Corresponding Parameters

λ1 λ2 λ3 a b c

P1 Weibull 135 15.213 −0.9698 136.759 26.9643 −1.75902
P2 Weibull 90 10.142 −0.6465 91.1726 17.9762 −1.17262
P3 Weibull 70 7.888 −0.5029 70.9122 13.9811 −0.91216
E1 Lognormal 2.1 × 107 591906 14449.3 2.10 × 107 1.05 × 106 26208.1
E2 Lognormal 2.4 × 107 676464 16513.5 2.40 × 107 1.20 × 106 29952.2
I1 Lognormal 8.1 × 10−3 4.6 × 10−4 2.2 × 10−5 8.07 × 10−3 8.15 × 10−4 3.99 × 10−5

I2 Lognormal 0.011 6.2 × 10−4 3.0 × 10−5 0.0109 0.0011 5.44 × 10−5

I3 Lognormal 0.0213 0.0012 5.8 × 10−5 0.0212 0.00213 1.05 × 10−4

I4 Lognormal 0.0295 0.0015 7.1 × 10−5 0.0258 0.00266 0.00013
I5 Lognormal 0.0108 6.1 × 10−4 2.9 × 10−5 0.0107 0.00108 5.26 × 10−5

I6 Lognormal 0.0141 7.9 × 10−4 3.9 × 10−5 0.0140 0.00140 7.07 × 10−5

I7 Lognormal 0.0232 1.3 × 10−3 6.4 × 10−5 0.0231 0.00230 1.16 × 10−4

A1 Lognormal 0.312 0.0175 8.5 × 10−4 0.3105 0.03102 0.00154
A2 Lognormal 0.372 0.0209 1.0 × 10−3 0.3702 0.03704 0.00181
A3 Lognormal 0.505 0.0284 1.4 × 10−3 0.5025 0.05034 0.00254
A4 Lognormal 0.557 0.0313 1.5 × 10−3 0.5543 0.05548 0.00272
A5 Lognormal 0.253 0.0142 6.9 × 10−4 0.2517 0.02517 0.00125
A6 Lognormal 0.291 0.0164 8.0 × 10−4 0.2895 0.02907 0.00145
A7 Lognormal 0.372 0.0209 1.0 × 10−3 0.3702 0.0370 0.00181

The probabilistic characteristics and associated parameters of the random variables are
presented in Table 7. The transformations from the standard normal space to the original
space and vice versa are conducted for the random variables using Equations (45) and (50),
respectively.

In this case, the boundary of the initial correlation matrix is examined to satisfy
Θ = [−0.981, 0.985], thereby enabling the implementation of reliability analysis based on
L-moments.

For the implicit performance function in this case, numerical differentiation methods
can be utilized to determine the gradient vector ∇G(x0). If the central difference method is
employed, the expression for ∇G(x0) is given by:

∇G(x0) =



G(x01+h,x02,··· ,x0n)−G(x01−h,x02,··· ,x0n)
2h
...

G(x01,··· ,x0i+∆,··· ,x0n)−G(x01,··· ,x0i−∆,··· ,x0n)
2∆
...

G(x01,x02,··· ,x0n+∆)−G(x01,x02,··· ,x0n−∆)
2∆


(77)

where x0i (i = 1,2, . . . , n) represents the ith element of vector x0; and ∆ = 10−4 is the step
size (generally chosen to be small enough as required).

Once the convergence is achieved (with εr ≤ 1.0× 10−4) in five steps, the reliability
index can be easily determined as βLM = 2.209. Moreover, employing Monte Carlo simula-
tion with known PDFs/CDFs and the initial correlation matrix, the reliability index can be
calculated as βMCS = 2.215 (with corresponding failure probability Pf = 1.337 × 10−2) with
high accuracy (coefficient of variation for Pf = 2.721%). Thus, the results obtained from the
two methods in this example are almost identical.

7. Concluding Remarks

This study proposes a second-order polynomial normal transformation for structural
reliability analysis based on the first three L-moments for both independent and correlated
variables. The criteria for the admissible range of the initial correlation matrix have also
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been explored. Moreover, a FORM method has been developed based on the first three
L-moments. Numerical examples are presented to investigate the accuracy and efficiency
of the proposed method for structural reliability analysis. Several conclusions are drawn,
as summarized in the following:

(1) In practical engineering, the probability information of random variables is often in-
complete, with access to only limited statistical data, rendering reliability calculations
unfeasible. To address this issue, this paper presents an innovative solution. The
proposed solution consists of two steps: first, employing the normal transformation
and inverse transformation formulas based on the first three L-moments proposed
in this paper, random variables can be approximated using polynomials containing
standard normal random variables. Subsequently, after obtaining the approximate
expressions for the random variables, the traditional FORM procedure is combined
to calculate the reliability of the performance function using the approximate distri-
bution and correlation matrix of the random variables. Several numerical examples
provided, compared with the MCS method, demonstrate the feasibility and accuracy
of the proposed method.

(2) Although the normal transformation and inverse transformation of random variables
can be achieved using C-moments, the accuracy of the C-moments-based FORM
method tends to degrade as the coefficient of variation increases. When the coefficient
of variation exceeds 0.778, the C-moments method becomes completely ineffective.
In contrast, fortunately, the L-moments-based FORM method proposed in this paper
consistently maintains agreement with the reliability indices calculated using the
MCS method, regardless of the magnitude of the coefficient of variation. This is
vividly illustrated in Case 2 of Example 2, which further demonstrates the broader
applicability of the proposed method without being constrained by the coefficient
of variation. It is worth mentioning that this paper also provides detailed boundary
formulas and range justification for the equivalent correlation coefficients of the
proposed method through mathematical derivation, further clarifying the applicability
and scope of the new method.

(3) In this study, a total of three numerical examples have been investigated to substan-
tiate the feasibility, accuracy, and simplicity of the method proposed herein. These
examples are grounded in real-world scenarios, encompassing a wealth of engineering
contexts. They have been carefully selected to address diverse distribution types,
multiple random variables, and intricate structural configurations from a variety of
perspectives, underlining the extensive applicability of the presented method. Fur-
thermore, the derived normal transformation and inverse transformation formulas
for random variables, based on L-moments, are notably concise and straightforward.
This simplicity not only facilitates comprehension among engineering practitioners
but also promotes ease of implementation in real-life engineering problems. In light
of these findings, it is recommended that the method proposed in this paper be fur-
ther disseminated and applied within the engineering community. By doing so, it
is anticipated that the method will contribute significantly to the advancement of
structural reliability analysis and offer valuable insights for practitioners seeking to
address complex engineering challenges.

Regarding future work, two primary research directions can be pursued to build
upon the findings of this study. Firstly, a deeper investigation of the proposed method’s
applicability to dynamic reliability analysis and more complex structural systems is needed.
By extending the method to these domains, its versatility and robustness can be further
established. Secondly, the exploration of alternative techniques that can substitute for
normal transformation and inverse transformation is of interest, such as deep learning
technologies. The potential integration of advanced machine learning algorithms with the
proposed method could lead to enhanced performance and new insights into the field of
structural reliability analysis.
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By addressing these research avenues, the proposed method can continue to evolve
and contribute to the advancement of structural reliability analysis and the resolution of
complex engineering challenges.
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