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Abstract: This paper proposes a Bayesian RC-frame finite element model updating (FEMU) and
damage state estimation approach using the nonlinear acceleration time history based on nested
sampling. Numerical RC-frame finite element model (FEM) parameters are selected through nested
sampling, and their probability density is estimated using nonlinear time history. In the first step, we
estimate the error standard deviation and select the FEM parameters that are required to be updated
by FEMU. In the second step, we estimate the probability density of the selected parameters and
realize the FEMU through the resampling method and kernel density estimation (KDE). Additionally,
we propose a damage state estimate approach, which is a derivative method of the FEMU sample.
The numerical results demonstrate that the proposed approach is reliable for the Bayesian FEMU and
damage state estimation using nonlinear time history.

Keywords: Bayesian model updating; structural health monitoring; nested sampling; Bayesian model
selection; finite element model; nonlinear model; damage degree estimation

1. Introduction

The finite element model (FEM) has been widely used in the engineering field, partic-
ularly in civil engineering. The role of FEM is to predict or calculate the relevant response
of structures. Approaches such as incremental dynamics analysis (IDA) and pushover
have been developed from FEM for predicting the structural response and damage in
accidents, particularly in seismic incidents [1–4]. Evidently, FEM is not the same as the
actual structure. Errors, such as noise and material properties in the FEM and the actual
structure, can result in incorrect results of model calculations. Therefore, it is important to
refine the FEM based on the collected structural responses, which is termed finite element
model updating (FEMU). FEMU, as a part of the structural health monitoring and model
updating method, has been developed in recent decades along with many other structural
health monitoring methods [5–10].

Model updating methods are generally divided into deterministic and nondetermin-
istic methods that consider errors. Deterministic methods, such as Machine learning and
Kalman Filter, do not consider the effects of errors; these approaches have been success-
fully applied in updating some simple linear and nonlinear models [11–13]. The key to
a deterministic model updating method is to modify the model and match the results to
the collected response data. However, in the case of complex structures, the difference
and error between the FEM and the actual structure may lead to incorrect results; thus,
we need to consider the error and difference between the FEM and the actual engineering
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structure when performing FEMU. Bayesian methods have proven to be a successful non-
deterministic approach to model updating considering errors. It has been successfully used
for updating many linear and nonlinear models [14–18].

While performing model updating, we always encounter complex Bayesian poste-
rior distribution problems, which are challenging to solve; particularly, when we use
high-dimensional parameters, time-history response etc. To solve this problem, Beck [19]
proposed the use of Markov chain Monte Carlo (MCMC) sampling for model updating in
2002, and the related methods have been fully developed in recent years [20–25]. In fact, it
remains challenging to use these related MCMC methods to perform model updating when
we encounter high-dimensional parameter problems. Therefore, it is important to find a
way of reducing the number of identified parameters and using more efficient sampling
methods for model updating, especially in FEMU.

In previous studies, in order to solve high-dimensional and complex equation prob-
lems in model updating based on Bayesian methods, they were more likely to use high-
efficiency sampling methods immediately or use complex methods to simplify numerical
models, such as model selection methods [26], individually. Different from other sampling
methods already been used in model updating based on Bayesian methods. This paper
proposed an approach that combined model selection and rapidly sampled from the pos-
terior based on a nested sampling method. The proposed approach not only realized the
number of parameter reductions but also accurately estimated the probability distribution
of the nonlinear model.

The nested sampling method proposed by Skilling [27] is completely different from
the MCMC method, and it has proven to be more than five times more efficient than the
MCMC method [28]. J.Speagle [29] created a package called Dynesty to make it easier to
implement the complex nested sampling method.

The proposed method in this paper is realized by changing the value of the stop
criterion in nested sampling to estimate parameter distribution in two steps. At first,
using minimal values of the stop criterion and the number of live points to do initial
sampling; analyzing and reducing the number of parameters with convergence curves.
Then, using normal values of the stop criterion and the number of live points to do sampling
for the simplified Bayesian equation. In this way, nested sampling will successfully be
used in simplifying the numerical Bayesian model and probability distribution estimation
for FEMU.

This paper realized a 2D RC-frame FEMU and parameter selection using nonlinear
time history with nested sampling. Then, the probability distributions of the selected
parameters were estimated using resampling.

2. Theory Background
2.1. Bayesian Method Based on Nonlinear Time History

In the Bayesian method, the basic formula is as follows [30]:

Posterior = Prior × Likelihood/Evidence (1)

In the equation used in FEMU, Posterior is the distribution of the structural parameters,
and its specific description is as follows:

p
(

θ| d̃, M
)
= Posterior (2)

where θ is a set of parameters of the structure and d̃ is the measured data vector we
collected from the structure. In this proposed method, d̃ is the acceleration time history of
the structure and M is the given model. Prior is established through prior knowledge of the
engineering structures, which is usually determined using historical data and engineering
experience. In FEMU, Prior is generally treated as a uniform distribution [31,32]:
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Prior = π(θ) = c (3)

where c is a constant, which is determined using the range of θ.
In Equation (1), Likelihood is established using the measured data vector and output

data vector of the Numerical Model. For a given model M, the error e between the real
collected and output from the Finite Element Model differs from time to time:

e = ỹ− y(θ|M) (4)

where e is the error between the real data ỹ, which is collected from the structure and
simulated acceleration; y(θ |M ), which is outputted from the numerical model. Generally,
the error vector is assumed as a normal distribution whose Mean = 0 and Variance = σ [26].
Therefore, likelihood can be derived as below:

Likelihood = L(θ) = exp

[
∑−

||y(θ|M)− ỹ||2

2σ2

]
(5)

Evidence is used to perform model selection [33,34]. This paper proposes another
approach to performing model selection, where it is generally treated as a constant [26].

From the above formulas, the Posterior probability distribution can be derived as:

p
(

θ| d̃, M
)

∝ exp

[
∑−

||y(θ|M)− ỹ||2

2σ2

]
(6)

Solving this equation using appropriate sampling methods, we can get the probability
distribution of the parameters.

2.2. Nested Sampling

Nested sampling is a sampling method proposed by Skilling, which is often used in
astronomy to solve high-dimensional Bayesian problems. There are three basic steps to
obtain samples through nested sampling [28]:

1. “Slicing” the posterior into many simpler distributions.
2. Sampling from each of those in turn.
3. Re-combining the results afterwards.

Because step one converts a high-dimensional posterior to a one-dimensional poste-
rior, which makes it easier to solve the high-dimensional problem, such as FEMU, using
nested sampling.

In some cases, nested sampling is used to estimate Evidence for Bayesian model
selection [32]. However, in the FEMU of Civil Engineering, it would take a significant
amount of time to select an appropriate Bayesian model using estimating evidence. This
paper proposes another approach to perform model selection (parameters selection) using
nested sampling but without using evidence.

2.2.1. Basic Overview of Nested Sampling

For the nested sampling approach, the key is to use one other parameter instead of all
the true parameters. The method is shown below:

Z =
∫

Ωθ

L(θ)π(θ)dθ =
∫ 1

0
L(X)dX (7)

Z =
∫

Ωθ

c·L(θ)dθ =
∫ 1

0
L(X)dX (8)
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J. Speagle [28] has listed many mathematical approaches to achieve the transformation
of Equation (8). The prior distribution integral is defined as:

X = X(λ) =
∫

L(θ)≥λ
π(θ)dθ =

∫
L(θ)≥λ

cdθ (9)

Xi(λi−1) =
∫

L(θ)≥λi−1

cdθ (10)

where λi = L(θi) ∝ p
(

θ| d̃, M
)

, and it is the value of likelihood at the i-th time iteration.
To calculate the value of Z faster, the k-th iteration can be simplified as below:

Zk =
k

∑
i=1

(Xi−1 − Xi)Li (11)

where Li is the i-th time iteration value of L(θ). The iteration process gives:

λi > λi−1 (12)

As λ increases, X decreases from 1 to 0:

lim
i→∞

λi = Lmax (13)

0 < XN < . . . < X2 < X1 (14)

2.2.2. Stopping Criterion

Unlike MCMC, nested sampling sets the number of iteration step to stop the sampling
loop, nested sampling stops the loops by controlling the value of Z. The stopping criterion
is as follows:

∆ ln Zk = ln(Zk)− ln(Zk−1) < ε (15)

To obtain a full distribution curve, that is mostly [26–28], the stopping criterion was
set as:

ε = 10−3(K− 1) + 10−2 (16)

If ε is set as an infinite small value in the loop and the number of “live points” is set
very little, the iteration steps will increase significantly. From Equations (13) and (14), we
can easily derive:

λj ≈ λj−1 ≈ Lmax (17)

where j is the number of the last time iterate step. It is a process similar to the maximum
likelihood estimation [35].

2.2.3. Sampling Flow

The details of the nested sampling algorithm flow used in this study are as given
in [28]:

1. Draw K “live” points θK = {θ1, . . . , θk} from the prior π(θ), live points distribution is
the same as prior. In this paper, because prior π(θ) is a uniform distribution, samples
will be selected randomly.

2. Compute the minimum likelihood Lmin among the current set of live points. Record it
as L1, accumulate Z, and record these K “live” points into samples.

3. Add a new point θ′, which is subject to the constraint L(θ′) ≥ Lmin, and replace the
point of Lmin in step 2. Treat the new set of “live” points as θ∗K.

4. Compute whether it meets the stopping criterion. If it does, end this flow. If it does
not, continue this flow.

5. Replace the original θK by θ∗K in step 1, and go back to step 1.
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2.2.4. Re-Combine Samples

As shown in Equation (17), if we set ε = 0.01 and σ = 0.2 [26], we can easily obtain the
real value of the error’s variance σ, similar to the maximum likelihood estimation. Then,
set ε as Equation (16) and the previously calculated real value of σ into the nested sampling
again. After the completion of all the previous processes, samples of all the parameters will
be obtained.

Unlike the MCMC, the samples recorded using nested sampling cannot immediately
calculate the probability distribution through the Kernel density estimation [20,36] (KDE).
These samples are required to be resampled using resampling methods [30,37]. In this
paper, we use the systematic resampling method to reconstruct the samples collected from
nested sampling. [30]

2.2.5. Comparison of Nested Sampling and MCMC in Efficiency

As mentioned before, nested sampling has more advantages in solving complex
Bayesian problems, which MCMC could not. Moreover, because nested sampling does
not have a “Burin-in” process, the efficiency of nested sampling is much more than the
efficiency of the MCMC method. We also make a comparison by using nested sampling and
MCMC to sample a standard Cauchy distribution. The comparison of different methods in
sampling efficiency is analyzed using the sample mean; the result is shown below

Because the target distribution is a standard Cauchy distribution, the mean value of
the sample points should be close to zero and belong to the iteration process. This means if
the sample mean of the iteration process is stabilized to zero more rapidly, then this method
shows that this property is the more efficient method. As shown in Figure 1, the sample
mean of nested sampling has already stably converged to zero at the 100-iteration step, but
the sample mean of MCMC has not converged to zero even at the 500-iteration step. The
result shows that nested sampling is five times more efficient than the MCMC method.
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3. Numerical Example
3.1. Two-Dimensional RC-Frame Finite Element Model

For a defined Finite Element Model, if the shape and section are defined and unchange-
able, the only property of the structure that can be updated is the material stress–strain
model parameters. Unlike steel structures, RC-frame structures have more materials and a
more complex stress–strain curve. To prove the advantage of the proposed approach. In
this study, a 2D RC-Frame FEM was created in Opensees as an example [38,39].
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Figure 2a shows an example of the shape of a 2D RC frame. Figure 2b shows the
column and beam sections that built this entire finite element model. Figure 2c,d show how
the column and beam sections were meshed by the core and cover concrete in Opensees.
The compressive strength of concrete is 30 MPa and the tension strength of steel is 400 MPa.
In the column and beam sections, confined and unconfined concrete materials properties
follow the Mander stress–strain model [40], as shown in Figure 3.
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The relationship between the parameters in Figure 3 is:

fc =
fccxr

r− 1 + xr (18)

In the Equation (18):

x =
εc

εcc
(19)

εcc = εc0

[
1 + 5

(
fcc

fc0
− 1
)]

(20)

fcc = fc0

−1.254 + 2.254

√
1 +

7.94 f1
′

fc0
− 2

f1
′

fc0

 (21)

r =
Ec

Ec − Esec
(22)

Ec = ec
√

fc0 (23)

Esec =
fcc

εcc
(24)

In the above equations, fc0 is the unconfined concrete peak stress, εc0 is the unconfined
concrete peak strain, fcc and εcc are the confined concrete peak stress and strain, respectively;
Ec is the initial elastic modulus of concrete, Esec is the secant modulus at the peak stress
point; and f1

′ is the effective restraint stress of the hoop reinforcement, which depends on
the shape and strength of hoops:

f1
′ = ke f1 (25)

f1 =
1
2

ρs fyh (26)

For rectangular hoops:

ke =

(
1−

n
∑

i=1

ω′i
6bcdc

)(
1− s′

2bc

)(
1− s′

2dc

)
1− ρcc

(27)

In the above equations, ρcc is the reinforcement rate of the longitudinal reinforcement
in the core area of the hoop constraint; s′ is the net distance of the hoop; ω′i is the net
distance of the i-th longitudinal reinforcement; and bc and dc are the distances between the
centerlines of the hoops along the two directions of the constraint concrete section.

After performing the above calculations, these parameters are input to concrete 02 (a
stress–strain rule in Opensees) to build the confined concrete materials.

For these reinforced concrete sections, steel materials properties follow the Giuffré-
Menegotto-Pinto stress–strain model [40] (Steel 02 called in Opensees). Giuffré-nMenegotto-
Pinto stress–strain model has four main parameters, fy, E, R, and Ratio, where fy and E are
the yield strength stress and initial elastic modulus of steel. R is the parameter control for the
transition from elastic to plastic branches, and Ratio is the value of plastic elastic modulus
to the initial elastic modulus. Generally, they are set through a suggested value [41].

Derived from these previous Equations (18)–(27), to build a finite element model, the
initial values of vector θ should be known.

The flowchart in Figure 4 shows how the FEM is built

θ =
{

fc0, ε, fyh, εcu, ec, Fy, E, Ratio
}

(28)
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3.2. Structural Parameter Identification based on Nested Sampling

As shown in Figure 5, the input seismic recorder is I-ELC180 ground motion (obtained
from the 1940 Imperial Valley earthquake at the Array #9 station). To prove the proposed
method as much as possible, amplify the I-ELC180 ground motion PGA to 0.1 g, 0.3 g
and input them into the FEM separately to create two different damage state cases (Case.1
PGA = 0.1 g, Case.2 PGA = 0.3 g). To simulate the acceleration collection in real engineering
structures. The response acceleration data of the structural top story is recorded, and 20%
root mean square (rms) [42] white noise is added to the acceleration to simulate collected
responses in reality. It is easy to derive that, unlike the real structure, all the errors of FEMU
in the numerical examples are oriented from the added white noise.
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Figure 5. EL-Centro Ground Motion.

3.2.1. Initial Sampling and Structural Parameters Selection

The simulated acceleration in Figure 5 is input to Equation (6), a large enough sample
range, covering the parameter distributions range, is set to prior. The primary sampling is
started using the method proposed in Section 2. The primary sampling process of different
cases is shown in Figure 6.

In Figure 6a, it is evident that the parameters, such as ε0, fc0, and E0, have significant
convergence in the iterative process, implying that the relationships between ε0, fc0 and
E0 with the collected acceleration are strong. That is because, under the seismic force with
PGA = 0.1 g, acceleration is barely collected with nonlinearity. In Figure 6b, it is evident
that parameters, such as fc0, ε0, Fy, and E0, are apparently gradually converging with
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the iteration; however, because the acceleration is nonlinear, the samples of fyh, εcu/ε0,
ec, and Ratio are different. Parameters such as Fy affect the nonlinear time history. If we
still insist on updating these parameters without a significant relationship, it will not only
lead to inefficient sampling but may also produce incorrect results. Therefore, in FEMU,
appropriate parameters should be selected for updating.
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This paper recommends only sampling the parameters that are closely related to the
collected information, such as ε0, fc0, and E0 in Case 1. For the other parameters without
close relationships, this paper recommends setting them as a suggested value.

The suggested value is defined using the historical data and engineering experience of
the structure. For example, in this paper, the concrete which built the FEM was C30, and
the Steel was HRB400. These suggested values in the FEM are shown in Table 1.

Table 1. Suggested Value of Different Parameters.

Parameters Suggested Value

fc0 (×10 MPa) 2.01
ε0 (×10−3) 1.64

fyh (×102 MPa) 4.00
εcu/ε0 7.00

ec (×103) 5.00
Fy (×102 MPa) 4.00
E0 (×105 GPa) 2.06
Ratio (×103) 1.00
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As described in Section 2, the primary sample process is similar to MLE. Therefore, we
can record the last iteration’s acceleration response as yN , and substitute it into Equation (4)
to calculate the standard deviation of error.

As mentioned in Section 2, considering the error as normal distribution and computing
standard deviation, the standard deviation is estimated, which is shown below along with
the true value.

3.2.2. Secondary Sampling

The selected parameters in the primary sampling are input into Equation (6). The
stopping criterion is set as Equation (16). Then, sampling the modified equation as secondary
sampling. The proposed approach is used to calculate the distribution of different parameters.

The results are as follows:
As shown in Figure 7, nested sampling successfully estimates the parameter proba-

bility density of the parameters and provides probabilistic FEM updating. To prove the
reliability of the solution in different cases, this paper converted the error between the most
likely estimated parameters in Figure 7 with true values.
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Figure 7. Probability distribution of the parameters for different cases. (a) PGA = 0.1 g;
(b) PGA = 0.3 g.

As shown in Tables 2 and 3, the sampling results have a small error of no more than
6% with these true values, implying that the results of the proposed method are reliable.

Table 2. Comparison of the estimate and true value of the standard deviation.

STD Estimated True Error (%)

σ(PGA = 0.1 g) 0.0695 0.0697 0.29

σ(PGA = 0.3 g) 0.2537 0.2535 0.08
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Table 3. Comparison of the estimate and true parameters.

Case Parameters Estimate True Error (%)

PGA = 0.1 g
fc0(×10 Mpa) 2.01 2.13 5.97

ε0
(
×10−3) 1.64 1.66 1.22

E0
(
×105 Gpa

)
2.06 2.03 1.46

PGA = 0.3 g

fc0(×10 Mpa) 2.01 2.07 2.99
ε0
(
×10−3) 1.64 1.61 1.83

Fy
(
×102 Mpa

)
4.00 3.95 1.25

E0
(
×105 Gpa

)
2.06 2.04 0.97

3.3. Damage State Estimation

The purpose of FEM updating is to accurately estimate the performances and damage
state under an earthquake.

Mostly, the damage degree of the RC frame buildings is accomplished through the
damage index as other structures. In general, the damage index can estimate the seismic
damage degree of structural components and the whole body quantitatively. In recent years,
a lot of calculated methods of damage index in long-term research have been proposed
for different structures [43–45]. Actually, it is difficult to choose an adequate method to
calculate the damage index, which can capture the damage level of structures using a
single value. In this paper, because the model in the present research is simple, the seismic
damage of the structure was expressed in the form of the Maximum Inter-Story Drift Ratio
(MIDR), which is considered a useful damage index to estimate the RC Frame structural
seismic damage [46].

In the case of RC frame building using MIDR to estimate the damage degree, Masi [47]
proposed a relationship between MIDR and damage degree. As shown in Table 4 below,
the damage state can be determined using the structural MIDR.

Table 4. Relation between the MIDR and damage state [48].

MIDR (%) <0.25 0.25–0.50 0.50–1.00 1.00–1.50 >1.50

Degree of
damage Null Slight Moderate Heavy Destruction

Similar to the parameters, the output responses of the FEM also have probability
density. By inputting the ground motion to the FEM samples recorded in nested sampling
and collecting the output MIDR of different models in samples, the distribution of the
MIDR can be obtained. According to the probability density of the MIDR, the damage state
of a structure’s underground motion can be obtained by integrating the probability density
of the MIDR.

The MIDR probability densities of the 2D RC Frame Structure in different ground
motion cases are shown below.

As shown in Figure 8, the MIDR estimated in Case 1 (PGA = 0.1 g) is in a null-
damage-state MIDR range, and for Case 2 (PGA = 0.3 g), the estimated MIDR is in the
Moderate-damage-state MIDR range; therefore, the estimated damage state probability is
completely 100% Null and Moderate in different cases after the integral.

It’s easy for us to obtain the real Inter-Story Drift Ratio of the defined finite element
model in different cases by Opensees. The output of the real IDR of the structure in different
cases is shown in Figure 9 below.

As shown in Figure 9, the real max inner-story drift ratio and damage state in different
cases are easily classified, and the results are shown in Table 5 below.
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Table 5. Structural Real MIDR and Damage State.

Case MIDR Damage State

PGA = 0.1 g 0.17 Null
PGA = 0.3 g 0.67 Moderate

As we can see by comparing Figure 8 and Table 5, the real damage degree of the
RC Frame FEM is null and moderate, which is as same as the estimated damage state.
This implies that the proposed approach can successfully estimate the degree of structural
global damage.

Furthermore, we can also calculate the MIDR probability distribution for each story
using these output samples in nested sampling. Because the global damage degree of the
structure, in the case of PGA = 0.1 g is null, there is no need to do further local damage
degree analysis for the structure. Obviously, in the case of PGA = 0.1 g, the damage degree
of each story in the structure is null. In the case of PGA = 0.3 g, the MIDR probability
distribution of each story is calculated and shown below.
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As shown in Figure 10, In the case of PGA = 0.3 g, we can deduce that the second
story of the structure suffered the most serious damage compared with other stories. The
estimated damage degree of the first story is the same as the second story, both are moderate
damage. The third story of the structure estimate MIDR is in the range of 0.25–0.50, so the
estimated damage degree of the third story is slight damage. This is the same as shown
in Figure 9b.
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Derived from the result, the proposed method can accurately locate the damage
location and the damage state. In this result, it had not shown many probabilistic properties
in estimating the structural damage state. This is because the error in the numerical example
is too low to expand the range of sample distribution. This reason leads to an estimated
results probability of 100%.

4. Conclusions

This paper proposed a FEMU approach by using nested sampling with nonlinear time
history and its application in structural damage estimation. Different from other common
sampling methods, the major advantage of the proposed method is that it can combine
model selection with estimate probability distribution by changing the stop criterion.

The results from the example in different damage cases show that the nested sampling
is reliable in the number of parameters’ reduction and selection without calculated evidence
in different situations. This will help simplify high-dimensional space Bayesian problems
in the future. Moreover, the results also show that the method could be used to estimate
probability distributions by using the nonlinear time history and nonlinear models such
as FEM, which is more advanced than other methods that are based on the Markov chain
Monte Carlo approach.

We have also presented a method for damage probability estimation by using the
samples created using nested sampling. It provided a new method to estimate damage
state and location in probability.

The reliability of the proposed approach has been demonstrated by the numerical
example in different cases. Because a large number of algorithms perform well in numerical
examples but cannot be used in engineering, a real engineering structural example is
still required to prove its application in the future. Future work will consider using the
proposed method in the shaking table test and more complex structures, which have more
parameters to estimate.
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