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Abstract: This study presents a novel and highly efficient technique to identify moving forces
by utilising the acceleration response of an instrumented moving vehicle. The complex task of
determining moving forces is transformed into one of solving linear equations, made easier through
the Newmark-β method. To overcome the ill-conditioned problem and improve the recognition
accuracy, Tikhonov regularisation is employed. Uniquely, this approach necessitates the placement
sensors on the vehicle alone to record the responses of the vehicle–bridge coupled system as it
traverses the bridge. Once the coupled responses are acquired, the moving force is quickly identified
using the proposed method. The reliability of this method is numerically verified using a case study
of a single degree-of-freedom vehicle crossing a simply supported beam. The performance of the
proposed method is further demonstrated by examining several typical external factors. The results
indicate that the method presents a high recognition accuracy, demonstrating good robustness and
reliability even amidst substantial environmental noise interference. This proposed method offers a
new perspective for identifying the moving force of small- to medium-span bridges.

Keywords: moving force identification; vehicle–bridge interaction; Newmark-β method; Tikhonov
regularisation

1. Introduction

The installation of structural health monitoring systems (SHMSs) has emerged as an
effective approach with which to gauge bridge responses, detect potential damage, and
evaluate the overall condition of bridges [1,2]. To date, numerous SHMSs comprising a
multitude of sensors have been set up on a range of modern bridges, notably the Qingma
bridge and the Hong Kong–Zhuhai–Macao bridge [1]. Such systems accumulate extensive
data during the operational phase of these structures. The data amassed are analysed using
various data-driven assessment algorithms, including machine learning, deep learning,
and other intelligence approaches, which are proposed based on the dataset recorded
via the SHMS [3]. These data-driven algorithms aid in the extraction of crucial features’
parameters to evaluate the health condition of bridges. Despite the SHMS’s capability in
detecting anomalies in loading and responses, offering real-time information for timely
safety assessments after disasters and extreme events, its application is largely limited to
long-span or keynote bridges. This limitation is due to the high costs associated with its
instalment and maintenance. Additionally, anomalies within the data are inevitable due
to potential sensor faults, transmission failures, and the aging of sensor components [4–6].
These challenges necessitate manual inspection as the primary method for monitoring the
health status of small- to medium-span bridges.

Moving force identification (MFI) plays a crucial role in the health state monitoring of
bridges and can provide valuable references for bridges’ management and maintenance
during their service period [7–9]. Given recent reports of bridge collapse accidents due
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to overload, it is crucial for bridge managers to have timely knowledge of moving forces
as vehicles cross bridges. While an installed bridge weigh-in-motion device can directly
measure moving forces, these devices need to be installed during the bridge construction
stage, and their functionality can be affected by the pavement status [10,11]. Moreover, the
installation and maintenance of such devices are generally expensive, making it impractical
to deploy these devices on every bridge, especially considering the large quantity of small-
and medium-span bridges.

To this end, there has been growing interest in the MFI technique over the past few
decades. This technique identifies moving forces using bridge responses captured by
installing sensors such as strain gauges, displacement sensors, and accelerometers [12–21].
Law and Chan proposed a time domain method to identify moving loads by combining the
use of bending moments and acceleration responses [12], while Zhu and Law developed a
time domain method for a multi-span continuous bridge using strain and displacement
measurements [13]. Liu et al. proposed a load identification method utilising a new global
kernel function matrix to reduce ill-posedness and improve the identification accuracy
under the displacement response [14,15]. The literature [16] also shows that the identifica-
tion of the moving load can be determined with the bending moment and accelerations.
A notable contribution was made by Yu and Chan, who proposed a frequency–time do-
main method for identifying moving vehicle axle loads, relying on the bending moment
responses [17]. Lage et al. also proposed a method using a concept of response transmis-
sibility based on measuring the displacement. Their methods include two steps: initially
identifying the number of forces and their respective locations, followed by reconstructing
the load vector [18]. Aucejo and De proposed a space–force multiplicative regularisa-
tion method to avoid the preliminary definition of any regularisation parameter [19].
He et al. developed a frequency domain method for load bounds’ identification in uncer-
tain structures [20]. These studies showcase the major identification techniques categorized
into two primary methods: time domain [12–16] and frequency domain methods [17–21].

For the time domain method, the motion equation is initially transformed into a
second-order differential equation in modal coordinates, corresponding to the structural
response and load. Subsequently, the differential equation is decoupled via the convolution
integral within the time domain [12–16]. By contrast, the frequency domain method starts
by transforming the time domain motion equation into its frequency domain counterpart
using Fourier transformation. The subsequent stage involves solving the equation in the
frequency domain. The dynamic spectrum is determined based on the relationship between
the transfer function matrix and the system response spectrum [17–21].

However, owing to unknown initial conditions and state variables, the MFI presents
a typical ill-posed problem, indicating that the inverse identification problems may not
have unique solutions [22]. The discrete MFI equations are ill-conditioned, and the iden-
tified results are sensitive to external environmental noise. To overcome the ill-posed
problem, effective techniques, including regularisation techniques, have been adopted [23].
For instance, Chen and Chan proposed various methods, such as the truncated gener-
alized singular value decomposition method (TGSVD), piecewise polynomial truncated
singular value decomposition (PP-TSVD) method, modified preconditioned conjugate
gradient (M-PCG) method, and preconditioned least square QR factorization method, to
solve the ill-posed problems in identifying the moving force from the response of the
bridge deck [24–27].

In further research, Chen et al. compared these four methods to evaluate their overall
performance through numerical simulations and laboratory verification [28]. Recently,
Chen proposed a modified truncated singular value decomposition (MTSVD) method
for moving force identification, aiming to overcome the ill-posed problems, and a com-
parative study was conducted with its conventional counterparts: the SVD and TSVD
methods [29]. Pan and his co-authors proposed MFI methods to address the ill-posed
problem [30–33]. In 2018, Pan et al. proposed a hybrid moving force identification method
based on weighted L1-norm regularisation and redundant concatenated dictionary [30].
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The dictionary, including trigonometric functions and rectangular functions, serves to
match the principal features of unknown moving forces, while the weighted L1-norm
regularisation method forms the MFI equation. Later, Pan et al. introduced a matrix
regularisation-based method for solving large-scale inverse problems for force identifica-
tion. Moreover, they proposed a constrained sparse regularisation-based method, taking
into account unknown moving forces and initial conditions [31,32]. Recently, Pan et al.
devised an equivalent load-based method for identifying the gross weight of a vehicle
moving on a beam-like bridge [33]. Zhou et al. proposed an integral time domain method,
effectively eliminating errors generated in the discrete unit impulse response function [34].
Zhang et al. proposed a fresh MFI method based on learning dictionary with double
sparsity to a fixed dictionary for expressing moving forces with sufficient sparsity. The
sparse K-singular value decomposition (K-SVD) algorithm was employed to realize the
learning process [35]. He et al. developed a time domain MFI method that considered the
uncertainty in the finite element model and verified the effectiveness and superiority of the
method using numerical and experimental examples [36].

The aforementioned literature establishes that the proposed MFI methods can be
transformed into a problem of solving linear equations, applicable to both time domain
and frequency domain methods [24–27,30–33]. The Newmark-β method, valued for its
stability, has been widely applied to forward structural dynamic problems [37]. In recent
years, this method has been applied to the solution of inverse problems. For instance,
Liu et al. firstly proposed a Newmark-based method to identify dynamic loads, demon-
strating smaller cumulative errors and a superior recognition accuracy compared to the
traditional state-space method [38]. Jiang et al. developed an inverse Newmark-based
algorithm for estimating pavement roughness and proposed a dynamic load identification
method for continuous systems based on the Newmark-β method [39,40]. Pourzeynali
et al. introduced a moving load identification method based on the Newmark-β method
and generalized Tikhonov regularisation method and verified the feasibility by numerical
and experimental studies [41].

A review of the existing studies reveals that the majority of sensors are typically arranged
in critical sections of the bridge to capture the bridge dynamic responses [24–27,30–33,37–41].
However, traditional identification methods exhibit lower efficiency in the actual bridge
process, making it challenging to swiftly identify moving loads for numerous small- and
medium- span bridges [42–44]. To address this issue, the vehicle scanning method (VSM)
proposed by Yang has recently gained widespread attention [45–47]. The method necessitates
the placement of sensors in a movable detection vehicle which traverses the bridge under
testing, thus capturing vibration data to identify modal parameters indicative of the bridge’s
health status, such as the frequency, damping, and mode [46]. Otherwise, there are no
related studies identifying the moving contact force using VSM. In this context, this study
aims to propose a new MFI method inspired by the core idea of the VSM, with sensors
installed on the moving vehicle rather than the bridge. Section 2 of this paper introduces the
theoretical background of the method. The use of Tikhonov regularisation to address the
ill-posed problem is discussed in Section 3. The finite element method for vehicle–bridge
interaction analysis and a detailed identification procedure for the proposed method are
outlined in Sections 4 and 5. Section 6 describes the employment of a single degree-of-freedom
(Dof) vehicle crossing a simply supported bridge to verify the accuracy of the algorithm.
Section 7 presents a parametric analysis of several typical external factors, while Section 8
concludes the study.

2. Theoretical Background of the Problem

The vehicle model is simplified to a single DOF moving mass with a support spring
to better clarify the moving load force identification method proposed in this study. The
bridge is set according to simple support boundary conditions. The mechanical model of
the vehicle moving over the bridge is shown in Figure 1. The vehicle runs at a constant
speed of v. As depicted in Figure 1, EI represents bridge bending stiffness, mb represents
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unit length weight, L represents bridge span, v(x, t) represents bridge vertical displacement,
and uc represents contact displacement at the current time step; for the vehicle model, mv
represents vehicle mass, cv represents the vehicle damping coefficient, and kv represents
the vehicle stiffness coefficient.
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Based on Dalembert’s principle, the vehicle dynamics equation can be expressed as:

mv
..
yv(t) + cv

.
yv(t) + kvyv(t) = P(t) (1)

where P(t) is the contact force between the vehicle and bridge; and
..
yv(t),

.
yv(t), and yv(t)

are the acceleration, velocity, and displacement of the vehicle, respectively.
Based on the Newmark algorithm, the interrelationship between the dynamic re-

sponses of moment ti and moment ti+1 can be established as:

.
yi+1

v =
.
yi

v + (1− γ)∆t
..
yi

v + γ∆t
..
yi+1

v (2)

yi+1
v = yi

v + ∆t
.
yi

v +

(
1
2
− β

)
∆t2 ..

yi
v + β∆t2 ..

yi+1
v (3)

where γ = 0.5, β = 0.25; and the superscript “i” and “i + 1” denote the vehicle response at
the ti and ti+1 moments, respectively. For simplicity, the same, simplified notations will be
adopted in the following equations.

By rewriting Equation (3), the acceleration at the ti+1 moment can be obtained as:

..
yi+1

v =
1

β∆t2

(
yi+1

v − yi
v

)
− 1

β∆t
.
yi

v −
(

1
2β
− 1
)

..
yi

v (4)

Substituting Equation (4) into Equation (2) yields the velocity response at the ti+1
moment, illustrated as:

.
yi+1

v =
γ

β∆t

(
yi+1

v − yi
v

)
+

(
1− γ

β

)
.
yi

v +

(
1− γ

2β

)
∆t

..
yi

v (5)

At the ti+1 moment, the vehicle’s motion equation can be expressed as:

mv
..
yi+1

v + cv
.
yi+1

v + kvyi+1
v = P(ti+1) (6)

Subsequently, by substituting Equations (4) and (5) into Equation (6) and merging the
similar items, Equation (6) can be simplified as:

K̂yi+1
v = P̂i+1 (7)
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where K̂ and P̂i+1 represent the equivalent stiffness and external load, respectively,
as illustrated:

K̂ = kv +
1

β∆t2 mv +
γ

β∆t
cv (8)

P̂i+1 = P(ti+1) +
[

1
β∆t2 mv +

γ
β∆t cv

]
yi

v +
[

1
β∆t mv +

(
γ
β − 1

)
cv

] .
yi

v

+
[(

1
2β − 1

)
mv +

∆t
2

(
γ
β − 1

)
cv

] ..
yi

v

(9)

For Equation (7), the displacement response yi+1
v at the end of the time step can be

obtained as:
yi+1

v = A0P(ti+1) + Adyi
v + Av

.
yi

v + Aa
..
yi

v (10)

with
A0 = K̂−1, (11a)

Ad = K̂−1
[

1
β∆t2 mv +

γ

β∆t
cv

]
, (11b)

Av = K̂−1
[

1
β∆t

mv +

(
γ

β
− 1
)

cv

]
, (11c)

Aa = K̂−1
[(

1
2β
− 1
)

mv +
∆t
2

(
γ

β
− 1
)

cv

]
(11d)

After obtaining the displacement response yi+1
v , the velocity response

.
yi+1

v at this
moment can easily be calculated using Equation (5). Additionally, the constant coefficients
matrices in Equation (5) are converted into unit ones in terms of I = K̂−1K̂. After combining
the same terms, Equation (5) can be unified into an expression similar to Equation (10),
expressed as:

..
yi+1

v = B0P(ti+1) + Bdyi
v + Bv

.
yi

v + Ba
..
yi

v (12)

with
B0 =

γ

β∆t
K̂−1, (13a)

Bd = − γ

β∆t
K̂−1K, (13b)

Bv =
γ

β∆t
K̂−1

[(
β∆t
γ
− ∆t

)
kv +

1
γ∆t

mv

]
, (13c)

Ba =
γ

β∆t
K̂−1

[(
β∆t2

γ
− ∆t2

2

)
kv +

(
1
γ
− 1
)

mv

]
(13d)

Similarly, the acceleration response
..
yi+1

v can be simplified to the following expression
by substituting Equation (10) into Equation (4), expressed as:

..
yi+1

v = C0P(ti+1) + Cdyi
v + Cv

.
yi

v + Ca
..
yi

v (14)

with
C0 =

1
β∆t2 K̂−1, (15a)

Cd = − 1
β∆t2 K̂−1K, (15b)

Cv = − 1
β∆t2 K̂−1(cv + ∆tkv), (15c)
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Ca =
1

β∆t2 K̂−1
[
(γ− 1)∆tcv − β∆t2

(
1

2β
− 1
)

kv

]
(15d)

Combing Equations (10), (12) and (14), one yields:yi+1
v

.
yi+1

v
..
yi+1

v

 =

A0
B0
C0

P(ti+1) +

Ad Av Aa
Bd Bv Ba
Cd Cv Ca


yi

v
.
yi

v
..
yi

v

 (16)

Equation (16) clearly indicates that a recursion formula for the vehicle’s response
between the ti and ti+1 moments is established. On this basis, the displacement, velocity,
and acceleration responses of the vehicle at the ti moment are written using the above
recursion formula as:yi

v
.
yi

v
..
yi

v

 =
i−1

∑
j=0

Ad Av Aa
Bd Bv Ba
Cd Cv Ca

jA0
B0
C0

Pi +

Ad Av Aa
Bd Bv Ba
Cd Cv Ca

iy0
v

.
y0

v
..
y0

v

 (17)

where y0
v,

.
y0

v, and
..
y0

v are the initial displacement, velocity, and acceleration
responses, respectively.

In the context of this study, the acceleration transducers are installed on the test vehicle.
The vehicle’s acceleration response is recorded first, followed by the application of the
proposed algorithm to retrieve the moving loads through the recorded data. Supposing
the output response of the test vehicle is represented by vector y(t) ∈ Rm×1, and m is the
number of measured responses,

Y = Ra
..
yv + Rv

.
yv + Rdy =

Rd
Rv

Ra

yv.
yv..
yv

 = R

yv.
yv..
yv

 (18)

where R =diag
[
Rd Rv Ra

]
. Given the installation of a single acceleration transducer on

the test vehicle, Ra = 1, Rd = Rv = 0.
Substituting Equation (17) into Equation (18), one yields the following equation:

Y(ti) =
i−1

∑
j=0

R

Ad Av Aa
Bd Bv Ba
Cd Cv Ca

jA0
B0
C0

Pi + R

Ad Av Aa
Bd Bv Ba
Cd Cv Ca

iy0
v

.
y0

v
..
y0

v

 (19)

Assuming the null initial conditions, i.e., y0
v =

.
y0

v =
..
y0

v = 0, a new matrix Hk is
defined as:

Hk = R

Ad Av Aa
Bd Bv Ba
Cd Cv Ca

kA0
B0
C0

 (20)

Using the matrix Hk, Equation (19) can be written in matrix convolution form within
the time interval [t1 tn], expressed as:

Y = HLP (21)

where

Y =


y(t1)
y(t2)

. . .
y(tn)

, (22a)
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HL =


H0 0 . . . 0
H1 H0 . . . 0
. . . . . . . . . . . .

Hn−1 Hn−2 . . . H0

, (22b)

P =


P(t1)
P(t2)

. . .
P(tn)

 (22c)

Equation (21) can be directly solved to acquire the load vector P as:

P =
(

HT
LHL

)−1
HT

LY (23)

Given that the linear correlation between the columns of matrix HL is large, the
determinant of HT

LHL is close to zero, implying that the direct solution for Equation (23)
becomes an unsettled problem. In other words, the load vector cannot be calculated using
Equation (23). To overcome this obstacle, the Tikhonov regularisation approach is utilised
in the subsequent section.

3. Tikhonov Regularisation

In practice, the equation used for identifying a moving load often manifests ill-
posedness due to the coefficient matrix. The ill-posedness problem is exhibited as a
loss of rank and the presence of pathology; thus, the paramount task lies in solving these
issues for the force identification. When data collected at a high sampling frequency from
measurement points exceed the number of moving loads, the problem of rank loss no
longer exists. Consequently, the critical aspect for identifying the moving load centres on
solving the pathological problem. To this end, this study employs Tikhonov regularisation
to solve the instability encountered during the process of moving load identification.

As depicted in Equation (23), the solution for identifying the moving load is
P =

(
HT

LHL
)−1HT

LY. Nevertheless, the inversion process for HT
LHL could become unstable

due to the significant impacts of the numerous coefficient conditions and external noise
in the measured data. As a result of such instabilities, the solution of the load vector
P deviates greatly from the actual vehicle axle load. In addressing the pathological problem,
the Tikhonov regularisation method applies a weak smoothness constraint and selects the
approximate solutions of the equation. The actual process for Tikhonov regularisation thus
involves solving the minimum value of the following equation:

min =
{
‖HLP− Y‖2 + λ2‖P‖2

}
(λ ≥ 0) (24)

where ‖·‖2 signifies the two-dimensional norm of the vector, and λ signifies a regularisation
parameter. From Equation (24), it can be observed that the Tikhonov regularisation method
actually serves to find the minimum of the residual two-dimensional norm ‖HLP− Y‖2
and the two-dimensional norm of the solution.

The L-curve principle is employed to obtain the optimal solution and to identify the
optimal regular parameter λ. As a raph-based parameter selection method, the L-curve
principle involves plotting two quantities, the solution norm log ‖Pλ‖2 (y axis) and the
residual norm log ‖HLPλ − Y‖2 (x axis), on the logarithmic coordinate scale to find the
equilibrium point, illustrated in Figure 2. At the corner point of the L-curve, both the
solution norm and the residual norm are maintained in a balanced dynamic equilibrium,
indicating that the point represents the optimal regularisation parameter value.
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4. Finite Element Method for Vehicle–Bridge Interaction Analysis

A vehicle–bridge interaction (VBI) element with road surface roughness r was used,
illustrated in Figure 3. The test vehicle is modelled as a sprung mass mv supported by a
spring of stiffness kv and a dashpot of damping coefficient cv. The coordinate xc represents
the position of the contact point in the element local coordinate. The equation of motion for
the VBI element can be expressed as:

[
mv 0
0 [mb]

]{ ..
yv{ ..
ub
} }+

[
cv −cv{N}T

c
−cv{N}c [cb] + cv{N}c{N}T

c

]{ .
yv{ .
ub
} }

+

[
kv −kv{N}T

c − vcv{N′}T
c

−kv{N}c [kb] + vcv{N}c{N′}T
c + kv{N}c{N}T

c

]{
yv
{ub}

}
=

{
cvvr′c + kvrc

−(cvvr′c + kvrc + mvg){N}c

} (25)

where yv and {ub} represent the displacement of the vehicle and that of the bridge element,
respectively, and a dot represents the derivative with respect to time t; [mb], [cb], and [kb]
denote the mass, damping, and stiffness matrices of the bridge element, respectively; rc
represents the road surface roughness at the contact point xc; and {N}c represents the cubic
Hermitian function evaluated at the contact point xc, whose detailed expression is based
on the literature.
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The global equation of motion for the entire bridge system is formulated by assem-
bling all the bridge elements (with and without the vehicle) and imposing the boundary
conditions, i.e., zero vertical displacement and moments, at the two ends. Subsequently, the
Newmark-β method, with β = 0.25 and γ = 0.5, is adopted for the response to the coupled
dynamic equation.
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5. Identifying Procedures for the Proposed Method

The proposed identification method primarily includes the following three steps:
Step 1: The motion equation of the vehicle–bridge coupling system under a moving

test vehicle is established. The vehicle’s displacement, velocity, and acceleration responses
are obtained via numerical calculation.

Step 2: Ai, Bi, and Ci (i = 0, d, v, and a) are calculated based on the properties of the
test vehicle. According to the sensor type and its layout position on the vehicle, the matrix
is determined, and the vector Y and matrix Hk are calculated using the vehicle response
obtained in Step 1.

Step 3: Substituting the vector Y and matrix Hk obtained in Step 2 into Equation (23)
and using the Tikhonov regularisation method to solve the ill-conditioned problem, the
moving force as the test vehicle traverses on the bridge can finally be identified.

6. Numerical Verifications

In order to authenticate the reliability of the proposed method, a numerical verification
is conducted within this section. This is achieved by employing the identification procedure
delineated in Section 5. The contact response, obtained through numerical calculation,
is taken as the real value, whereas the contact response identified in reverse is taken as
the predicted one. The accuracy of the proposed method is verified by comparing these
two values. The properties of the vehicle and bridge are listed in Table 1. The vehicle
traverses the bridge at a constant speed of 10 m/s. A random road roughness sample
with Grade A is generated based on the ISO 8606 specification, with the simulated road
roughness sample illustrated in Figure 4. It is assumed that the vehicle maintains a
zero initial state, with a step size of 0.001 s adopted for the numerical calculation. Employing
the vehicle and bridge parameters as listed in Table 1, the vehicle acceleration response is
demonstrated in Figure 5.

Table 1. Properties of the vehicle and bridge.

Vehicle

Mass mv kg 1200
Spring stiffness kv N/m 5.0 × 104

Bridge

Young’s modulus E N/m2 2.75 × 1010

Moment of inertia I m4 0.20
Mass per unit length m kg/m 2400

Length L m 30
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To evaluate the predicted accuracy of the proposed method, the root mean square
error (RMSE) between the predicted value and the real one is used herein, calculated as:

RMSE(y, ŷ) =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (26)

where yi and ŷi denote the predicted and real contact forces at time step i, respectively, and
n stands for the total number of time steps. As derived from the definition of the RMSE,
the value is smaller, while the predicted accuracy is higher for the proposed method.

Figure 6 presents a comparison of the moving load identification results between
the real and predicted values. It can be observed from the figure that the results for
the predicated moving load align well with the real ones, despite the influence of road
roughness. The RMSE value is 0.1379, being close to null for the case considered, implying
that the proposed method has a high accuracy in identifying the moving contact force.
Given the aforementioned comparison results, the reliability of the proposed method
is verified.
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Furthermore, the conventional time domain method (CTM) is utilised to further
validate the feasibility of the proposed method. Differing from the method presented
here, the CTM involves installing sensors on the bridge to record the bridge acceleration
responses as the vehicle passes over it. Two different sensor deployments are considered
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for the CTM, referred to as Case 1 and Case 2. The specific deployments for both cases are
listed in Table 2.

Table 2. Simulation cases for the conventional time domain (CTM) method.

No. Case Locations for the Sensors Quantity Sensors

Case 1 1/4 span, 1/2 span, and 3/4 span Three
Case 2 1/6 span, 1/3 span, 1/2 span, 2/3 span, and 5/6 span Five

Figure 7 depicts the comparison results of the moving contact force for various iden-
tified methods. It can be observed that the contact force identified using the proposed
method coincides closely with Case 2 using the CTM and the real values, whereas a distinct
disparity is observed with the prediction result of Case 1. In comparison with the CTM, the
proposed method utilises fewer sensors to obtain the moving contact force with high preci-
sion. However, a greater number of sensors must be adopted to ensure the identification
accuracy of the CTM. Consequently, the comparison results further validate the accuracy
and advantages of the proposed method.
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7. Parametric Analyses of Various Influencing Factors

The accuracy of the proposed method was verified in the preceding section. This
section further studies the robustness of the method, performing a sensitivity analysis of
various external factors, i.e., road roughness, running speed, and noise level, that may
affect the recognition accuracy.

7.1. Effect of Road Roughness

Using the simulation method outlined in the ISO 8606 specification, random road
roughness samples for Grades B and C were generated, as illustrated in Figure 8. It becomes
evident that pavement classes B and C possess greater amplitudes and higher frequencies in
comparison to Class A. Figure 9 showcases a comparison of the moving force identification
results at various pavement roughness levels. It can be observed that the vehicle–bridge
contact force gradually rises with the increasing road surface grade. Notwithstanding the
heightened roughness of classes B and C, the moving load identification employing the
proposed method remains consistent with the real one. The RMSE values for Grades B
and C stand at 0.1380 and 0.1384, respectively. Comparatively, the identified accuracy for
these cases is slightly reduced compared to the result for Grade A, as depicted in Section 6,
yet continues to present high precision. Consequently, the proposed method exhibits
minimal susceptibility to road roughness in identifying the moving load. Furthermore,
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higher pavement grades lead to a more significant acceleration response, favouring the
identification of the moving contact force.
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Figure 8. Road roughness samples for various class levels.
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Figure 9. Comparison results of contact force for the vehicle–bridge system at various class levels:
(a) Class B. (b) Class C.

7.2. Effect of Running Speed

The efficiency of identification using the proposed method is directly determined
by the vehicle running speed in real-world projects. Therefore, this section considers
two speeds, namely, v = 5 and 15 m/s. The pavement grade adheres to Class C, and the
other parameters align with those used in Section 3. Figure 10 compares the contact force
identification results at different vehicle operating speeds. It can be observed that the con-
tact force rises with the increasing vehicle speed. The moving force remains well identified
at different vehicle running speeds using the proposed method, implying that the running
speed of the vehicle exerts little effect on it. From the perspective of identification accuracy,
the RMSE values for the running speeds of 5 and 15 m/s are 0.0687 and 0.2087, respectively.
The results indicate that the identified precision may undergo limited reductions, while the
proposed method can maintain a high precision even at a rapid running speed. To ensure
the test precision and efficiency, however, an intermediate speed is recommended for field
applications employing the proposed method. The primary reason for this lies in the fact
that a smaller volume of data, obtained at the same sampling frequency for a limited length
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of the bridge, will result in an inferior identification accuracy. Thus, for the case under
consideration, a test speed of 10 m/s will be optimal.
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Figure 10. Comparison results of the contact force for the vehicle–bridge system at various running
speeds: (a) 5 m/s. (b) 15 m/s.

7.3. Effect of the Environmental Noise Level

In practice, measured data inevitably incur contamination from environmental noise.
To investigate the feasibility of the proposed method, four environmental noise levels of
2%, 5%, 10%, and 20% are applied to the measured data. The expression is defined as:

..
yvp =

..
yv + EpNsσ..

yv
(27)

where
..
yv denotes the original vehicle acceleration response. Ep denotes the noise level. Ns

and σ..
yv

represent the mean and standard deviation of the vehicle’s acceleration response.
Figure 11 demonstrates a comparison of the moving force identification results at

varying environmental noise levels. The RMSE values for Ep = 2%, 5%, 10%, and 20% stand
at 3.1940, 4.9653, 14.5237, and 36.3568, respectively. It can be seen that the recognition results
are worse than those without noise, but the recognition accuracy is generally maintained
at a higher level. Even at a 20% environmental noise level, the recognition results remain
highly accurate. Therefore, the proposed method for identifying moving contact force
presents a certain robustness to environmental noise. However, it is suggested that the
environmental noise level should be controlled within 10% to ensure test precision when
applying the proposed method in field tests.
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Figure 11. Comparison results of contact force for the vehicle–bridge system under various environ-
mental noise levels: (a) Ep = 2%. (b) Ep = 5%. (c) Ep = 10%. (d) Ep = 20%.

8. Conclusions

In this study, we introduced a novel method for moving load identification on bridges,
using a vehicle–bridge coupled vibration theory and the Newmark-β algorithm. This
approach requires sensor arrangement solely on the vehicle, recording its responses as it
traverses the bridge. Based on the obtained responses, the moving force can be swiftly
identified via the proposed method. Tikhonov regularisation is employed to overcome the
ill-conditioned nature of the inverse problem so as to enhance the recognition accuracy. A
single DoF vehicle traversing a simply supported beam is used as an example to numerically
verify the proposed method’s reliability by comparing the predicted values with the real
ones. Additionally, we examined several typical external factors to discuss the robustness
of the proposed method. Based on the theoretical derivations and the data adopted in our
analysis, the following conclusions were drawn:

(1) Unlike the existing identification methods, our approach does not necessitate the in-
stallation of sensors on the bridge. Instead, the moving contact force can be identified
readily through sensors installed on the moving vehicle. This provides a new idea for
moving load identification on small- and medium-span bridges.

(2) The proposed method demonstrates high precision in identifying the moving contact
force by comparing with the real values and those identified using the CTM method.

(3) The moving load can be effectively identified even under conditions of poor road
roughness in Class C.

(4) The effect of moving speed is limited for the proposed method; however, an interme-
diate speed of 10 m/s is recommended for field testing.

(5) Environmental noise can affect the identification accuracy to an acceptable extent.
Control of the environment noise level within 10% for the proposed method is recom-
mended in actual applications.

Though the proposed method is based on a single-DOF vehicle model moving over a
simply supported bridge, it is adaptable to multi-DOF vehicle models and other bridge
types, i.e., elastic, clamped, fixed, and general support boundary conditions. Consequently,
our future studies will focus on identifying the moving force using multi-DOF vehicle
models and conduct further experimental validations of the proposed method’ accuracy.
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