Rehabilitation of Porous Building Components and Masonry by MICP Injection Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture and Cementation Solution
2.2. Sample Preparation and MICP Injection Method
3. Results
3.1. Results of the 1st Test Series: Initial Tests on Mortar Samples
3.2. Results of the 2nd Test Series: MICP Pressure Injection Tests Using Pump
3.3. Results of the 3rd Test Series: Masonry MICP Injection
4. Discussion
4.1. Effect of MICP Treatment on Mortar Samples
4.2. Effect of MICP Injection on Masonry Samples
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perret, S.; Ballivy, G.; Palardy, D.; Laporte, R. Formulation of high-performance cement grouts for the rehabilitation of heritage masonry structures. In Proceedings of the Third International Conference on Grouting and Ground Treatment, New Orleans, LA, USA, 10–12 February 2003; pp. 1243–1253. [Google Scholar] [CrossRef]
- Yang, Z.; Cheng, X. A performance study of high-strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures. Constr. Build. Mater. 2013, 41, 505–515. [Google Scholar] [CrossRef]
- Luso, E.; Lourenço, P.B. Experimental characterization of commercial lime based grouts for stone masonry consolidation. Constr. Build. Mater. 2016, 102, 216–225. [Google Scholar] [CrossRef]
- Mu, B.; Gui, Z.; Lu, F.; Petropoulos, E.; Yu, Y. Microbial-Induced Carbonate Precipitation Improves Physical and Structural Properties of Nanjing Ancient City Walls. Materials 2021, 14, 5665. [Google Scholar] [CrossRef] [PubMed]
- van Paassen, L.A. Ground Improvement by Microbially Induced Carbonate Precipitation; Delft University of Technology: Delft, The Netherlands, 2009. [Google Scholar]
- Wang, Y.; Konstantinou, C.; Tang, S.; Chen, H. Applications of microbial-induced carbonate precipitation: A state-of-the-art review. Biogeotechnics 2023, 1, 100008. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Wang, Y.; Jiang, N. A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives. Biogeotechnics 2023, 1, 100003. [Google Scholar] [CrossRef]
- Maleki Kakelar, M.; Yavari, M.; Yousefi, M.R.; Nimtaj, A. The Influential Factors in the Effectiveness of Microbial Induced Carbonate Precipitation (MICP) for Soil Consolidation. J. Hum. Environ. Health Promot. 2020, 6, 40–46. [Google Scholar] [CrossRef]
- Sarda, D.; Choonia, H.S.; Sarode, D.D.; Lele, S.S. Biocalcification by Bacillus pasteurii urease: A novel application. J. Ind. Microbiol. Biotechnol. 2009, 36, 1111–1115. [Google Scholar] [CrossRef]
- Raut, S.H.; Sarode, D.D.; Lele, S.S. Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures. World J. Microbiol. Biotechnol. 2014, 30, 191–200. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Rodriguez-Gallego, M.; Chekroun, K.B.; Gonzalez-Muñoz, M.T. Conservation of Ornamental Stone by Myxococcus xanthus-Induced Carbonate Biomineralization. Appl. Environ. Microbiol. 2003, 69, 2182–2193. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Jroundi, F.; Pascolini, C.; Rodriguez-Navarro, C.; Piñar-Larrubia, G.; Rodriguez-Gallego, M.; González-Muñoz, M.T. Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int. Biodeterior. Biodegrad. 2008, 62, 352–363. [Google Scholar] [CrossRef]
- Le Métayer-Levrel, G.; Castanier, S.; Orial, G.; Loubière, J.-F.; Perthuisot, J.-P. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol. 1999, 126, 25–34. [Google Scholar] [CrossRef]
- Tiano, P.; Biagiotti, L.; Mastromei, G. Bacterial bio-mediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods 1999, 36, 139–145. [Google Scholar] [CrossRef] [PubMed]
- De Muynck, W.; Leuridan, S.; van Loo, D.; Verbeken, K.; Cnudde, V.; De Belie, N.; Verstraete, W. Influence of Pore Structure on the Effectiveness of a Biogenic Carbonate Surface Treatment for Limestone Conservation. Appl. Environ. Microbiol. 2011, 77, 6808–6820. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cheng, X.; Li, M. Engineering properties of MICP-Bonded Sandstones used for historical masonry building restoration. In Geo-Frontiers 2011: Advances in Geotechnical Engineering; ASCE Library: Reston, VA, USA, 2011; pp. 4031–4040. [Google Scholar] [CrossRef]
- Gollapudi, U.K.; Knutson, C.L.; Bang, S.S.; Islam, M.R. A new method for controlling leaching through permeable channels. Chemosphere 1995, 30, 695–705. [Google Scholar] [CrossRef]
- Li, M.; Fang, C.; Kawasaki, S.; Huang, M.; Achal, V. Bio-consolidation of cracks in masonry cement mortars by Acinetobacter sp. SC4 isolated from a karst cave. Int. Biodeterior. Biodegrad. 2019, 141, 94–100. [Google Scholar] [CrossRef]
- Lapierre, F.M.; Schmid, J.; Ederer, B.; Ihling, N.; Büchs, J.; Huber, R. Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media. Sci. Rep. 2020, 10, 22448. [Google Scholar] [CrossRef]
- EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization: Brussels, Belgium, 2005; German Version.
- EN 772-11:2011; Methods of Test for Masonry Units—Part 11: Determination of Water Absorption of Aggregate Concrete, Autoclaved Aerated Concrete, Manufactured Stone and Natural Stone Masonry Units Due to Capillary Action and the Initial Rate of Water Absorption of Clay Masonry Units. European Committee for Standardization: Brussels, Belgium, 2011; German Version.
- Wissenschaftliche-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und. WTA-Merkblatt 4-10/D-Injektionsverfahren mit zertifizierten Injektionsstoffen gegen kapillaren Feuchtetransport; Frauenhofer IRB Verlag: Stuttgart, Germany, 2015. [Google Scholar]
- Manzur, T.; Rahman, F.; Afroz, S.; Huq, R.S.; Efaz, I.H. Potential of a Microbiologically Induced Calcite Precipitation Process for Durability Enhancement of Masonry Aggregate Concrete. J. Mater. Civ. Eng. 2017, 29, 4016290. [Google Scholar] [CrossRef]
- De Muynck, W.; Debrouwer, D.; De Belie, N.; Verstraete, W. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 2008, 38, 1005–1014. [Google Scholar] [CrossRef]
- De Muynck, W.; Cox, K.; De Belie, N.; Verstraete, W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 2008, 22, 875–885. [Google Scholar] [CrossRef]
- Luso, E.; Lourenço, P.B. Bond strength characterization of commercially available grouts for masonry. Constr. Build. Mater. 2017, 144, 317–326. [Google Scholar] [CrossRef]
- Dick, J.; de Windt, W.; de Graef, B.; Saveyn, H.; van der Meeren, P.; de Belie, N.; Verstraete, W. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 2006, 17, 357–367. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, B.; Kustermann, A. Rehabilitation of Porous Building Components and Masonry by MICP Injection Method. Buildings 2023, 13, 1273. https://doi.org/10.3390/buildings13051273
Nagy B, Kustermann A. Rehabilitation of Porous Building Components and Masonry by MICP Injection Method. Buildings. 2023; 13(5):1273. https://doi.org/10.3390/buildings13051273
Chicago/Turabian StyleNagy, Brigitte, and Andrea Kustermann. 2023. "Rehabilitation of Porous Building Components and Masonry by MICP Injection Method" Buildings 13, no. 5: 1273. https://doi.org/10.3390/buildings13051273
APA StyleNagy, B., & Kustermann, A. (2023). Rehabilitation of Porous Building Components and Masonry by MICP Injection Method. Buildings, 13(5), 1273. https://doi.org/10.3390/buildings13051273