Soft-Computing Techniques for Predicting Seismic Bearing Capacity of Strip Footings in Slopes
Abstract
:1. Introduction
2. Data Collection
2.1. Statistical Analysis of the Dataset
2.2. Performance Evaluation Indicators
3. Methodology of Soft-Computing Techniques
3.1. Minimax Probability Machine Regression (MPMR)
3.2. Functional Network (FN)
3.3. Convolutional Neural Network (CNN)
3.4. Recurrent Neural Networks (RNN)
3.5. Group Method of Data Handling (GMDH)
4. Results and Discussion
4.1. Tuning Hyperparameters of the Proposed Models
4.2. Performance Evaluations of the Proposed Models
4.3. Performance Parameters
4.4. Rank Analysis
4.5. Sensitivity Analysis
4.6. Regression Error Characteristic (REC) Curve
4.7. Akaike Information Criterion (AIC)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hansen, B.J. A General Formulaa for Bearing Capacity; Bulletin No. 11; Danish Geotechnical Institute: Lyngby, Denmark, 1961. [Google Scholar]
- Satvati, S.; Alimohammadi, H.; Rowshanzamir, M.; Hejazi, S.M. Bearing Capacity of Shallow Footings Reinforced with Braid and Geogrid Adjacent to Soil Slope. Int. J. Geosynth. Ground Eng. 2020, 6, 41. [Google Scholar] [CrossRef]
- Khalvati Fahliani, H.; Arvin, M.R.; Hataf, N.; Khademhosseini, A. Experimental Model Studies on Strip Footings Resting on Geocell-Reinforced Sand Slopes. Int. J. Geosynth. Ground Eng. 2021, 7, 24. [Google Scholar] [CrossRef]
- Georgiadis, K. The Influence of Load Inclination on the Undrained Bearing Capacity of Strip Footings on Slopes. Comput. Geotech. 2010, 37, 311–322. [Google Scholar] [CrossRef]
- Georgiadis, K. Undrained Bearing Capacity of Strip Footings on Slopes. J. Geotech. Geoenviron. Eng. 2010, 136, 677–685. [Google Scholar] [CrossRef]
- Meyerhof, G.G. The Ultimate Bearing Capacity of Foundations on Slopes. In Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, UK, 12–24 August 1957; Volume 1, pp. 384–386. [Google Scholar]
- Davis, E.H.; Brooker, J.R. Some Adaptations of Classical Plasticity Theory for Soil Stability Problems. In Proceedings of the Symposium on the Role of Plasticity in Soil Mechanics, Cambridge, UK, 13–15 September 1973; p. 24. [Google Scholar]
- Kusakabe, O.; Kimura, T.; Yamaguchi, H. Bearing Capacity of Slopes under Strip Loads on the Top Surfaces. Soils Found. 1981, 21, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiau, J.S.; Merifield, R.S.; Lyamin, A.V.; Sloan, S.W. Undrained Stability of Footings on Slopes. Int. J. Geomech. 2011, 11, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Georgiadis, K. An Upper-Bound Solution for the Undrained Bearing Capacity of Strip Footings at the Top of a Slope. Geotechnique 2010, 60, 801–806. [Google Scholar] [CrossRef]
- Budhu, M.; Al-Karni, A. Seismic Bearing Capacity of Soils. Geotechnique 1994, 44, 185–187. [Google Scholar] [CrossRef]
- Kumar, J.; Mohan Rao, V.B.K. Seismic Bearing Capacity of Foundations on Slopes. Geotechnique 2003, 53, 347–361. [Google Scholar] [CrossRef]
- Farzaneh, O.; Mofidi, J.; Askari, F. Seismic Bearing Capacity of Strip Footings near Cohesive Slopes Using Lower Bound Limit Analysis. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, Paris, France, 2–6 September 2013; Volume 2, pp. 1467–1470. [Google Scholar]
- Kumar, J.; Ghosh, P. Seismic Bearing Capacity for Embedded Footings on Sloping Ground. Geotechnique 2006, 56, 133–140. [Google Scholar] [CrossRef]
- Yamamoto, K. Seismic Bearing Capacity of Shallow Foundations near Slopes Using the Upper-Bound Method. Int. J. Geotech. Eng. 2010, 4, 255–267. [Google Scholar] [CrossRef]
- Georgiadis, K.; Chrysouli, E. Seismic Bearing Capacity of Strip Footings on Clay Slopes. In Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering; IOS Press: Amsterdam, The Netherlands, 2011; pp. 723–728. [Google Scholar]
- Kumar, J.; Chakraborty, D. Seismic Bearing Capacity of Foundations on Cohesionless Slopes. J. Geotech. Geoenviron. Eng. 2013, 139, 1986–1993. [Google Scholar] [CrossRef]
- Chakraborty, D.; Kumar, J. Seismic Bearing Capacity of Shallow Embedded Foundations on a Sloping Ground Surface. Int. J. Geomech. 2015, 15, 4014035. [Google Scholar] [CrossRef]
- Chakraborty, D.; Mahesh, Y. Seismic Bearing Capacity Factors for Strip Footings on an Embankment by Using Lower-Bound Limit Analysis. Int. J. Geomech. 2016, 16, 6015008. [Google Scholar] [CrossRef]
- Luo, W.; Zhao, M.; Xiao, Y.; Zhang, R.; Peng, W. Seismic Bearing Capacity of Strip Footings on Cohesive Soil Slopes by Using Adaptive Finite Element Limit Analysis. Adv. Civ. Eng. 2019, 2019, 4548202. [Google Scholar] [CrossRef] [Green Version]
- Lai, V.Q.; Lai, F.; Yang, D.; Shiau, J.; Yodsomjai, W.; Keawsawasvong, S. Determining Seismic Bearing Capacity of Footings Embedded in Cohesive Soil Slopes Using Multivariate Adaptive Regression Splines. Int. J. Geosynth. Ground Eng. 2022, 8, 46. [Google Scholar] [CrossRef]
- Thangavel, P.; Samui, P. Determination of the Size of Rock Fragments Using RVM, GPR, and MPMR. Soils Rocks 2022, 45, e2022008122 . [Google Scholar] [CrossRef]
- Mohanty, R.; Suman, S.; Das, S.K. Modeling the Axial Capacity of Bored Piles Using Multi-Objective Feature Selection, Functional Network and Multivariate Adaptive Regression Spline, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128113196. [Google Scholar]
- Das, S.K.; Suman, S. Prediction of Lateral Load Capacity of Pile in Clay Using Multivariate Adaptive Regression Spline and Functional Network. Arab. J. Sci. Eng. 2015, 40, 1565–1578. [Google Scholar] [CrossRef]
- Kumar, M.; Samui, P. Reliability Analysis of Pile Foundation Using GMDH, GP and MARS. In Proceedings of the CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure. Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures, Ha Long, Vietnam, 28–29 October 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1151–1159. [Google Scholar]
- Dey, P.; Chaulya, S.K.; Kumar, S. Hybrid CNN-LSTM and IoT-Based Coal Mine Hazards Monitoring and Prediction System. Process Saf. Environ. Prot. 2021, 152, 249–263. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Kumaraswamidhas, L.A.; Gautam, C.; Garg, N. An Auto-Encoder Based LSTM Model for Prediction of Ambient Noise Levels. Appl. Acoust. 2022, 195, 108849. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Kumaraswamidhas, L.A.; Prince; Kamal, M.; Ur Rehman, M. A Hybrid Deep Leaning Model for Prediction and Parametric Sensitivity Analysis of Noise Annoyance. Environ. Sci. Pollut. Res. 2023, 30, 49666–49684. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W.; Wang, L.; Zhai, C.; Hu, X.; Sun, L.; Tian, Y.; Huang, X.; Jiang, L. Convolutional Neural Networks (CNNs)-Based Multi-Category Damage Detection and Recognition of High-Speed Rail (HSR) Reinforced Concrete (RC) Bridges Using Test Images. Eng. Struct. 2023, 276, 115306. [Google Scholar] [CrossRef]
- Optum Computational Engineering: Copenhagen, Denmark. Available online: https//optumce.com/ (accessed on 21 May 2023).
- Ciria, H.; Peraire, J.; Bonet, J. Mesh Adaptive Computation of Upper and Lower Bounds in Limit Analysis. Int. J. Numer. Methods Eng. 2008, 75, 899–944. [Google Scholar] [CrossRef]
- Keawsawasvong, S.; Ukritchon, B. Undrained Stability of a Spherical Cavity in Cohesive Soils Using Finite Element Limit Analysis. J. Rock Mech. Geotech. Eng. 2019, 11, 1274–1285. [Google Scholar] [CrossRef]
- Keawsawasvong, S.; Ukritchon, B. Undrained lateral capacity of I-shaped concrete piles. Songklanakarin J. Sci. Technol. 2017, 39, 751–758. [Google Scholar]
- Shiau, J.; Chudal, B.; Mahalingasivam, K.; Keawsawasvong, S. Pipeline Burst-Related Ground Stability in Blowout Condition. Transp. Geotech. 2021, 29, 100587. [Google Scholar] [CrossRef]
- Keawsawasvong, S.; Thongchom, C.; Likitlersuang, S. Bearing Capacity of Strip Footing on Hoek-Brown Rock Mass Subjected to Eccentric and Inclined Loading. Transp. Infrastruct. Geotechnol. 2021, 8, 189–202. [Google Scholar] [CrossRef]
- Kumar, M.; Biswas, R.; Kumar, D.R.; Pradeep, T.; Samui, P. Metaheuristic Models for the Prediction of Bearing Capacity of Pile Foundation. Geomech. Eng. 2022, 31, 129–147. [Google Scholar] [CrossRef]
- Kumar, D.R.; Samui, P.; Burman, A. Prediction of Probability of Liquefaction Using Soft Computing Techniques. J. Inst. Eng. Ser. A 2022, 103, 1195–1208. [Google Scholar] [CrossRef]
- Naser, M.Z.; Alavi, A.H. Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences. Archit. Struct. Constr. 2021, 1–19. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.R.; Samui, P.; Burman, A. Prediction of Probability of Liquefaction Using Hybrid ANN with Optimization Techniques. Arab. J. Geosci. 2022, 15, 1587. [Google Scholar] [CrossRef]
- Lanckriet, G.R.G.; El Ghaoui, L.; Bhattacharyya, C.; Jordan, M.I. A Robust Minimax Approach to Classification. J. Mach. Learn. Res. 2002, 3, 555–582. [Google Scholar]
- Strohmann, T.; Grudic, G. A Formulation for Minimax Probability Machine Regression. Adv. Neural Inf. Process. Syst. 2002, 15, 785–792. [Google Scholar]
- Castillo, E.; Cobo, A.; Gómez-Nesterkin, R.; Hadi, A.S. A General Framework for Functional Networks. Netw. Int. J. 2000, 35, 70–82. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph Cnn for Learning on Point Clouds. ACM Trans. Graph. 2019, 38, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G.; Ivakhnenko, G.A. The Review of Problems Solvable by Algorithms of the Group Method of Data Handling (GMDH). Pattern Recognit. Image Anal. 1995, 5, 527–535. [Google Scholar]
- Farlow, S.J. Self-Organizing Method in Modeling: GMDH; Type Algorithm; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Mueller, J.-A.; Lemke, F. Self-Organising Data Mining; Extracting Knowledge from Data; Libri GmbH: Hamburg, Germany, 2000. [Google Scholar]
- Biswas, R.; Bardhan, A.; Samui, P.; Rai, B.; Nayak, S.; Armaghani, D.J. Efficient Soft Computing Techniques for the Prediction of Compressive Strength of Geopolymer Concrete. Comput. Concr. 2021, 28, 221–232. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Pradeep, T.; Samui, P. Prediction of Rock Strain Using Hybrid Approach of Ann and Optimization Algorithms. Geotech. Geol. Eng. 2022, 40, 4617–4643. [Google Scholar] [CrossRef]
- Guven, A.; Kişi, Ö. Estimation of Suspended Sediment Yield in Natural Rivers Using Machine-Coded Linear Genetic Programming. Water Resour. Manag. 2011, 25, 691–704. [Google Scholar] [CrossRef]
Input Parameters | Selected Values |
---|---|
β | 15°, 30°, 45°, 60° |
H/B | 1, 2, 4 |
L/B | 0, 1, 2, 4 |
D/B | 0, 1, 2 |
cu/γB | 1.5, 2.5, 5 |
kh | 0.1, 0.2, 0.3 |
Statistics | b | H/B | D/B | kh | cu/gB | L/B | Nc |
---|---|---|---|---|---|---|---|
Max. | 60 | 4 | 2 | 0.3 | 5 | 4 | 8.48 |
Min. | 15 | 1 | 0 | 0.1 | 1.5 | 0 | 0 |
St. dev. | 16.78 | 1.25 | 0.82 | 0.08 | 1.47 | 1.48 | 1.58 |
Mean | 37.5 | 2.3 | 1 | 0.2 | 3 | 1.75 | 5.2 |
Skewness | 0.000 | 0.382 | 0.000 | 0.000 | 0.471 | 0.435 | −0.256 |
Kurtosis | −1.361 | −1.501 | −1.501 | −1.501 | −1.501 | −1.154 | −0.769 |
Statistical Parameters | R2 | WMAPE | RMSE | VAF | PI | WI | MAE | MBE |
---|---|---|---|---|---|---|---|---|
Ideal Values | 1 | 0 | 0 | 100 | 2 | 1 | 0 | 0 |
Hyperparameters | CNN | RNN |
---|---|---|
Number of hidden layers | 3 | 3 |
Batch size | 150 | 150 |
Activation function | ReLU | ReLU |
Dense layer | 64 | 64 |
Number of epochs | 500 | 500 |
Loss function | mean_squared_error | mean_squared_error |
Optimizer | adam | adam |
Model | Phase | R2 | VAF | PI | WI | MAE | WMAPE | MBE | RMSE |
---|---|---|---|---|---|---|---|---|---|
MPMR | Train | 1 | 100 | 2 | 1 | 0 | 0 | 0 | 0 |
Test | 0.9577 | 95.6775 | 1.8751 | 0.9884 | 0.0214 | 0.0347 | 0.0036 | 0.0387 | |
FN | Train | 0.8231 | 82.3142 | 1.5666 | 0.9496 | 0.0508 | 0.0841 | 0.0000 | 0.0785 |
Test | 0.8605 | 86.0316 | 1.6493 | 0.9606 | 0.0480 | 0.0776 | 0.0044 | 0.0694 | |
CNN | Train | 0.9945 | 99.4461 | 1.9749 | 0.9986 | 0.0085 | 0.0141 | 0.0018 | 0.0140 |
Test | 0.9754 | 97.4407 | 1.9197 | 0.9937 | 0.0167 | 0.0270 | 0.0022 | 0.0297 | |
RNN | Train | 0.8791 | 87.8739 | 1.6916 | 0.9658 | 0.0385 | 0.0638 | 0.0076 | 0.0655 |
Test | 0.9143 | 91.3719 | 1.7705 | 0.9749 | 0.0371 | 0.0600 | 0.0142 | 0.0562 | |
GMDH | Train | 0.7220 | 72.1942 | 1.3436 | 0.9153 | 0.0663 | 0.1098 | 0.0009 | 0.0985 |
Test | 0.7444 | 74.4356 | 1.3909 | 0.9228 | 0.0654 | 0.1057 | 0.0054 | 0.0938 |
Parameters | MPMR | FN | CNN | RNN | GMDH | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TR | TS | TR | TS | TR | TS | TR | TS | TR | TS | ||
R2 | Score | 5 | 4 | 2 | 2 | 4 | 5 | 3 | 3 | 1 | 1 |
RMSE | Score | 5 | 4 | 2 | 2 | 4 | 5 | 3 | 3 | 1 | 1 |
PI | Score | 5 | 4 | 2 | 2 | 4 | 5 | 3 | 3 | 1 | 1 |
WI | Score | 5 | 4 | 2 | 2 | 4 | 5 | 3 | 3 | 1 | 1 |
MAE | Score | 5 | 4 | 2 | 2 | 4 | 5 | 3 | 3 | 1 | 1 |
WMAPE | Score | 5 | 4 | 2 | 2 | 4 | 5 | 3 | 3 | 1 | 1 |
MBE | Score | 5 | 4 | 4 | 3 | 2 | 5 | 1 | 1 | 3 | 2 |
VAF | Score | 5 | 4 | 2 | 2 | 4 | 5 | 3 | 3 | 1 | 1 |
Sub Total | 40 | 32 | 18 | 17 | 30 | 40 | 22 | 22 | 10 | 9 | |
Total Score | 72 | 35 | 70 | 44 | 19 | ||||||
Rank | 1 | 4 | 2 | 3 | 5 |
Phase | MPMR | FN | CNN | RNN | GMDH | Ideal Value |
---|---|---|---|---|---|---|
Training | 2.51 × 10−5 | 0.0503 | 0.0084 | 0.0381 | 0.0658 | 0 |
Testing | 0.0211 | 0.0471 | 0.0164 | 0.0362 | 0.0644 | 0 |
Model | MPMR | FN | CNN | RNN | GMDH | Ideal Value |
---|---|---|---|---|---|---|
Training | −18,953.65 | −4603.04 | −7728.65 | −4933.07 | −4192.56 | Lowest value |
Testing | −2518.42 | −2063.89 | −2723.42 | −2227.19 | −1829.08 | Lowest value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.R.; Samui, P.; Wipulanusat, W.; Keawsawasvong, S.; Sangjinda, K.; Jitchaijaroen, W. Soft-Computing Techniques for Predicting Seismic Bearing Capacity of Strip Footings in Slopes. Buildings 2023, 13, 1371. https://doi.org/10.3390/buildings13061371
Kumar DR, Samui P, Wipulanusat W, Keawsawasvong S, Sangjinda K, Jitchaijaroen W. Soft-Computing Techniques for Predicting Seismic Bearing Capacity of Strip Footings in Slopes. Buildings. 2023; 13(6):1371. https://doi.org/10.3390/buildings13061371
Chicago/Turabian StyleKumar, Divesh Ranjan, Pijush Samui, Warit Wipulanusat, Suraparb Keawsawasvong, Kongtawan Sangjinda, and Wittaya Jitchaijaroen. 2023. "Soft-Computing Techniques for Predicting Seismic Bearing Capacity of Strip Footings in Slopes" Buildings 13, no. 6: 1371. https://doi.org/10.3390/buildings13061371
APA StyleKumar, D. R., Samui, P., Wipulanusat, W., Keawsawasvong, S., Sangjinda, K., & Jitchaijaroen, W. (2023). Soft-Computing Techniques for Predicting Seismic Bearing Capacity of Strip Footings in Slopes. Buildings, 13(6), 1371. https://doi.org/10.3390/buildings13061371