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Abstract: In this study, an artificial neural network (ANN) model was developed to predict the
compressive strength of concrete containing supplementary cementitious materials (SCMs) at high
temperatures. For this purpose, 500 experimental results were collected from the available literature.
The effective parameters in the model are the volumes of coarse and fine aggregates, water, cement,
coarse-aggregate type, percentage SCMs as the cement replacement, temperature levels, and test
methods. The proposed ANN model was developed at a correlation coefficient of 0.966. A parametric
study was conducted to evaluate the impact of the combined effects of input parameters (aggregate
types and SCM content) on the relative compressive strength of concrete at high temperatures. It was
shown that siliceous aggregate has a better performance by producing stronger bonds with cement
paste than calcareous aggregates. The optimum SCM contents depend on the aggregate types. The
optimum silica fume (SF) content for concrete with a water-to-binder ratio of 0.6 subjected to high
temperatures is 8% and 3% for siliceous and calcareous concrete, respectively. The analysis of the
ANN model has provided a conclusive understanding of the concrete behaviour at high temperatures.

Keywords: supplementary cementitious materials; high temperatures; artificial neural network;
compressive strength

1. Introduction

A fire can occur during concrete service life, causing severe casualties and property
damage [1]. Several mechanical and environmental factors can influence the deterioration
of concrete when exposed to high temperatures, such as the level of high temperatures,
humidity, the applied load, the heating time, the cooling method after heating, the aggregate
type, the mineral admixtures, and the inclusion ratios [2]. Since the aggregates make up
60–75% of the volume of concrete, they significantly affect the behaviour of concrete
at room and high temperatures [3]. Coarse aggregates are classified into three groups
according to their chemical composition and mineralogical nature: siliceous (Si) aggregate,
calcareous (Ca) aggregate, and lightweight aggregate (LWA). Figure 1a shows the chemical
compositions (e.g., SiO2, Al2O3, and CaO) of siliceous and calcareous aggregates.

Supplementary cementitious materials (SCMs) such as silica fume (SF), fly ash (FA),
and ground-granulated blast furnace slag (GGBFS) are widely used in green concrete
as a partial replacement for ordinary Portland cement due to their potential to conserve
energy and natural resources and reduce CO2 emissions [4,5]. The chemical composition of
different SCMs, based on their major chemical components (e.g., Al2O3, SiO2 and CaO),
are plotted in Figure 1b. Silica fume is a byproduct of the smelting process in silicon and
ferrosilicon alloy production. Silica fume mostly consists of silicon dioxide (SiO2) and
extremely fine spherical particles, which lead to its very high pozzolanic activity [6]. Fly
ash is a byproduct material generated from coal-firing electricity power plants. Fly ash
is composed of silica oxide, iron oxide (Fe2O3), aluminium oxide (Al2O3), and calcium

Buildings 2023, 13, 1337. https://doi.org/10.3390/buildings13051337 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13051337
https://doi.org/10.3390/buildings13051337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-5659-1474
https://orcid.org/0000-0002-5932-2640
https://doi.org/10.3390/buildings13051337
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13051337?type=check_update&version=1


Buildings 2023, 13, 1337 2 of 33

oxide (CaO) [7]. In fly ash concrete, the pozzolanic reaction of Al2O3 and SiO2 and calcium
hydroxide (CaOH) leads to the formation of calcium aluminate hydrate (CAH) and calcium
silicate hydrate (CSH), which results in the improvement of strength and durability of
concrete [8,9]. The GGBFS, referred to as slag, is also a byproduct of the iron and steel
manufacturing process, produced by quenching molten iron slag in steam or water. This
granulation process results in the formation of a granulated glassy particle of GGBFS. The
main composition of GGBFS particles generally contains calcium oxide, silicon dioxide,
magnesium oxide (MgO), and aluminium oxide. GGBFS undergoes hydration reactions
due to its hydraulic activity in the presence of water and calcium hydroxide [10,11].
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Figure 1. Chemical composition of (a) siliceous, calcareous, and lightweight aggregates; (b) silica
fume, fly ash, and ground-granulated blast furnace slag.

Due to the extensive use of concrete containing SCMs, a comprehensive understanding
of how fire impacts the behaviour of concrete is necessary [12]. Many experimental studies
investigated the performance of concrete containing different types of admixtures, namely
silica fume, fly ash, and ground-granulated blast furnace slag under high-temperature
effects. The results revealed that concrete at high temperatures exhibits a nonlinear degra-
dation in mechanical properties. Moreover, there are a number of temperature-dependent
parameters and highly complex properties that control concrete response under high-
temperature conditions [13]. Therefore, the application of modern evaluating tools, such
as the machine-learning (ML) approach, is required to predict the mechanical properties
of concrete at high temperatures. The generalization ability and prediction accuracy of
machine-learning models are excellent when dealing with nonlinear behaviour [14]. In
recent years, the implementation of machine learning, such as artificial neural networks
(ANNs), decision trees (DTs), and support-vector machines (SVMs), has acquired consider-
able attention as an alternative method in solving complex and nonlinear problems [15,16].
Neural networks have been successfully used in different civil engineering problems,
such as structural engineering [17], material behaviour modelling [18,19], and detecting
structural damage [20].

Several studies have used ML techniques to predict the compressive strength of
different concrete types at room temperatures considering various influential parameters.
Behnood et al. [21] proposed an ANN-based model to estimate the compressive strength
of concrete containing SF at room temperature with acceptable error. It was found that
when the percentage of silica fume to binder increased between 0 and 30%, the compressive
strength of concrete with silica fume increased linearly. In addition, the maximum aggregate
size significantly influences the compressive strength of SF concrete. In another study,
Atici et al. [22] developed an ANN and multiple regression analysis (MRA) to estimate the
compressive strength of concrete containing different amounts of fly ash and blast furnace



Buildings 2023, 13, 1337 3 of 33

slag at various 3, 7, 28, 90, and 180-day curing times. It was concluded that the nonlinear
functional relationships in inverse problems, such as designing the concrete mix, could be
calculated using the ANN model, which is impossible with classical regression methods.
Chopra et al. [23] predicted the compressive strength of concrete with and without fly ash
at different curing ages using two computing techniques, genetic programming (GP) and
ANN models. It was found that the ANN model using the Levenberg–Marquardt (LM)
algorithms for training the network is the most reliable prediction tool for this purpose
compared to the GP model. Boğa et al. [24] used an ANN model to predict the mechanical
properties and durability properties of concrete that contained ground-granulated blast
furnace slag (GGBFS) and calcium nitrite-based corrosion inhibitor (CNI).

There are relatively few studies on the effects of high temperatures on the compressive
strength of concrete using the ANN approach. Ahmad et al. [25] evaluated the compressive
strength of concrete at high temperatures using different machine-learning techniques,
namely ANN and decision tree gradient boosting and bagging. They used 207 data points
from the literature, and it was found that the ML algorithms are quite effective in predicting
concrete performance at high temperatures. The ANN model showed a better performance
compared to the decision tree. However, the bagging model correlation coefficient indi-
cated a better accuracy in comparison to the ANN, decision tree, and gradient boosting.
Mukherjee et al. [13] evaluated the behaviour of concrete under three load conditions: a
varying load under isothermal conditions (i.e., steady state), a varying temperature under
a constant load (i.e., transient temperature state), and a varying temperature under total
restraint using ANN models. They used the results of experimental work conducted by
Anderberg et al. [26]. Abbas et al. [27] investigated the residual strength of high-strength
concrete (HSC) after exposure to high temperatures. Three separate ANN models were de-
veloped for siliceous, calcareous, and combined-aggregate concrete. A total of 460 data sets
were collected from the literature, of which 177 data points were for calcareous aggregate,
228 data points were for siliceous aggregate, and the rest were either silico-calcareous or
unknown aggregate. The variables, including exposure temperature, heating rate, type
of coarse aggregate, water-to-binder ratio, aggregate-to-binder ratio, soaking period, and
the compressive strength of concrete at room temperature, were selected as inputs for the
models. Moreover, according to the sensitivity analysis results, the water-to-binder ratio,
elevated temperature, and the compressive strength of concrete at room temperature were
the most affecting variables in developing the models for all aggregate types.

The necessity for conducting the current study was identified from the lack of a
comprehensive and conclusive understanding of how different concrete mixtures will
behave at high temperatures. The literature survey shows few experimental studies on the
combined effects of critical factors such as aggregate types, SCM content and temperature
level. The use of SCMs in concrete has been proven to be a major milestone towards
reducing concrete’s carbon footprint. However, its effects on concrete compressive strength
at high temperatures should be known to estimate fire safety. Therefore, the present study
aims to develop an ANN model to predict the compressive strength of concrete exposed to
high temperatures and fully understand the influence of the parameters. For this purpose,
a comprehensive database was collected from previous experimental studies considering
the most influencing parameters for which sufficient data were available. It is worth
mentioning that this study focuses on residual compressive strength as residual test results
for concrete containing SCMs more than other tests. Moreover, parametric studies were
conducted using the generalization ability of the proposed ANN model to draw conclusive
results on the combined effects of key parameters on the residual compressive strength of
concrete at high temperatures.

2. Developing Artificial Neural Network (ANN) Models

The artificial neural network predicts the behaviour of the study subject by learning
through past experiments and identifying the pattern of the collected data [28]. Generally,
a neural network is developed by acquiring and analyzing data and creating a database,
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determining the architecture, training the network, determining the learning process, and
evaluating the generalization of the network after training [29]. The topology of artificial
neural networks is similar to the human brain in two aspects: (1) the neural network
acquires knowledge from its environment using a learning process and (2) the acquired
knowledge is stored in interneuron connections strengths or (synaptic) weights [30]. ANN
models are comprised of a large number of neurons, which serve as data processing units.
As seen in Figure 2, the general configuration of the neural network is composed of an
input layer, one or more hidden layers, and an output layer. The neurons of each layer are
connected to all the neurons of the next layers with numerical values known as weights.
Weights can be adjusted for every new input data [31]. The input information received
by neurons of the input layer is multiplied by the modifiable weights. The sum of the
weighted inputs is obtained using the following function (Equation (1)):

(net)j = ∑n
i=1

(
xi wij

)
+ b (1)

where (net)j is the weighted sum of the jth neuron for the input received from the preceding
layer with n neurons, xi represents the input value of the input neuron, wij is the weight
between i neuron of the input layer and j neuron in the next layer, and b is a fixed value
called bias. The summation results are then transmitted to neurons in the hidden layer.
Each hidden neuron processes information through an activation function and sends its
output to the neurons of the output layer. This data is multiplied by the corresponding
weights between the hidden layer and output layer, and then their sum is calculated and
transmitted to the output layer [24,32]. Then, another activation function is applied to this
data, and the output of the network is computed in the output layer. The ANN model
outputs are then compared to the desired outputs (experimental results) to determine the
error of the network. In order to minimize training errors, the output layer passes the error
back to the input layer, and the network’s weights and biases are adjusted using an error
back-propagation algorithm. This training cycle, known as an epoch, is continued until
the error is decreased to an acceptable level [33,34]. Various algorithms have been used for
training ANN models, including the back-propagation algorithm, the simulating annealing
algorithm, the genetic algorithm, and the particle-swarm optimization algorithm [35]. The
back-propagation algorithm is one of the most common training algorithms, using the
gradient-descent approach that modifies the weights for a particular training pattern to
minimize error [29].
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Figure 2. Typical architecture of the artificial neural network with hidden layer.

2.1. Database

A sufficiently large database is required to cover the range of affective variables
and their combinations to use the ANN [27]. Generally, an indepth literature review
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or a comprehensive testing program is required to identify the influential parameters
and develop the database. In order to accelerate the learning process and achieve faster
convergence as well as generate values in the 0–1 range by the activation functions, the
content of the database before the training process must be normalized within the 0–1 range
using linear Equation (2) [18,36]:

xnormalized =
x − xmin

xmax − xmin
(2)

where xnormalized, xmin, and xmax denote the normalized, minimum, and maximum values
of x as input or output variables, respectively.

An optimized ANN model for predicting the compressive strength of concrete exposed
to high temperatures was developed by collecting a comprehensive database containing
500 experimental data from the published literature [6,37–47]. Table A1 represents the
collected data from the literature review. The parameters, namely temperature level, type
of coarse aggregate, percentage of SCMs (SF, FA, and GGBFS) as the cement replacement,
the amount of cement, coarse and fine aggregate, water content, and test methods, namely
transient (TR), steady-state (SS), and residual (R), were selected as input variables. The
relative compressive strength, defined as the ratio of the compressive strength of concrete
at a given temperature to the initial compressive strength of concrete at room temperature,
was considered the output of the ANN-based model.

It should be noted that the variation in the heating rate in the collected experimental
records was between 0.77 ◦C/min and 25 ◦C/min. The heating rate affects the spalling
behaviour of concrete, and a fast heating rate increases the temperature differences between
the surface and inner parts of concrete resulting in elevated tensile stresses [48]. In addition,
the heating rate could not influence the residual compressive strength [49]. The database in
this study contains only the specimens that did not spall during or after a high-temperature
exposure. In addition, many experimental studies did not accurately report the heating
rates. Therefore, in this study, the heating rate was not included in the input parameters of
the ANN. The statistical properties of collected data sets are represented in Table 1. The
distribution of each quantitative input parameter in the data set is shown in Figure 3. In
addition, the frequency of different SCMs (SF, FA, and GGBFS) and the various test methods
for three types of aggregate, namely, siliceous, calcareous, and lightweight aggregate, are
shown in Figure 4. Out of the total 500 data points, there were 306 data points for the
residual test, 114 data points for the transient test, and 80 data points for the steady-state
test method. The studies on lightweight aggregate are considerably limited compared to
other types of aggregate, as seen in Figure 4, and for this reason, the effects of lightweight
aggregate were only considered in Section 3.1, where the effects of test methods were
evaluated using the ANN model.

Table 1. Statistics of the quantitative input parameters used in the ANN model.

Attribute Unit Max Min Average Standard
Deviation

Temperature ◦C 870 95 391.5 224.8
Coarse aggregate kg/m3 1200 369 950 187.1
Fine aggregate kg/m3 880 536 732.2 90.1
Cement kg/m3 662 180 406 131.1
Water kg/m3 250 127 174.8 28
Silica fume % 10 5 8.91 1.76
Fly ash % 60 10 25 14.02
ground-granulated blast
furnace slag % 40 30 35 5.16

Relative compressive strength 1.37 0.07 0.7 0.026
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Figure 3. The histograms of the frequency distribution of input and target parameters. Red lines over
the data histogram represent the normal distribution curve.
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and R) in the database.
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2.2. Limitations, Assumptions, and the Orientations of This Study

The criteria used in the development of the database are summarized below:

1. The database only contains air-cooled concrete after the heating period for the residual
test method.

2. The data covers concrete specimens containing no fibres.
3. The heating rate was not included in the input parameters.

In this study, the data from three test methods, including stressed, unstressed, and
residual, were collected to develop the ANN model. The procedure and the assumptions in
developing the ANN model in this study are described in Section 2.2. After developing the
model, the effects of varying input parameters on the compressive strength of concrete were
investigated using the predictions of the model. Since the residual test results are more
than other test methods for concrete-containing SCMs, this research focuses on the residual
compressive strength, as discussed in Section 3. In addition, two significant parameters,
test methods and water-to-cement (w/c) ratios which affect the compressive strength of
concrete subjected to high temperatures, were discussed in Sections 3.1 and 3.2, respectively.

2.3. Modeling the Network

After creating the database, the critical step is identifying the best architecture of
the model. Generally, the ANN model consists of the input, hidden, and output layers.
Input and output parameters determine the number of neurons in input and output layers.
Therefore, to achieve the best architecture of an artificial neural network, the number of
hidden layers and their neurons should be chosen appropriately. There is no general
method for selecting the number of neurons in the hidden layer to establish an ANN model
for a particular problem. The number of neurons in the hidden layer is determined through
the trial-and-error method. Thus, the number of neurons in the hidden layers can be started
with a small number, increasing progressively while monitoring the error of the network.
Finally, the optimum number of hidden neurons is obtained based on the error criteria or
performance of the network [19,50]. In the present study, a source code was used in the
MATLAB program to operate the trial-and-error process automatically.

Activation functions are selected based on the types of data and layers available. The
neurons calculate their output using an activation function based on the weighted inputs
that they receive. There are three different types of activation functions commonly used in
artificial neural networks, namely the hyperbolic tangent sigmoid (TANSIG), logarithmic
sigmoid (LOGSIG), and linear transfer (PURLIN) function. This study employed Tansig
and Purlin activation functions in the hidden layer and output layer, as represented in
Equations (3) and (4), respectively [51].

y = TANSIG =
2

1 + e−2x − 1 (3)

y = PURLIN = x (4)

There are different training algorithms in the MATLAB environment, such as scaled
conjugate gradient back, Levenberg–Marquardt (LM), Bayesian Regularization, etc. Due to
the high precision and suitable and fast convergence, the Levenberg–Marquardt algorithm
was used to train the network [28].

The best configuration of the network is reached by trial and error. Different architec-
tures containing one hidden layer with varying numbers of neurons in the hidden layer
have been tested to achieve the best structure of the proposed model using the MATLAB
program, and simultaneously the error values for each number of neurons in the hidden
layer were checked. Finally, a model with a suitable error consisting of twelve neurons in
one hidden layer was selected to estimate the relative compressive strength of concrete at
high temperatures, as depicted in Figure 5.
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Figure 5. The architecture of the proposed ANN model. The circles indicate the number of neurons
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2.4. Performance of the ANN Models

Generally, the ANN models are developed using three main datasets: training, valida-
tion, and testing. Therefore, the database was randomly divided into three subsets in order
to achieve a good generalization: training, validation, and testing sets. The training data is
used for training the model by adjusting modifiable weights between layers. As part of the
training process, the validation data sets are used to evaluate the model’s fit on training
data and refrain from overfitting by stopping the training. The testing data set is used to
measure the generalization capability of the model [52]. In the present study, by default in
MATLAB, the database is randomly divided into three subsets: 70% of total data points for
training, 15% for validation, and 15% for testing.

In this study, statistical error estimation methods, including mean square error (MSE),
root mean square error (RMSE) and correlation coefficient (R), are employed to assess the
adequacy and precision of the networks according to the following equations:

MSE =
1
N ∑N

i=1(yi − ŷi)
2 (5)

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2 (6)

R =
∑ (ŷ − ŷ)(y − y)√

∑ (ŷ − ŷ)2
√

∑(y − y)2
(7)

where y and ŷ demonstrate the average values of the target and predicted outputs; y and
ŷ are the target and predicted values of the network, respectively. The values obtained
for MSE, RMSE, and R are listed in Table 2. Moreover, in order to assess the performance
of data, plots of the mean square error versus epoch (number of iterations) are used for
training, validation, and testing [53]. Figure 6 shows the performance of the networks in
predicting the compressive strength established in the MATLAB program. The blue line
represents the decreasing mean square error of the training data set. The green line shows
the validation error, which monitors the overfitting of the network [54]. Overfitting occurs
in the network when the validation-error data begins rising [55]. The red line indicates the
error of the test data used to determine the generalization capability of the model. The best
performance is achieved at the lowest validation error when there is no further increase in
MSE error [53–55]. The best validation of the performance of the proposed compressive
strength ANN model was obtained at epoch 18, with a mean square error (MSE) of 0.00477,
as shown in Figure 6.
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Table 2. Performance measurements of the proposed ANN model.

Dataset
Performance Metric

R MSE RMSE

Training 0.98 0.0019 0.0436
Validation 0.94 0.0048 0.0693

Testing 0.95 0.0042 0.0648
All data 0.97 0.0027 0.0164
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Figure 6. The performance of the proposed ANN model. The green circle represents the best
validation performance.

The coefficient of correlation (R), indicating the correlation between the target and
predicted (output) values for train, validation, and testing, and all data points, is shown in
Figure 7a–d. It can be seen that the coefficient of correlation for all data points was 0.966
for the developed ANN model. The optimal value for R is one, and the optimal value
for MSE and RMSE is zero [56]. Thus, the obtained values-of-error metrics indicate the
satisfactory performance of the proposed network with a large number of input variables.
The comparison of prediction results of the ANN model and the experimental data points
of the relative compressive strength of concrete is illustrated in Figure 8. It can be seen that
the ANN model predicts the experimental results with acceptable accuracy.

2.5. Sensitivity Analysis

The sensitivity analysis is used to determine how input variables contribute to the
output of a network. In this way, the user can reduce the size of the network by eliminating
insignificant input parameters [57]. This technique identifies the most important input
parameters considered by the network. The results of the sensitivity analysis in this study
are shown in Figure 9. It revealed that the temperature level is the most important parameter
in the results of the developed ANN-based models compared to other input variables.
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Figure 7. The regression plots of the proposed ANN model for (a) all data, (b) training, (c) validation,
and (d) testing.
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Figure 8. The comparison of experimental data (target) and the predicted results (output) of the
developed ANN model.
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Figure 9. Sensitivity analysis of the selected model for the compressive strength of concrete at high
temperatures.

3. Parametric Studies

An ANN-based model was developed to predict the mechanical characteristics of
concrete exposed to high temperatures, and its performance was evaluated. Due to the
generalization capability of the neural network, the influence of the input variables on the
output can be examined using a parametric study [58]. Patterns similar, but not identical,
to those with which ANN models have been trained can be recognized and answered
by the models in a parametric study [59]. In the following sections, parametric analysis
was carried out to evaluate the effect of input variables on the strength of concrete using
the prediction of the suggested ANN model. In the parametric study, the values of input
parameters, except those being examined, were constant.

3.1. The Effects of Three High-Temperature Test Methods on Compressive Strength

Typically, three test methods are used to determine the properties of concrete exposed
to high temperatures, including transient, steady-state, and residual tests. In the transient
test, the specimens are first loaded (20–40% of ultimate compressive strength), and this
loading is sustained during heating until the failure of the specimens. In the steady-state
test, the concrete specimens are heated (without a preload). Once the specimens reach a
uniform temperature, they are loaded to failure. The concrete specimens in the residual
test method are heated to the target temperature without a preload until specimens reach
a thermal steady state. After the specimens are cooled to room temperature, the load is
applied until failure occurs [3,60,61]. In this study, the term ‘residual compressive strength’
refers to the compressive strength of the concrete obtained based on residual test methods
data. The outcomes of the ANN model for three test methods (transient, steady-state, and
residual) for concrete with a water-to-cement ratio of 0.5 are compared to ACI 216.1 [62]
and Eurocode [63] results for siliceous, calcareous, and lightweight concrete in Figure 10a–c,
respectively. It should be mentioned that the Eurocode model is limited to the transient
tests, and it does not cover the relative compressive strength of lightweight concrete. Table 3
lists all the assumed concrete-mix designs for three different aggregate types selected for a
parametric study on compressive strength. The range of temperature was selected between
20 ◦C and 800 ◦C.
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Figure 10. The comparison of the results of the proposed ANN model for (a) siliceous concrete,
(b) calcareous concrete, and (c) lightweight concrete under three test methods (TR, SS, and R) exposed
to high temperatures with ACI 216.1 [62] and Eurocode [63] results.

Table 3. The concrete-mix designs for parametric analysis of the effects of the high-temperature test
methods on the relative compressive strength [40,41,43,46].

Number
Coarse-

Aggregate
Type

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)
SF% FA% GGBFS% Cement

(kg/m3)
Water

(kg/m3) w/c Used in

1 Si 1080 855 0 0 0 249 127 0.50
Test

method
2 Ca 1095 795 0 0 0 320 160 0.50
3 LWA 482 678 0 0 0 370 185 0.50

Overall, the lowest relative compressive-strength loss was observed in the transient
test, followed by the steady-state and residual tests for all types of aggregate. Although it is
difficult to generalize the effects of the three different test methods on concrete remaining
strength at high temperatures, the better strength in transient tests could be attributed
to the friction caused by the preloading of specimens, limiting the thermal stress in the
expansion of the specimens, thereby preventing thermal cracking caused by the thermal
gradient. Moreover, preloading can densify the concrete pore structure by compressing the
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coarsened pores caused by high temperatures [64,65]. The effects of sustained load during
transient tests can cause premature spalling, especially for load ratios of 70% [66].

It can be seen in Figure 10a that the results predicted by the proposed ANN model
for siliceous concrete are relatively close to the results of ACI 216.1 [62]. In the case of
calcareous-aggregate concrete, there is a considerable difference between the results of
ACI 216.1 and the prediction of the ANN model, as shown in Figure 10b. However, the
results of Eurocode [63] were close to the ANN results. The outcomes of the ANN model
compared to the ACI 216.1 result for lightweight concrete are plotted in Figure 10c. It was
found that the prediction of the model for the relative compressive strength of lightweight
concrete was in close agreement with the ACI216.1 results of all test methods.

3.2. The Effects of Water-to-Cement Ratio on Residual Compressive Strength

The relative compressive strength at three different water-to-cement ratios of 0.3, 0.5,
and 0.6 for siliceous and calcareous concrete subjected to high temperatures up to 800 ◦C
compared to the results of the ACI 216.1 [62] and Eurocode [63] are shown in Figures 11 and 12,
respectively. The assumed concrete-mix designs for investigating the influence of w/c
ratios are shown in Table 4. The results of the ANN model were only presented for the
residual test due to a wide range of data in this test approach (see Figure 4b). According to
Eurocode, high-strength concrete is classified into three classes based on its compressive
strength: C 55/67 and C 60/75 is Class 1, C 70/85 and C80/95 is Class 2, and C90/105
is Class 3. The compressive strength of analyzed data in the ANN model fell within the
category of Class 2 in Eurocode. As seen in Figure 11, at 100 ◦C, the relative compressive
strength of siliceous aggregate concrete was reduced due to free water from concrete
evaporation. Between 100 ◦C and 300 ◦C, the strength improved or remained constant.
Beyond 300 ◦C, the compressive strength was reduced with temperature rise. Compressive
strength improved due to the increasing forces between the particles of CSH particles by
removing interlayer water [67]. Regarding calcareous-aggregate concrete with a w/c of
0.3, the compressive strength reduced continuously with increasing temperature. However,
in the case of higher w/c (0.5 and 0.6), significant strength loss occurred up to 100 ◦C
by evaporation of water. A compressive-strength recovery was observed after heating to
200 ◦C compared to 100 ◦C. Above 300 ◦C, for calcareous concrete severe compressive-
strength loss occurred due to the decomposition of CSH and the generation of inner cracks.
The formation of cracks could be attributed to the inner thermal stresses caused by the
thermal expansion of aggregates and cement paste shrinkage [37]. Overall, higher w/c
ratios for both siliceous and calcareous aggregate result in more strength loss after heat
exposure. This can be explained by the increasing pore diameter and coarsening of the pore
structure [38,68]. Eurocode [63] provides predictions only in hot conditions, indicating that
the reduction of compressive strength was lower in normal-strength concrete compared to
HSC. ACI 216.1 [62] and Eurocode results are conservative compared to the ANN-based
model predictions, as shown in Figures 11 and 12.

Table 4. The concrete-mix designs for parametric analysis of the effect of water-to-cement ratios on
the residual compressive strength.

Number
Coarse-

Aggregate
Type

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)
SF% FA% GGBFS% Cement

(kg/m3)
Water

(kg/m3) w/c Used in

1 Si 1086 724 0 0 0 500 150 0.3
2 Si 1132 609 0 0 0 410 205 0.5
3 Si 1050 699 0 0 0 343 205 0.6 Effect of w/c
4 Ca 1168 615 0 0 0 495 149 0.3
5 Ca 854 868 0 0 0 392 196 0.5
6 Ca 854 868 0 0 0 368 221 0.6
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Figure 11. Comparison of prediction of the proposed ANN model for siliceous concrete with three
w/c: 0.3, 0.5, and 0.6 exposed to high temperatures with Eurocode [63] and ACI 216.1 [62] results.
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Figure 12. Comparison of prediction of the proposed ANN model for calcareous concrete with three
w/c: 0.3, 0.5, and 0.6 exposed to high temperatures with Eurocode [63] and ACI 216.1 [62] results.

3.3. The Effects of Supplementary Cementitious Materials on Residual Compressive Strength

In order to analyze the effect of the replacement of cement with different SCMs, the
relative compressive strength of concrete containing different contents of silica fume (0%,
5%, and 10%), fly ash (0%, 20%, 30%, and 40%), and ground-granulated blast furnace slag
(0%, 30%, and 40%) at high temperatures up to 800 ◦C was investigated. The selected
mix designs are represented in Table 5. It is worth noting that the provisions of both
ACI 216.1 [62] and Eurocode [63] have not covered the effect of SCMs on the compressive
strength of concrete at high temperatures.

3.3.1. The Effects of Silica Fume (SF)

The available research works are limited to high-strength concrete containing SF at
0–10% cement-replacement ratios. Accordingly, this study examines incorporating SF at
replacement levels of 0%, 5%, and 10 % on the compressive strength of concrete with a
water-to-binder ratio of 0.3. The prediction of the network for siliceous concrete compared
to calcareous concrete exposed to high temperatures up to 800 ◦C is depicted in Figure 13.
It can be seen that the concrete without SF shows slightly better performance than the
SF concrete, particularly for 10% SF replacement for both Ca and Si aggregate concrete.
Concrete containing SF exhibits a denser interfacial transition zone (ITZ) between cement
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paste and aggregates due to the filler effect of ultrafine particles and the pozzolanic activity
of SF compared to ordinary Portland cement (OPC) concrete. Therefore, higher stress levels
are produced in the ITZ because of the expansion of aggregate and contraction of paste
with SF than that of the OPC concrete exposed to high temperatures. This causes more
reduction in the relative compressive strength of SF concrete [6,64].

Table 5. The concrete-mix designs were employed for parametric analysis of the effect of different
SCMs on the relative compressive strength of concrete [6,38–40,43].

Number
Coarse-
Aggregate
Type

Coarse
Aggregate
(kg/m3)

Fine
Aggregate
(kg/m3)

SF% FA% GGBFS% Cement
(kg/m3)

Water
(kg/m3) w/b Used in

1 Ca 1168 615 0 0 0 495 149 0.30

Effects of
SF

2 Ca 1168 615 5 0 0 470 149 0.30
3 Ca 1168 615 10 0 0 445.5 149 0.30
4 Si 1066 710 0 0 0 500 150 0.30
5 Si 1066 710 5 0 0 475 150 0.30
6 Si 1066 710 10 0 0 450 150 0.30

7 Si 1196 643 0 0 0 450 135 0.30

Effects of
FA

8 Si 1196 643 0 20 0 360 135 0.30
9 Si 1196 643 0 30 0 315 135 0.30
10 Si 1196 643 0 40 0 270 135 0.30
11 Si 1095 795 0 0 0 300 180 0.60
12 Si 1095 795 0 20 0 240 180 0.60
13 Si 1095 795 0 30 0 210 180 0.60
14 Si 1095 795 0 40 0 180 180 0.60
15 Ca 846 734 0 0 0 662 199 0.60
16 Ca 846 734 0 20 0 530 199 0.60
17 Ca 846 734 0 30 0 463 199 0.60
18 Ca 846 734 0 40 0 397 199 0.60

19 Si 1145 616 0 0 0 500 150 0.30

Effect of
GGBFS

20 Si 1145 616 0 0 30 350 150 0.30
21 Si 1145 616 0 0 40 300 150 0.30
22 Si 1135 626 0 0 0 390 195 0.50
23 Si 1135 626 0 0 30 273 195 0.50
24 Si 1135 626 0 0 40 234 195 0.50
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Figure 13. The influence of SF content on the relative compressive strength of siliceous or calcareous
concrete with w/b of 0.3 exposed to high temperature using the proposed ANN model.
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3.3.2. The Effects of Fly Ash (FA)

The influence of different contents of FA (0%, 20%, 30%, and 40%) on the compressive
strength of siliceous aggregate concrete at w/b of 0.3 and 0.6 are plotted in Figure 14.
The inclusion of FA increases the relative compressive strength of concrete compared
to concrete without FA at all temperatures. However, the presence of FA in improving
the relative compressive strength of siliceous concrete is notable up to 400 ◦C. Beyond
this temperature, there is nearly no difference between 20%, 30%, and 40% FA concrete.
The better performance of FA concrete is due to the pozzolanic reaction of FA particles
and calcium hydroxide and the production of C–S–H gel which increases the strength of
the concrete [46]. The addition of FA is slightly more effective in siliceous concrete with
lower w/b.
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Figure 14. The influence of FA content on the relative compressive strength of siliceous (a) with w/b
of 0.3 and (b) with w/b of 0.6 exposed to high temperature using the proposed ANN model.

The results were investigated only for calcareous concrete with a w/b ratio of 0.6
because there is insufficient data available in the literature for calcareous concrete with
lower w/b ratios. Overall, Figure 15 shows a lower improvement in the compressive
strength at high temperatures of calcareous concrete compared to siliceous concrete. Once
compared with 0% FA concrete, the relative compressive strength tends to decrease with
increasing the FA content up to 40%. The better performance of FA concrete compared
to concrete without FA can be attributed to the pozzolanic reaction of reactive SiO2 from
FA and Ca(OH)2 from cement, resulting in the reduction of the Ca(OH)2 amount in the
concrete [69]. The presence of FA keeps the relative strength of concrete near and over 1.0
up to 300 ◦C. However, the compressive strength reduced with temperature rise. Similar
results were reported in experimental research carried out by Savva et al. [43]. Overall, the
relative compressive strength was over 15% and 10% higher for silicious and calcareous
FA-contained concrete up to 400 ◦C, respectively, compared to OPC concrete.

3.3.3. The Effects of Ground-Granulated Blast Furnace Slag (GGBFS)

The results of the ANN model for three siliceous concrete mixes with different levels
of GGBFS (0%, 30% and 40%) and two w/b ratios (0.3 and 0.5) are depicted in Figure 16.
Before 300 ◦C and 200 ◦C, there is no significant reduction except at 100 ◦C for concrete with
w/b ratios of 0.3 and 0.5, respectively. Beyond 300 ◦C, the compressive strength decreased
linearly for all concrete mixes. For concrete with w/b of 0.3, the cement replacement
with GGBFS led to slightly better performance than concrete without GGBFS. This can be
explained by the acceleration of the hydration reaction caused by the increase in tempera-
ture [38,70]. It should be noted because the data for calcareous concrete containing GGBFS
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is not available in the literature (see Figure 4a), the results of the model were generated
only for Si concrete containing GGBFS in the parametric study.
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Figure 15. The influence of FA content on relative compressive strength of calcareous concrete with
w/b of 0.6 exposed to high temperature using the proposed ANN model.

3.3.4. Combined Effects of Aggregate Types and SCMs

Studying the combined effects of parameters on concrete strength subjected to high
temperatures is beneficial. The lack of comprehensive experimental studies that have
considered nearly all of the key parameters highlights the ANN contribution to combine
the results of multiple studies and generate a holistic understating of the concurrent
effects of varying parameters. To the authors’ knowledge, no experimental studies have
investigated the effects of aggregate types on SCM concrete. Figure 17 shows the predictions
of the ANN model for the residual compressive strength of concrete-containing SCMs
along with the two aggregate classes (i.e., siliceous and calcareous) at temperatures up
to 800 ◦C. To understand the combined effect of SCMs class and aggregate type, the
chemical composition of binder and aggregate needs to be considered. Several studies
investigated the chemical reaction between binder and aggregate [71–76]. It was shown
that siliceous aggregate produces a stronger bond with cement paste by providing a
chemical reaction between quartz (abundant in siliceous aggregate) and Ca(OH)2 as well
as a higher C-S-H formation rate in concrete with siliceous aggregates [77,78]. As Figure 17
indicates, the Figure 17 compressive strength of concrete made by siliceous aggregate is
higher; this agrees with the results of the study reported by Savva et al. [43], in which the
effect of high temperatures on the compressive strength of concrete containing FA with
different aggregates was investigated. The results of the ANN model demonstrated in
Figure 17 prove the multifactored effect of high temperatures along with the presence
of interaction between different aggregate types and SCMs. The multifactored effect of
various parameters may explain the contradictory results of studies on the compressive
strength of concrete subjected to high temperatures [79–82].

Around 100–300 ◦C, the compressive strength of various mixtures slightly increases or
remains unchanged. This may be attributed to the possibility of steam curing resulting in
additional hydration of unhydrated cement particles at temperatures 100–300 ◦C [43,83].
Additional hydration can be revealed by a decrease in phases (C3S + β-C2S) and an increase
in the content of Ca(OH)2 [84]. Moreover, by comparing the results, it can be concluded that
the temperature in which the maximum compressive strength occurs is almost the same for
each SCM, and it is independent of aggregate type. This may be due to the dehydration of
C-S-H, ettringite, and calcium aluminate hydrates which mainly depends on the ratio of
CaO/SiO2 of the binder [85–87].
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Figure 16. The influence of GGBFS content on the relative compressive strength of siliceous con-
crete (a) with w/b = 0.3 and (b) with w/b = 0.5 exposed to high temperature using the proposed
ANN model.

On the other hand, aggregates with different chemical compositions have a distinctive
thermal response. The thermal degradation for siliceous aggregates, inducing internal
stresses, occurs at around 570 ◦C. The main reason can be attributed to the chemical
composition in which the quartz crystal softens and the α–β of quartz transforms to an
intermediate incommensurate phase [88,89]. The main reason for a defect in calcareous ag-
gregate is the decarbonation of calcium carbonate (CaCO3), producing more calcium oxide
(CaO). The subsequent hydration of the new CaO increases the aggregate volume (almost
40% anisotropic expansion) and subsequently weakens the structure of the concrete [89,90].
Moreover, calcareous aggregates undergo severe processes of physical destruction above
800 ◦C due to the calcination of calcite [91]. This destruction can be observed in Figure 17,
in which the regions with blue color indicate concrete with very low remaining compres-
sive strength.
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Figure 17. The influence of SCMs content in concrete with w/b of 0.6 on the residual compressive
strength (a) Si-SF, (b) Ca-SF, (c) Si-FA, (d) Ca-FA, (e) Si-GGBFS, and (f) Ca-GGBFS.

Comparing the results of Figure 17a,b indicates that the optimum SCMs contents
completely depend on the aggregate types along with other parameters, namely mix
design. The optimum SF content for concrete with a w/b ratio of 0.6 containing siliceous
aggregate is around 8%; while for concrete containing calcareous aggregate, it is about 3%.
The same results were obtained in previous experimental tests [6,38,92,93]. The interactive
effects of FA content and temperatures on the residual compressive strength of siliceous and
calcareous concrete are presented in Figures 17c and 17d, respectively. For siliceous concrete,
the higher residual strength occurs between 200 ◦C and 300 ◦C with 30% FA content. At
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temperatures above 300 ◦C, the relative compressive strength decreases continuously for all
concrete mixes. For temperatures beyond 300 ◦C, the strength loss is fairly indifferent to FA
concrete, as indicated by the red colour core in temperatures below 300 ◦C. In calcareous
concrete, as shown in Figure 17d, the variation of FA content up to 40 % has no significant
effect on the strength loss for temperatures below 400 ◦C. Regarding GGBFS concrete,
Figure 17e shows that the siliceous concrete containing 20–35% GGBFS performs better
than other concrete mixes at all temperatures. It can be seen from Figure 17f for calcareous
concrete that compressive strength is reduced with increasing of the content of GGBFS at all
temperatures. In addition, in the presence of GGBFS, the rate of strength loss was higher in
calcareous concrete than in siliceous concrete. Overall, Figure 17 illustrates a slightly better
behaviour of silicious aggregate. Nonetheless, the other parameters, such as silica type
and its amount in the aggregate, porosity, moisture content, etc., are crucial for concrete
specimens at high temperatures [94]. However, measuring these parameters is difficult and
costly. This may be one of the reasons that available studies in the literature report only
the type of aggregate. Therefore, considering these parameters (e.g., porosity and moisture
content) in the ANN model was not feasible due to insufficient data. However, the current
study considered the complex effect of various parameters and their interactions with
each other on the residual compressive strength of concrete at high temperatures using the
generalization ability of machine-learning approaches. The ability of the proposed network
to predict the degradation of the compressive strength of concrete at high temperatures
was proven. The results of the proposed network can be used to understand the effects of
high temperature, concrete mix design, SCM types, test types, and aggregate classes on the
thermal response of concrete.

4. Conclusions

The behaviour of concrete under high temperatures is complex and affected by several
factors. The main purpose of this study was to predict the compressive strength of concrete
when subjected to high temperatures. A total of 500 data points were gathered to establish
the artificial neuron network (ANN) model to forecast the compressive strength of concrete
exposed to high temperatures. Furthermore, a parametric study was conducted to evaluate
the effects of input variables on the mechanical characteristics of concrete using the ANN
model. Based on analyzing the prediction of the ANN model, the following conclusions
were drawn:

1. A network consisting of one hidden layer within twelve neurons was established to
estimate the compressive strength of concrete exposed to high temperatures. The
network has a mean-squared error (MSE) of 0.004 and a correlation coefficient (R)
of 0.966.

2. The database contained experimental test results from three common test protocols:
transient temperature, steady-state temperature, and residual tests. It was found that
the strength loss in transient tests is lower than in the steady-state and residual tests
for all aggregate types.

3. A higher w/c ratio for both siliceous- and calcareous-aggregate concrete results in
more strength loss after exposure to high temperatures.

4. The better thermal performance of silicious aggregates was observed in various
concrete mixes containing different SCMs. Chemical reactions between quartz and
Ca(OH)2, as well as a higher C-S-H formation rate in siliceous aggregates, resulted
in a stronger bond with cement paste rather than calcareous aggregates. However,
the bond strength completely depends on the chemical composition of aggregates
and SCMs.

5. For all concrete, regardless of SCM type and aggregate type, the maximum residual
compressive strength is around 100–300 ◦C. This may be attributed to the possibility
of steam curing resulting in additional hydration of unhydrated cement particles at
temperatures 100–300 ◦C.
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6. The optimum amount of SCMs depends on factors such as aggregate types, which are
not fully studied experimentally, and the data lack exists. The optimum amount of
SCMs may differ based on the aggregate type; for instance, the optimum silica fume
(SF) content for concrete with a w/b ratio of 0.6 subjected to high temperatures is 8%
and 3% for siliceous and calcareous concrete, respectively.

7. In siliceous-aggregate concrete, adding FA increases the relative compressive strength
by over 15%. For calcareous aggregate and temperatures below 400 ◦C, adding
FA results in a 10% higher strength. In calcareous concrete, FA replacement over
40% results in more strength loss at all temperatures. The residual compressive
strength decreased continuously for slag (GGBFS)-containing silicious and calcareous
concrete. However, the compressive strength reduction was more significant in GGBFS
calcareous concrete.

8. To draw a general conclusion on the effects of different SCMs on the residual com-
pressive strength of concrete, for siliceous concrete with a w/b ratio of 0.3 using
Figures 13–16, the FA concrete shows better results, followed by GGBFS and sil-
ica fume.
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Appendix A. Data Set Table

Table A1. Database that was collected to develop the ANN model.

Paper Temperature
(◦C)

Coarse-
Aggregate

Type

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)
SF% FA% GGBS% Cement

(kg/m3)
Water

(kg/m3) fcT/fc20
Test

Method

1

[38]

200 S 1142 615 10 20 0 350 150 1.09 R
2 400 S 1142 615 10 20 0 350 150 0.94 R
3 600 S 1142 615 10 20 0 350 150 0.51 R
4 800 S 1142 615 10 20 0 350 150 0.19 R
5 200 S 1151 620 10 0 0 450 150 0.98 R
6 400 S 1151 620 10 0 0 450 150 0.87 R
7 600 S 1151 620 10 0 0 450 150 0.44 R
8 800 S 1151 620 10 0 0 450 150 0.16 R
9 200 S 1066 710 5 0 0 475 150 0.99 R
10 400 S 1066 710 5 0 0 475 150 0.93 R
11 600 S 1066 710 5 0 0 475 150 0.52 R
12 800 S 1066 710 5 0 0 475 150 0.21 R
13 200 S 1139 613 0 40 0 300 150 1.22 R
14 400 S 1139 613 0 40 0 300 150 1.04 R
15 600 S 1139 613 0 40 0 300 150 0.57 R
16 800 S 1139 613 0 40 0 300 150 0.30 R
17 200 S 1139 625 0 40 0 234 195 1.06 R
18 400 S 1139 625 0 40 0 234 195 0.84 R
19 600 S 1139 625 0 40 0 234 195 0.45 R
20 800 S 1139 625 0 40 0 234 195 0.18 R
21 200 S 1143 615 0 30 0 350 150 1.21 R
22 400 S 1143 615 0 30 0 350 150 0.98 R
23 600 S 1143 615 0 30 0 350 150 0.67 R
24 800 S 1143 615 0 30 0 350 150 0.32 R
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Table A1. Cont.

Paper Temperature
(◦C)

Coarse-
Aggregate

Type

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)
SF% FA% GGBS% Cement

(kg/m3)
Water

(kg/m3) fcT/fc20
Test

Method

25 200 S 1133 626 0 30 0 273 195 1.02 R
26 400 S 1133 626 0 30 0 273 195 0.86 R
27 600 S 1133 626 0 30 0 273 195 0.37 R
28 800 S 1133 626 0 30 0 273 195 0.16 R
29 200 S 1147 618 0 20 0 400 150 1.14 R
30 400 S 1147 618 0 20 0 400 150 0.96 R
31 600 S 1147 618 0 20 0 400 150 0.62 R
32 800 S 1147 618 0 20 0 400 150 0.28 R
33 200 S 1142 615 0 0 40 300 150 1.15 R
34 400 S 1142 615 0 0 40 300 150 0.99 R
35 600 S 1142 615 0 0 40 300 150 0.61 R
36 800 S 1142 615 0 0 40 300 150 0.29 R
37 200 S 1132 625 0 0 40 234 195 0.92 R
38 400 S 1132 625 0 0 40 234 195 0.81 R
39 600 S 1132 625 0 0 40 234 195 0.54 R
40 800 S 1132 625 0 0 40 234 195 0.20 R
41 200 S 1145 616 0 0 30 350 150 1.13 R
42 400 S 1145 616 0 0 30 350 150 0.97 R
43 600 S 1145 616 0 0 30 350 150 0.53 R
44 800 S 1145 616 0 0 30 350 150 0.24 R
45 200 S 1135 626 0 0 30 273 195 0.98 R
46 400 S 1135 626 0 0 30 273 195 0.85 R
47 600 S 1135 626 0 0 30 273 195 0.51 R
48 800 S 1135 626 0 0 30 273 195 0.21 R
49 200 S 927 758 0 0 0 500 150 0.96 R
50 400 S 927 758 0 0 0 500 150 0.89 R
51 600 S 927 758 0 0 0 500 150 0.58 R
52 800 S 927 758 0 0 0 500 150 0.24 R
53 200 S 917 768 0 0 0 390 195 0.93 R
54 400 S 917 768 0 0 0 390 195 0.74 R
55 600 S 917 768 0 0 0 390 195 0.30 R
56 800 S 917 768 0 0 0 390 195 0.10 R

57

[95]

100 S 955 634 7 15 0 452 170 0.76 TR
58 200 S 955 634 7 15 0 452 170 0.99 TR
59 300 S 955 634 7 15 0 452 170 1.00 TR
60 400 S 955 634 7 15 0 452 170 0.91 TR
61 500 S 955 634 7 15 0 452 170 0.72 TR
62 600 S 955 634 7 15 0 452 170 0.58 TR
63 700 S 955 634 7 15 0 452 170 0.47 TR
64 100 S 972 537 7 15 0 515 165 0.80 TR
65 200 S 972 537 7 15 0 515 165 0.93 TR
66 300 S 972 537 7 15 0 515 165 0.89 TR
67 400 S 972 537 7 15 0 515 165 0.74 TR
68 500 S 972 537 7 15 0 515 165 0.63 TR
69 600 S 972 537 7 15 0 515 165 0.59 TR
70 700 S 972 537 7 15 0 515 165 0.52 TR
71 100 S 919 793 0 10 0 344 176 0.78 TR
72 200 S 919 793 0 10 0 344 176 1.10 TR
73 300 S 919 793 0 10 0 344 176 1.10 TR
74 400 S 919 793 0 10 0 344 176 0.98 TR
75 500 S 919 793 0 10 0 344 176 0.75 TR
76 600 S 919 793 0 10 0 344 176 0.60 TR
77 700 S 919 793 0 10 0 344 176 0.44 TR



Buildings 2023, 13, 1337 23 of 33

Table A1. Cont.

Paper Temperature
(◦C)

Coarse-
Aggregate

Type

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)
SF% FA% GGBS% Cement

(kg/m3)
Water

(kg/m3) fcT/fc20
Test

Method

78

[6]

100 C 1168 615 10 0 0 450 149 0.84 R
79 200 C 1168 615 10 0 0 450 149 0.86 R
80 300 C 1168 615 10 0 0 450 149 0.69 R
81 600 C 1168 615 10 0 0 450 149 0.27 R
82 100 C 1115 653 6 0 0 441 164 0.85 R
83 200 C 1115 653 6 0 0 441 164 0.88 R
84 300 C 1115 653 6 0 0 441 164 0.76 R
85 600 C 1115 653 6 0 0 441 164 0.29 R
86 100 C 1168 615 6 0 0 465 149 0.85 R
87 200 C 1168 615 6 0 0 465 149 0.86 R
88 300 C 1168 615 6 0 0 465 149 0.71 R
89 600 C 1168 615 6 0 0 465 149 0.29 R
90 100 C 1030 687 0 0 0 430 172 0.87 R
91 200 C 1030 687 0 0 0 430 172 0.90 R
92 300 C 1030 687 0 0 0 430 172 0.75 R
93 600 C 1030 687 0 0 0 430 172 0.33 R
94 100 C 1168 615 0 0 0 495 149 0.85 R
95 200 C 1168 615 0 0 0 495 149 0.89 R
96 300 C 1168 615 0 0 0 495 149 0.73 R
97 600 C 1168 615 0 0 0 495 149 0.31 R

98

[39]

200 S 1143 615 0 60 0 180 135 1.09 R
99 400 S 1143 615 0 60 0 180 135 0.93 R
100 600 S 1143 615 0 60 0 180 135 0.57 R
101 200 S 1161 625 0 40 0 270 135 0.92 R
102 400 S 1161 625 0 40 0 270 135 0.88 R
103 600 S 1161 625 0 40 0 270 135 0.62 R
104 800 S 1161 625 0 40 0 270 135 0.23 R
105 200 S 1179 634 0 20 0 360 135 0.90 R
106 400 S 1179 634 0 20 0 360 135 0.85 R
107 600 S 1179 634 0 20 0 360 135 0.59 R
108 800 S 1179 634 0 20 0 360 135 0.28 R
109 200 S 1196 643 0 0 0 450 135 1.06 R
110 400 S 1196 643 0 0 0 450 135 0.81 R
111 600 S 1196 643 0 0 0 450 135 0.55 R
112 800 S 1196 643 0 0 0 450 135 0.28 R

113

[46]

250 S 1132 536 0 55 0 184.5 250 1.12 R
114 450 S 1132 536 0 55 0 184.5 250 0.97 R
115 650 S 1132 536 0 55 0 184.5 250 0.63 R
116 800 S 1132 536 0 55 0 184.5 250 0.26 R
117 250 S 1086 634 0 55 0 225 150 1.23 R
118 450 S 1086 634 0 55 0 225 150 0.99 R
119 650 S 1086 634 0 55 0 225 150 0.65 R
120 800 S 1086 634 0 55 0 225 150 0.27 R
121 250 S 1132 576 0 25 0 410 205 1.15 R
122 450 S 1132 576 0 25 0 307.5 205 0.86 R
123 650 S 1132 576 0 25 0 307.5 205 0.51 R
124 800 S 1132 576 0 25 0 307.5 205 0.27 R
125 250 S 1086 683 0 25 0 375 150 1.14 R
126 450 S 1086 683 0 25 0 375 150 0.86 R
127 650 S 1086 683 0 25 0 375 150 0.56 R
128 800 S 1086 683 0 25 0 375 150 0.30 R
129 250 S 1132 609 0 0 0 410 205 1.10 R
130 450 S 1132 609 0 0 0 410 205 0.86 R
131 650 S 1132 609 0 0 0 410 205 0.52 R
132 800 S 1132 609 0 0 0 410 205 0.24 R
133 250 S 1086 724 0 0 0 500 150 1.09 R
134 450 S 1086 724 0 0 0 500 150 0.83 R
135 650 S 1086 724 0 0 0 500 150 0.52 R
136 800 S 1086 724 0 0 0 500 150 0.21 R
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Table A1. Cont.

Paper Temperature
(◦C)

Coarse-
Aggregate

Type

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)
SF% FA% GGBS% Cement

(kg/m3)
Water

(kg/m3) fcT/fc20
Test

Method

137

[92]

100 LWA 601 730 10 0 0 387 202 0.75 R
138 400 LWA 601 730 10 0 0 387 202 0.39 R
139 800 LWA 601 730 10 0 0 387 202 0.16 R
140 100 LWA 601 730 5 0 0 408.5 202 1.04 R
141 400 LWA 601 730 5 0 0 408.5 202 0.90 R
142 800 LWA 601 730 5 0 0 408.5 202 0.33 R
143 100 LWA 602 729 0 0 0 430 199 0.99 R
144 400 LWA 602 729 0 0 0 430 199 0.79 R
145 800 LWA 602 729 0 0 0 430 199 0.28 R

146

[37]

95 C 1050 699 0 0 0 354 195 0.94 R
147 205 C 1050 699 0 0 0 354 195 0.84 R
148 315 C 1050 699 0 0 0 354 195 0.70 R
149 425 C 1050 699 0 0 0 354 195 0.62 R
150 535 C 1050 699 0 0 0 354 195 0.49 R
151 650 C 1050 699 0 0 0 354 195 0.34 R
152 95 S 1050 699 0 0 0 354 195 0.91 R
153 205 S 1050 699 0 0 0 354 195 0.82 R
154 315 S 1050 699 0 0 0 354 195 0.74 R
155 425 S 1050 699 0 0 0 354 195 0.62 R
156 535 S 1050 699 0 0 0 354 195 0.49 R
157 650 S 1050 699 0 0 0 354 195 0.35 R
158 95 S 1050 699 0 0 0 354 195 0.95 R
159 205 S 1050 699 0 0 0 354 195 0.87 R
160 315 S 1050 699 0 0 0 354 195 0.80 R
161 425 S 1050 699 0 0 0 354 195 0.70 R
162 535 S 1050 699 0 0 0 354 195 0.61 R
163 650 S 1050 699 0 0 0 354 195 0.54 R

164

[42]

100 C 1168 615 10 0 0 450 149 0.84 R
165 200 C 1168 615 10 0 0 450 149 0.85 R
166 300 C 1168 615 10 0 0 450 149 0.68 R
167 600 C 1168 615 10 0 0 450 149 0.27 R
168 100 C 1115 653 6 0 0 441 164 0.85 R
169 200 C 1115 653 6 0 0 441 164 0.88 R
170 300 C 1115 653 6 0 0 441 164 0.77 R
171 600 C 1115 653 6 0 0 441 164 0.29 R
172 100 C 1168 615 0 0 0 500 149 0.86 R
173 200 C 1168 615 0 0 0 500 149 0.88 R
174 300 C 1168 615 0 0 0 500 149 0.73 R
175 600 C 1168 615 0 0 0 500 149 0.31 R
176 100 C 1030 687 0 0 0 430 172 0.85 R
177 200 C 1030 687 0 0 0 430 172 0.88 R
178 300 C 1030 687 0 0 0 430 172 0.74 R
179 600 C 1030 687 0 0 0 430 172 0.33 R

180

[96]

150 LWA 369 777 0 0 0 426 192 0.98 R
181 300 LWA 369 777 0 0 0 426 192 0.97 R
182 450 LWA 369 777 0 0 0 426 192 0.73 R
183 600 LWA 369 777 0 0 0 426 192 0.44 R
184 150 LWA 585 777 0 0 0 426 192 0.96 R
185 300 LWA 585 777 0 0 0 426 192 1.01 R
186 450 LWA 585 777 0 0 0 426 192 0.72 R
187 600 LWA 585 777 0 0 0 426 192 0.45 R
188 150 LWA 547 777 0 0 0 426 192 0.91 R
189 300 LWA 547 777 0 0 0 426 192 1.00 R
190 450 LWA 547 777 0 0 0 426 192 0.82 R
191 600 LWA 547 777 0 0 0 426 192 0.49 R
192 150 C 1002 777 0 0 0 426 192 0.86 R
193 300 C 1002 777 0 0 0 426 192 0.92 R
194 450 C 1002 777 0 0 0 426 192 0.63 R
195 600 C 1002 777 0 0 0 426 192 0.33 R



Buildings 2023, 13, 1337 25 of 33

Table A1. Cont.

Paper Temperature
(◦C)

Coarse-
Aggregate

Type

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)
SF% FA% GGBS% Cement

(kg/m3)
Water

(kg/m3) fcT/fc20
Test

Method

196

[45]

100 LWA 676 687 0 0 0 432 155 0.76 TR
197 200 LWA 676 687 0 0 0 432 155 0.82 TR
198 300 LWA 676 687 0 0 0 432 155 0.99 TR
199 500 LWA 676 687 0 0 0 432 155 0.88 TR
200 700 LWA 676 687 0 0 0 432 155 0.90 TR
201 100 LWA 676 687 0 0 0 432 155 0.83 TR
202 200 LWA 676 687 0 0 0 432 155 0.94 TR
203 300 LWA 676 687 0 0 0 432 155 1.01 TR
204 500 LWA 676 687 0 0 0 432 155 0.94 TR
205 700 LWA 676 687 0 0 0 432 155 0.86 TR
206 100 LWA 676 687 0 0 0 432 155 0.84 SS
207 200 LWA 676 687 0 0 0 432 155 0.90 SS
208 300 LWA 676 687 0 0 0 432 155 0.95 SS
209 500 LWA 676 687 0 0 0 432 155 0.76 SS
210 700 LWA 676 687 0 0 0 432 155 0.62 SS
211 100 S 1071 692 0 0 0 470 165 0.66 TR
212 200 S 1071 692 0 0 0 470 165 0.79 TR
213 300 S 1071 692 0 0 0 470 165 0.96 TR
214 500 S 1071 692 0 0 0 470 165 0.72 TR
215 700 S 1071 692 0 0 0 470 165 0.11 TR
216 100 S 1071 692 0 0 0 470 165 0.69 TR
217 200 S 1071 692 0 0 0 470 165 0.72 TR
218 300 S 1071 692 0 0 0 470 165 0.93 TR
219 500 S 1071 692 0 0 0 470 165 0.68 TR
220 700 S 1071 692 0 0 0 470 165 0.38 TR
221 300 S 1071 692 0 0 0 470 165 0.88 SS
222 500 S 1071 692 0 0 0 470 165 0.59 SS
223 700 S 1071 692 0 0 0 470 165 0.27 SS

224

[41]

204 C 1085 855 0 0 0 237 130 0.88 SS
225 482 C 1085 855 0 0 0 237 130 0.79 SS
226 704 C 1085 855 0 0 0 237 130 0.63 SS
227 871 C 1085 855 0 0 0 237 130 0.08 SS
228 204 C 1085 855 0 0 0 237 130 0.98 TR
229 482 C 1085 855 0 0 0 237 130 0.99 TR
230 704 C 1085 855 0 0 0 237 130 0.88 TR
231 204 C 1085 855 0 0 0 237 130 0.79 R
232 482 C 1085 855 0 0 0 237 130 0.49 R
233 704 C 1085 855 0 0 0 237 130 0.35 R
234 760 C 1085 855 0 0 0 237 130 0.32 R
235 204 C 955 870 0 0 0 317 134 0.86 SS
236 482 C 955 870 0 0 0 317 134 0.78 SS
237 704 C 955 870 0 0 0 317 134 0.78 SS
238 871 C 955 870 0 0 0 317 134 0.14 SS
239 204 C 955 870 0 0 0 317 134 0.98 TR
240 482 C 955 870 0 0 0 317 134 0.96 TR
241 704 C 955 870 0 0 0 317 134 0.96 TR
242 204 C 955 870 0 0 0 317 134 0.79 R
243 482 C 955 870 0 0 0 317 134 0.49 R
244 704 C 955 870 0 0 0 317 134 0.35 R
245 760 C 955 870 0 0 0 317 134 0.32 R
246 204 S 1080 855 0 0 0 249 127 0.91 SS
247 482 S 1080 855 0 0 0 249 127 0.73 SS
248 704 S 1080 855 0 0 0 249 127 0.25 SS
249 871 S 1080 855 0 0 0 249 127 0.22 SS
250 204 S 1080 855 0 0 0 249 127 1.05 TR
251 482 S 1080 855 0 0 0 249 127 0.93 TR
252 649 S 1080 855 0 0 0 249 127 0.57 TR
253 204 S 1080 855 0 0 0 249 127 0.86 R
254 482 S 1080 855 0 0 0 249 127 0.58 R
255 704 S 1080 855 0 0 0 249 127 0.15 R
256 204 S 1000 880 0 0 0 330 132 0.90 SS
257 482 S 1000 880 0 0 0 330 132 0.73 SS
258 704 S 1000 880 0 0 0 330 132 0.26 SS
259 871 S 1000 880 0 0 0 330 132 0.13 SS
260 204 S 1000 880 0 0 0 330 132 0.99 TR
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Table A1. Cont.

Paper Temperature
(◦C)

Coarse-
Aggregate

Type

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)
SF% FA% GGBS% Cement

(kg/m3)
Water

(kg/m3) fcT/fc20
Test

Method

261 482 S 1000 880 0 0 0 330 132 0.71 TR
262 649 S 1000 880 0 0 0 330 132 0.41 TR
263 204 S 1000 880 0 0 0 330 132 0.89 R
264 482 S 1000 880 0 0 0 330 132 0.57 R
265 649 S 1000 880 0 0 0 330 132 0.17 R
266 204 LWA 493 762 0 0 0 264 206 0.95 SS
267 482 LWA 493 762 0 0 0 264 206 0.83 SS
268 704 LWA 493 762 0 0 0 264 206 0.69 SS
269 871 LWA 493 762 0 0 0 264 206 0.23 SS
270 204 LWA 493 762 0 0 0 264 206 0.94 TR
271 482 LWA 493 762 0 0 0 264 206 0.85 TR
272 704 LWA 493 762 0 0 0 264 206 0.70 TR
273 204 LWA 493 762 0 0 0 264 206 0.88 R
274 482 LWA 493 762 0 0 0 264 206 0.63 R
275 704 LWA 493 762 0 0 0 264 206 0.44 R
276 871 LWA 493 762 0 0 0 264 206 0.12 R
277 204 LWA 482 678 0 0 0 350 206 0.95 SS
278 482 LWA 482 678 0 0 0 350 206 0.83 SS
279 704 LWA 482 678 0 0 0 350 206 0.69 SS
280 871 LWA 482 678 0 0 0 350 206 0.23 SS
281 204 LWA 482 678 0 0 0 350 206 0.94 TR
282 482 LWA 482 678 0 0 0 350 206 0.85 TR
283 704 LWA 482 678 0 0 0 350 206 0.70 TR
284 204 LWA 482 678 0 0 0 350 206 0.91 R
285 482 LWA 482 678 0 0 0 350 206 0.54 R
286 704 LWA 482 678 0 0 0 350 206 0.39 R
287 871 LWA 482 678 0 0 0 350 206 0.16 R

288

[43]

100 C 1095.3 794.7 0 30 0 210 180 0.95 R
289 300 C 1095.3 794.7 0 30 0 210 180 0.92 R
290 600 C 1095.3 794.7 0 30 0 210 180 0.41 R
291 750 C 1095.3 794.7 0 30 0 210 180 0.19 R
292 100 S 1040.4 807.6 0 30 0 210 180 1.19 R
293 300 S 1040.4 807.6 0 30 0 210 180 1.32 R
294 600 S 1040.4 807.6 0 30 0 210 180 0.49 R
295 750 S 1040.4 807.6 0 30 0 210 180 0.22 R
296 100 C 1095.3 794.7 0 30 0 210 180 1.05 R
297 300 C 1095.3 794.7 0 30 0 210 180 1.06 R
298 600 C 1095.3 794.7 0 30 0 210 180 0.40 R
299 750 C 1095.3 794.7 0 30 0 210 180 0.07 R
300 100 S 1040.4 807.6 0 30 0 210 180 0.97 R
301 300 S 1040.4 807.6 0 30 0 210 180 1.16 R
302 600 S 1040.4 807.6 0 30 0 210 180 0.32 R
303 750 S 1040.4 807.6 0 30 0 210 180 0.12 R
304 100 C 1095.3 794.7 0 30 0 210 180 1.03 R
305 300 C 1095.3 794.7 0 30 0 210 180 1.11 R
306 600 C 1095.3 794.7 0 30 0 210 180 0.34 R
307 750 C 1095.3 794.7 0 30 0 210 180 0.24 R
308 100 S 1040.4 807.6 0 30 0 210 180 1.24 R
309 300 S 1040.4 807.6 0 30 0 210 180 1.24 R
310 600 S 1040.4 807.6 0 30 0 210 180 0.47 R
311 750 S 1040.4 807.6 0 30 0 210 180 0.25 R
312 100 C 1095.3 794.7 0 10 0 270 180 0.91 R
313 300 C 1095.3 794.7 0 10 0 270 180 0.92 R
314 600 C 1095.3 794.7 0 10 0 270 180 0.50 R
315 750 C 1095.3 794.7 0 10 0 270 180 0.23 R
316 100 S 1040.4 807.6 0 10 0 270 180 0.95 R
317 300 S 1040.4 807.6 0 10 0 270 180 1.06 R
318 600 S 1040.4 807.6 0 10 0 270 180 0.50 R
319 750 S 1040.4 807.6 0 10 0 270 180 0.25 R
320 100 C 1095.3 794.7 0 10 0 270 180 1.06 R
321 300 C 1095.3 794.7 0 10 0 270 180 1.14 R
322 600 C 1095.3 794.7 0 10 0 270 180 0.44 R
323 750 C 1095.3 794.7 0 10 0 270 180 0.13 R
324 100 S 1040.4 807.6 0 10 0 270 180 1.13 R
325 300 S 1040.4 807.6 0 10 0 270 180 1.32 R
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Table A1. Cont.

Paper Temperature
(◦C)

Coarse-
Aggregate

Type

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)
SF% FA% GGBS% Cement

(kg/m3)
Water

(kg/m3) fcT/fc20
Test

Method

326 600 S 1040.4 807.6 0 10 0 270 180 0.40 R
327 750 S 1040.4 807.6 0 10 0 270 180 0.15 R
328 100 C 1095.3 794.7 0 10 0 270 180 1.08 R
329 300 C 1095.3 794.7 0 10 0 270 180 1.11 R
330 600 C 1095.3 794.7 0 10 0 270 180 0.42 R
331 750 C 1095.3 794.7 0 10 0 270 180 0.15 R
332 100 S 1040.4 807.6 0 10 0 270 180 1.13 R
333 300 S 1040.4 807.6 0 10 0 270 180 1.37 R
334 600 S 1040.4 807.6 0 10 0 270 180 0.45 R
335 750 S 1040.4 807.6 0 10 0 270 180 0.70 R
336 100 C 1095.3 794.7 0 0 0 300 180 0.99 R
337 300 C 1095.3 794.7 0 0 0 300 180 0.93 R
338 600 C 1095.3 794.7 0 0 0 300 180 0.52 R
339 750 C 1095.3 794.7 0 0 0 300 180 0.23 R
340 100 S 1040.4 807.6 0 0 0 300 180 0.89 R
341 300 S 1040.4 807.6 0 0 0 300 180 1.05 R
342 600 S 1040.4 807.6 0 0 0 300 180 0.48 R
343 750 S 1040.4 807.6 0 0 0 300 180 0.25 R

344

[44]

200 C 1200 600 0 0 0 400 200 0.94 R
345 400 C 1200 600 0 0 0 400 200 0.84 R
346 600 C 1200 600 0 0 0 400 200 0.56 R
347 200 S 1200 600 0 0 0 400 200 0.96 R
348 400 S 1200 600 0 0 0 400 200 0.83 R
349 600 S 1200 600 0 0 0 400 200 0.61 R
350 200 S 1200 600 0 0 0 400 200 0.89 R
351 400 S 1200 600 0 0 0 400 200 0.81 R
352 600 S 1200 600 0 0 0 400 200 0.63 R

353

[40]

100 C 845.8 733.6 10 0 0 595.5 133 0.82 R
354 100 C 845.8 733.6 10 0 0 595.5 133 0.87 R
355 100 C 845.8 733.6 10 0 0 595.5 133 0.93 R
356 200 C 845.8 733.6 10 0 0 595.5 133 1.00 R
357 200 C 845.8 733.6 10 0 0 595.5 133 0.95 R
358 200 C 845.8 733.6 10 0 0 595.5 133 0.94 R
359 300 C 845.8 733.6 10 0 0 595.5 133 0.90 R
360 300 C 845.8 733.6 10 0 0 595.5 133 0.83 R
361 300 C 845.8 733.6 10 0 0 595.5 133 0.89 R
362 100 C 845.8 733.6 10 0 0 595.9 198.6 0.89 R
363 100 C 845.8 733.6 10 0 0 595.9 198.6 0.90 R
364 100 C 845.8 733.6 10 0 0 595.9 198.6 0.82 R
365 200 C 845.8 733.6 10 0 0 595.9 198.6 0.77 R
366 200 C 845.8 733.6 10 0 0 595.9 198.6 0.79 R
367 200 C 845.8 733.6 10 0 0 595.9 198.6 0.81 R
368 300 C 845.8 733.6 10 0 0 595.9 198.6 0.67 R
369 100 C 846 734 10 0 0 596 133 0.77 TR
370 100 C 846 734 10 0 0 596 133 0.76 TR
371 100 C 846 734 10 0 0 596 133 0.85 TR
372 100 C 846 734 10 0 0 596 133 0.81 TR
373 100 C 846 734 10 0 0 596 133 0.73 TR
374 200 C 846 734 10 0 0 596 133 0.77 TR
375 200 C 846 734 10 0 0 596 133 0.82 TR
376 200 C 846 734 10 0 0 596 133 0.74 TR
377 300 C 846 734 10 0 0 596 133 0.79 TR
378 300 C 846 734 10 0 0 596 133 0.79 TR
379 300 C 846 734 10 0 0 596 133 0.88 TR
380 450 C 846 734 10 0 0 596 133 0.81 TR
381 450 C 846 734 10 0 0 596 133 0.76 TR
382 450 C 846 734 10 0 0 596 133 0.82 TR
383 600 C 846 734 10 0 0 596 133 0.73 TR
384 600 C 846 734 10 0 0 596 133 0.67 TR
385 600 C 846 734 10 0 0 596 133 0.59 TR
386 100 C 846 734 10 0 0 596 199 0.69 TR
387 100 C 846 734 10 0 0 596 199 0.60 TR
388 100 C 846 734 10 0 0 596 199 0.72 TR
389 200 C 846 734 10 0 0 596 199 0.75 TR
390 200 C 846 734 10 0 0 596 199 0.74 TR
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Paper Temperature
(◦C)

Coarse-
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(kg/m3)

Fine
Aggregate

(kg/m3)
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(kg/m3)
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391 200 C 846 734 10 0 0 596 199 0.73 TR
392 300 C 846 734 10 0 0 596 199 0.78 TR
393 300 C 846 734 10 0 0 596 199 0.71 TR
394 300 C 846 734 10 0 0 596 199 0.81 TR
395 450 C 846 734 10 0 0 596 199 0.70 TR
396 450 C 846 734 10 0 0 596 199 0.77 TR
397 100 C 846 734 10 0 0 596 133 0.71 SS
398 100 C 846 734 10 0 0 596 133 0.63 SS
399 100 C 846 734 10 0 0 596 133 0.71 SS
400 200 C 846 734 10 0 0 596 133 0.81 SS
401 200 C 846 734 10 0 0 596 133 0.63 SS
402 200 C 846 734 10 0 0 596 133 0.78 SS
403 300 C 846 734 10 0 0 596 133 0.71 SS
404 300 C 846 734 10 0 0 596 133 0.95 SS
405 300 C 846 734 10 0 0 596 133 0.70 SS
406 300 C 846 734 10 0 0 596 133 0.80 SS
407 100 C 846 734 10 0 0 596 199 0.66 SS
408 100 C 846 734 10 0 0 596 199 0.64 SS

409

[40]

100 C 846 734 10 0 0 596 199 0.62 SS
410 200 C 846 734 10 0 0 596 199 0.69 SS
411 200 C 846 734 10 0 0 596 199 0.71 SS
412 200 C 846 734 10 0 0 596 199 0.68 SS
413 300 C 846 734 10 0 0 596 199 0.82 SS
414 300 C 846 734 10 0 0 596 199 0.63 SS
415 300 C 846 734 10 0 0 596 199 0.78 SS
416 450 C 846 734 10 0 0 596 199 0.64 SS
417 450 C 846 734 10 0 0 596 199 0.72 SS
418 300 C 845.8 733.6 0 0 0 661.6 198.6 0.64 R
419 300 C 845.8 733.6 0 0 0 661.6 198.6 0.70 R
420 450 C 845.8 733.6 0 0 0 661.6 198.6 0.47 R
421 450 C 845.8 733.6 0 0 0 661.6 198.6 0.50 R
422 450 C 845.8 733.6 0 0 0 661.6 198.6 0.47 R
423 100 C 845.8 733.6 0 0 0 661.6 198.6 0.77 R
424 100 C 845.8 733.6 0 0 0 661.6 198.6 0.74 R
425 100 C 845.8 733.6 0 0 0 661.6 198.6 0.78 R
426 200 C 845.8 733.6 0 0 0 661.6 198.6 0.79 R
427 200 C 845.8 733.6 0 0 0 661.6 198.6 0.70 R
428 200 C 845.8 733.6 0 0 0 661.6 198.6 0.75 R
429 300 C 845.8 733.6 0 0 0 661.6 198.6 0.74 R
430 300 C 853.8 868.2 0 0 0 376.4 213 0.76 R
431 300 C 853.8 868.2 0 0 0 376.4 213 0.71 R
432 450 C 853.8 868.2 0 0 0 376.4 213 0.55 R
433 450 C 853.8 868.2 0 0 0 376.4 213 0.49 R
434 450 C 853.8 868.2 0 0 0 376.4 213 0.51 R
435 100 C 853.8 868.2 0 0 0 376.4 213 0.70 R
436 100 C 853.8 868.2 0 0 0 376.4 213 0.69 R
437 100 C 853.8 868.2 0 0 0 376.4 213 0.72 R
438 200 C 853.8 868.2 0 0 0 376.4 213 0.77 R
439 200 C 853.8 868.2 0 0 0 376.4 213 0.72 R
440 200 C 853.8 868.2 0 0 0 376.4 213 0.72 R
441 300 C 853.8 868.2 0 0 0 376.4 213 0.69 R
442 300 C 853.8 868.2 0 0 0 376.4 213 0.66 R
443 300 C 853.8 868.2 0 0 0 376.4 213 0.65 R
444 450 C 853.8 868.2 0 0 0 376.4 213 0.53 R
445 450 C 853.8 868.2 0 0 0 376.4 213 0.50 R
446 450 C 853.8 868.2 0 0 0 376.4 213 0.48 R
447 100 C 846 734 0 0 0 662 194 0.70 TR
448 100 C 846 734 0 0 0 662 194 0.67 TR
449 100 C 846 734 0 0 0 662 194 0.67 TR
450 200 C 846 734 0 0 0 662 194 0.71 TR
451 200 C 846 734 0 0 0 662 194 0.71 TR
452 200 C 846 734 0 0 0 662 194 0.78 TR
453 300 C 846 734 0 0 0 662 194 0.72 TR
454 300 C 846 734 0 0 0 662 194 0.76 TR
455 300 C 846 734 0 0 0 662 194 0.79 TR
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456 450 C 846 734 0 0 0 662 194 0.71 TR
457 450 C 846 734 0 0 0 662 194 0.85 TR
458 450 C 846 734 0 0 0 662 194 0.71 TR
459 100 C 854 868 0 0 0 376 213 0.74 TR
460 100 C 854 868 0 0 0 376 213 0.72 TR
461 100 C 854 868 0 0 0 376 213 0.72 TR
462 200 C 854 868 0 0 0 376 213 0.77 TR
463 200 C 854 868 0 0 0 376 213 0.81 TR
464 200 C 854 868 0 0 0 376 213 0.76 TR
465 300 C 854 868 0 0 0 376 213 0.77 TR
466 300 C 854 868 0 0 0 376 213 0.89 TR
467 300 C 854 868 0 0 0 376 213 0.79 TR

468

[40]

450 C 854 868 0 0 0 376 213 0.85 TR
469 450 C 854 868 0 0 0 376 213 0.75 TR
470 450 C 854 868 0 0 0 376 213 0.72 TR
471 600 C 854 868 0 0 0 376 213 0.46 TR
472 600 C 854 868 0 0 0 376 213 0.44 TR
473 600 C 854 868 0 0 0 376 213 0.45 TR
474 450 C 846 734 0 0 0 662 194 0.58 SS
475 100 C 846 734 0 0 0 662 194 0.67 SS
476 100 C 846 734 0 0 0 662 194 0.69 SS
477 100 C 846 734 0 0 0 662 194 0.71 SS
478 200 C 846 734 0 0 0 662 194 0.67 SS
479 200 C 846 734 0 0 0 662 194 0.79 SS
480 200 C 846 734 0 0 0 662 194 0.65 SS
481 300 C 846 734 0 0 0 662 194 0.92 SS
482 300 C 846 734 0 0 0 662 194 0.88 SS
483 300 C 854 868 0 0 0 376 213 0.70 SS
484 450 C 854 868 0 0 0 376 213 0.69 SS
485 450 C 854 868 0 0 0 376 213 0.82 SS
486 450 C 854 868 0 0 0 376 213 0.75 SS
487 100 C 854 868 0 0 0 376 213 0.75 SS
488 100 C 854 868 0 0 0 376 213 0.73 SS
489 100 C 854 868 0 0 0 376 213 0.71 SS
490 200 C 854 868 0 0 0 376 213 0.79 SS
491 200 C 854 868 0 0 0 376 213 0.71 SS
492 200 C 854 868 0 0 0 376 213 0.75 SS
493 300 C 854 868 0 0 0 376 213 0.74 SS
494 300 C 854 868 0 0 0 376 213 0.79 SS
495 300 C 854 868 0 0 0 376 213 0.73 SS
496 450 C 854 868 0 0 0 376 213 0.62 SS
497 450 C 854 868 0 0 0 376 213 0.73 SS
498 450 C 854 868 0 0 0 376 213 0.71 SS
499 600 C 854 868 0 0 0 376 213 0.30 SS
500 600 C 854 868 0 0 0 376 213 0.34 SS
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19. Özcan, F.; Atiş, C.D.; Karahan, O.; Uncuoğlu, E.; Tanyildizi, H. Comparison of artificial neural network and fuzzy logic models
for prediction of long-term compressive strength of silica fume concrete. Adv. Eng. Softw. 2009, 40, 856–863. [CrossRef]

20. Tang, Y.; Huang, Z.; Chen, Z.; Chen, M.; Zhou, H.; Zhang, H.; Sun, J. Novel visual crack width measurement based on backbone
double-scale features for improved detection automation. Eng. Struct. 2023, 274, 115158. [CrossRef]

21. Behnood, A.; Golafshani, E.M. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network
with multi-objective grey wolves. J. Clean. Prod. 2018, 202, 54–64. [CrossRef]

22. Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural
network. Expert Syst. Appl. 2011, 38, 9609–9618. [CrossRef]

23. Chopra, P.; Sharma, R.K.; Kumar, M. Prediction of compressive strength of concrete using artificial neural network and genetic
programming. Adv. Mater. Sci. Eng. 2016, 2016, 7648467. [CrossRef]
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