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Abstract: Corrosion factors enter the cable via diffusion and penetration from the defect position of
the cable or the connection position between the anchoring system and the cable section, seriously
affecting the cable’s durability. Exploring the transmission mechanism of corrosion factors in the cable
structure is essential to reveal the durability and the long-term performance of the cable structure and
to judge the corrosion damage of steel wires in the cable structure. Based on the machine learning
(ML) method and the analytical solution of Fick’s second law, the laws between different temperatures,
humidity, cable inclinations, cable defect areas, etc., and the diffusion coefficient of corrosion factors
and the concentration of surface corrosion factors are obtained, also a spatial diffusion model of
corrosion factors is established. According to the research, the optimum simulation result is achieved
by employing the optimized back propagation (BP) neural network algorithm, which has a faster
convergence speed and better robustness. Although ambient temperature, humidity, and corrosion
time all impact the diffusion rate of corrosion factors, the tilt angle of the cable and the size of
cable defects are the main factors influencing the diffusion coefficient of corrosion factors and the
concentration of surface corrosion factors. The error between the concentration of corrosion factors
calculated by the model in this article and the measured values at each spatial point of the cable is
controlled within 15%, allowing for the spatial diffusion of corrosion factors to be effectively predicted
and evaluated in practical engineering.

Keywords: bridge engineering; stay cable; corrosion factors; neural networks; spatial diffusion model

1. Introduction

Stay cables, as significant components of cable-stayed bridges, carry and transmit
loads, and their service conditions directly impact the safety of bridge operation. The
combined impact of load and environment can accelerate the corrosion degradation of
cable systems, resulting in failure, jeopardizing the safety of bridge operation, and incurring
considerable economic losses and safety mishaps [1–3].

Scholars have conducted relevant experimental research to uncover the corrosion
mechanism of cables in corrosive settings, delay the corrosion rate of cables, and increase
the durability of cables. In terms of cable damage and failure, the cable tension plays an
increasingly important role in the cable-stayed bridge system and affects the feasibility
of optimizing and updating this type of bridge [4]. Greco et al. [5] conducted a nonlinear
analysis of bridge cables based on the characteristic parameters of the bridge structure,
taking into account the dynamic amplification effect and failure mechanism of the cables
under dynamic loads. Ammendolea et al. [6] reproduced the damage law of cables under
the coupling effect of the bridge and dynamic load based on the theory of continuous dam-
age mechanics. Mozos [7,8] analyzed 10 cable-stayed bridges and investigated the effects
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of cable layout, single and double cable planes, and main beam cross-section on the ulti-
mate failure state of the cables, laying the foundation for the evaluation of the safe service
state and long-term performance of the cables. In terms of corrosion fatigue, Yan et al. [9]
examined the corrosion of steel wires in service. They discovered that lower anchoring
section steel wires were more susceptible to corrosion than higher ones. Stewart et al. [10]
conducted tests to investigate the corrosion process of steel wires, and the results revealed
that the corrosion form of steel wires is connected to their environment. Through acceler-
ated corrosion testing on parallel steel wires, Rou [11] presented a positive and negative
electrode chemical reaction formula for hydrogen evolution and oxygen absorption cor-
rosion. Changqing [12] conducted a corresponding exploration of the law of waste steel
wire corrosion based on actual engineering. Betti [13] investigated the corrosion damage
mechanism under different environmental corrosion by simulating salt spray corrosion
experiments of high-strength galvanized steel wires in acid rain. Furuya et al. [14] con-
ducted atmospheric exposure studies on cable segments in natural environments. The
study revealed that humidity and temperature are the primary causes of the deterioration
of the cable interior environment. Suzumura [15,16] conducted accelerated corrosion tests
on high-strength galvanized steel wires in different environments and comparatively an-
alyzed the effects of temperature, relative humidity, and NaCl solution concentration on
corrosion rate. Furthermore, the galvanized layer has variable degrees of effect on corrosion
parameters such as corrosion potential and polarization resistance of steel wire [17–20].
Heying [21] discovered that corroded steel wires’ elongation and fatigue strength dramat-
ically decrease after corrosion, with the decline of elongation occurring primarily in the
latter stages of corrosion [22]. Hamilton [23,24] used seawater as the corrosion media in
accelerated corrosion studies on defective cable-stayed cables under static tension. On
this basis, researchers investigated the damaging effect of corrosion on steel wires under
environmental load coupling using experiments and numerical simulations, as well as
analyzed the law of mechanical properties degradation and damage evolution of corroded
steel wires [25–29]. Similarly, Rosso et al. [30] compared the model with the half-joint in the
actual project and analyzed the degradation mechanism of the mechanical and physical
properties of the half-joint of the bridge under different corrosion levels by simulating the
corrosion development process.

With the development of computer technology, the machine learning (ML) method, as
a relatively advanced data processing approach, has become widely applied in the practical
engineering of related bridges. Xin et al. [31–33] used the machine learning method to
identify and process the deformation monitoring data of the bridge more efficiently, and
reliably laid the foundation for the early warning of bridge deformation. Kim et al. [34]
investigated the diffusion of the Cl− in concrete structures using a neural network model
and examined the time-varying law of the Cl− diffusion coefficient utilizing measured
data from 30 concrete specimens as input to the database. Gupta [35] used adaptive
artificial neural network (ANN), and ANN approaches to model the permeation law of
Cl− in concrete structures, considering the effect of environmental temperature on the
Cl− permeability coefficient. Yong et al. [36] investigated the shear strength of recycled
concrete beams (RAC) based on the ANN and random forest (RF) models. Bukhsh [37] and
Pengyong [38] designed a bridge state-level prediction approach based on the ML model
to solve bridge degradation influenced by various unpredictable factors, boosting forecast
accuracy. Boyu [39] promoted the idea of constructing a decision tree (DT) based on density,
which lowered the size of the DT and, to some extent, prevented overfitting. The intelligent
assessment model of bridge safety risk created using the ML algorithm solved the problem
of insufficient use of previous assessment data [40–42]. Shuheng [43] utilized the sparrow
search algorithm (SSA) to optimize and alter the initial weights and thresholds of the back
propagation (BP) neural network, demonstrating that the SSA has excellent accuracy and
can optimize the BP neural network.

The current study mainly focuses on the overall distribution, macroscopic performance,
and mechanical changes of cable corrosion. There has been little research on the non-
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stationary dispersion of internal corrosion factors in cables. The diffusion of corrosion
factors and external elements have a complicated nonlinear relationship that is difficult to
obtain using one-time conversion or simple linear regression (LR) approaches. Therefore,
this article establishes a data-driven model based on the ML method to reveal the effects of
cable inclination angle, environmental temperature, humidity, and cable defect size on the
concentration and diffusion coefficient of corrosion factors on the cable’s surface. Based
on multiple nonlinear regression analysis methods, appropriate empirical formulas are
provided and validated, providing a reference for theoretical analysis of the long-term
performance of stay cables in practical engineering.

2. Diffusion Mechanism and the Test Method of Corrosion Factors
2.1. Diffusion Mechanism

The corrosion factors diffuse from the outside to the interior of the cable due to the
impact of the concentration gradient difference of corrosion factors within and outside
the cable. The diffusion forms of corrosion factors in the cable can be divided into two
types: (1) The corrosion factors diffuse radially along the gap between steel wires until
the concentration of corrosion factors reaches saturation in each layer of steel wire on the
section. (2) Corrosion factors will diffuse upwards in the longitudinal and circumferential
directions of the cable due to the gaps between the layers of steel wires, eventually causing
three-dimensional damage to the cable. The diffusion mechanism is shown in Figure 1.
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Figure 1. Transfer form of corrosion factors in the cable: (a) radial transmission; (b) circular and
axial transmission.

The diffusion mechanism of corrosion factors is mainly described by Fick’s law. Fick’s
law is made up of the first and second laws of Fick. Fick’s first law is proposed based on the
concentration gradient difference of diffusing substances, which believes that the greater
the concentration gradient difference of the diffusing substance, the greater the flow of
the substance per unit of time through the unit cross-sectional area perpendicular to the
direction of diffusion, proportional to the concentration gradient at the cross-section. How-
ever, Fick’s first law is only applicable to the analysis of steady-state diffusion processes, in
which each volume element at any moment has an equal quantity of incoming and exiting
material and a constant concentration throughout the process. This circumstance is not
typical, in actuality. The diffusion of substances will be influenced by both environmental
factors and the properties of the materials themselves. The diffusion rate is likely to alter
as diffusion time and depth change. Based on Fick’s first law, the second law to describe
the non-stationary diffusion of substances was proposed to explain the diffusion law of
substances in actual processes more accurately. The law of variation of concentration of
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corrosion factors with diffusion time and depth was obtained. Fick’s second law can be
expressed as the following equation:

∂C
∂t

+∇× (−D×∇c) = 0 (1)

where C is the concentration of corrosion factors, D is the diffusion coefficient of corrosion
factors, c is the gradient difference of concentration of corrosion factors, and t is the
corrosion time.

The more significant the gradient difference in concentration of corrosion factors, the
faster the diffusion rate of corrosion factors, which is more likely to cause damage to parallel
steel wires in the cable. For spatial diffusion issues, the concentration gradient difference
of corrosion factors and the Hamiltonian operator in Equation (1) can be expressed as
follows [44].

∇c = ∂C
∂x + ∂C

∂y + ∂C
∂z

∇ = ∂
∂x + ∂

∂y + ∂
∂z

}
(2)

By substituting Equation (2) into Equation (1), the analytical solution model of Fick’s
second law’s error function can be produced, as shown below:

C(x, y, z) = C0 + (CS − C0)

(
1− er f

x
2
√

D× t
× er f

y
2
√

D× t
× er f

z
2
√

D× t

)
(3)

where C(x,y,z) represents the concentration at any spatial point within the component, Cs is
the concentration of corrosion factors on the element’s surface, C0 is the concentration of
corrosion factors within the structure, and erf is the error function.

The calculation method is shown the following equation:

er f (x) =
2√
π
×
∫ z

0
exp

(
β2
)

dβ (4)

The concentration of initial corrosion factors within the structure is relatively low in
general. The effect of the concentration of corrosion factors within the structure on the
predicted results is neglected to make the solution easier. Equation (3) is further simplified
to obtain the following equation:

C(x, y, z) = CS ×
(

1− er f
x

2
√

D× t
× er f

y
2
√

D× t
× er f

z
2
√

D× t

)
(5)

The key to constructing a spatial diffusion model of corrosion factors, according to
Equation (5), is getting the concentration and the diffusion coefficient of corrosion factors
on the surface of the cable. The concentration and the diffusion coefficient of corrosion
factors on the surface of the cable can be calculated using the procedures below.

The initial defect size of a square cable is shown as an example for demonstration.
Create a three-dimensional coordinate system using the cable’s defect position as the center
point, then characterize the cable’s damage range. Any point within the damage range
can be represented as follows. Define the distance from the coordinate origin at the center
position of different sampling points as Ri, as shown in Figure 2. The concentration of
corrosion factors at each site is measured using electrochemical measuring equipment.
After completing the test of the concentration of corrosion factors at each location of each
working condition, the concentration and the diffusion coefficient of corrosion factors
on the surface of the cable under various operational circumstances can be obtained by
substituting results into Equation (5).
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The following are the specific procedures for building the spatial diffusion model of
corrosion factors using the ML method: (1) Using the testing procedures mentioned above,
determine the concentration of corrosion factors at each location in the cable space along
the path above. (2) Using ambient temperature, humidity, cable inclination angle, and cable
defect area as input variables, the prediction model for diffusion coefficient and concen-
tration of surface corrosion factors is created based on the ML approach. (3) According
to Fick’s second law, the spatial diffusion model of corrosion factors is established by
comprehensively considering the influence of environmental and material factors on the
diffusion rate of corrosion factors. (4) Combine the results of the salt spray corrosion test
and the prototype cable corrosion test to verify the accuracy of the prediction model.

2.2. Test Method

Due to the influence of the gradient difference of the concentration of corrosion
factors inside and outside the cable, the corrosion factors diffuse from the outside to the
inside. The diffusion forms of corrosion factors in the cable can be divided into two types:
(1) The corrosion factors diffuse along the steel wire and the gap between the steel wires
in the radial direction until the concentration of corrosion factors in each layer of the steel
wire on this section reaches saturation. (2) Due to the gap between the layers of steel
wires, corrosion factors will spread upward along the longitudinal and ring of the cable,
resulting in three-dimensional damage to the cable. In order to clarify the diffusion law of
corrosion factors in the cable, the concentration of corrosion factors on the surface of each
layer of steel wire in the cable was measured by the BION-1881 chemical analyzer under
different periods, defect areas, ambient temperature, and humidity. The test procedure
is as follows: Firstly, the coordinate system is established with the cable defect position
as the origin. Secondly, after the cable was corroded for a corresponding time, it was
dissected and cut into sections of 5 cm, and its spatial position in the cable was sorted out
and recorded, respectively. Finally, an electrochemical analyzer was used to measure the
concentration of corrosion factors on the surface of each cut steel wire. The test procedure
of the concentration of corrosion factors is as follows: (1) Each layer of corroded steel
wire is processed and cut into a 5 cm section. After the processing is completed, it is
numbered; (2) Wash the cut steel wire with water and repeatedly brush it with a brush
to completely dissolve the corrosion factors on the surface of the steel wire in water;
(3) Completely immerse one electrode rod of the electrochemical analyzer into a beaker,
test the concentration of corrosion factors in the water, and take readings after stabilization
to obtain the concentration of corrosion factors on the surface of the corroded steel wire.
The testing process of corrosion factor concentration is shown in Figure 3. According to the
test methods above, the different distribution laws of corrosion factors along the cable in
radial, circumferential, and axial directions and the distribution forms of corrosion factors
in three directions can be obtained, respectively.
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3. Optimization of BP Neural Network Model
3.1. Data-Driven Model

The Scikit-learn software tool package is used to create five data-driven models: LR, RF,
ridge regression (RR), DT, and BP neural network. The cross-validation analysis approach
is used to verify the model’s accuracy to acquire the best output results. A total of 60%
of the data samples (154 total) were categorized as training subsets and 40% as testing
subsets (102 total) using random functions to select the training and testing sets. The
following are the specific steps: To begin, split the data into groups and number them
using a random function. The training and testing sets are then chosen at random. Finally,
statistical performance indicators such as the decisive correlation coefficient (R2), root mean
square error (RMSE), and relative root mean square error (MAE) were used to evaluate the
model’s computational accuracy. R2 shows the degree of fitting of the proposed model to
the experimental data. R2 lies between 0 and 1, and the closer its value is to the upper limit,
the better the model’s fit to the experimental data. Otherwise, the worse. RMSE, commonly
known as the cost function, plays a positive role in the learning process of ML algorithms.
The more significant the RMSE and MAE values, the worse the model’s fitting effect on
the experimental data and the lower the model’s accuracy. Table 1 displays the test and
verification results of various models.

Table 1. Calculation results of each data-driven model.

Mechanical Algorithm Model R2 RMSE MAE

BP neural network model 0.868 0.845 0.327
DT model 0.748 1.279 0.523
RF model 0.834 0.924 0.375
LR model 0.638 1.338 0.813
RR model 0.764 1.132 0.601

As shown in Table 1, the BP neural network model has the highest R2 value (0.868)
from the training set, while the MAE (0.845) and RMSE (0.327) values are the lowest,
indicating that the BP neural network model is most appropriate for simulating the diffusion
coefficient of corrosion factors and concentration of surface corrosion factors. Similarly,
the RF model’s R2, RMSE, and MAE values for the testing set are 0.834, 0.924, and 0.375,
respectively. The results indicate a significant correlation between the measured and
predicted diffusion coefficient values of corrosion factors and the concentration of surface
corrosion factors. The LR model performs the poorest, with the lowest R2 (0.638) and
the highest MAE (0.813). The simulation results of the diffusion coefficient of corrosion
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factors and the concentration of surface corrosion factors using the BP neural network are
better, with the highest R2 and the lowest MAE and RMSE values, as shown by the analysis
findings above. The drawbacks of the BP neural network model include that it is prone to
collapsing into local minima and has poor stability, which slows down the convergence
speed and ultimately leads to a drop in model accuracy. As a result, updating the BP neural
network model is required to increase its accuracy.

3.2. Algorithm Optimization Based on Sparrow Search Algorithm
3.2.1. Sparrow Search Algorithm

Introducing the SSA with stronger search ability and faster convergence speed to
update the BP neural network to improve the accuracy of the model. The SSA is a swarm
intelligence optimization algorithm that is based on the foraging and anti-predation behav-
ior of the sparrow. The sparrow with the highest fitness is prioritized in the SSA. They are
separated into discoverers and joiners during the foraging process of sparrows. Discoverers
are responsible for discovering food in the population and offering foraging places and
instructions for the entire sparrow population, whereas joiners rely on discoverers for
food. Sparrows can usually forage as discoverers and joiners to obtain food. Individuals
in the population monitor the behavior of others in the community, and attackers in this
population will fight for food supplies with high-intake peers to raise their predation rate.
Furthermore, when the sparrow population detects a threat, it will engage in anti-predatory
behavior. During each iteration, the description of the discoverer’s location update is
shown in the following equation [43]:

Xi,j
q+1 =

{
Xi,j

q exp
(

−i
α×itermax

)
, i f R2 ≤ ST

Xi,j
q + Q× L, i f R2 > ST

(6)

where q is the current number of iterations, itermax is the largest iteration algebra, Xij
is the position information of the i-th sparrow in the j-th dimension, α is the random
number(α ∈ (0, 1]), R2 is the warning value (R2 ∈ [0, 1]), ST is the safety value (ST ∈ [0.5, 1]),
Q is the random number subject to normal distribution, and L is a matrix of 1 × d, where
each element within the matrix is all 1.

When R2 < ST, it indicates that there are no predators in the foraging environment,
allowing for the discoverers to conduct lengthy search activities. If R2 ≥ ST, it means that
some sparrows in the population have detected predators and alerted other sparrows. At
this time, the sparrows must fly immediately to other safe areas for feeding. The description
of the joiner’s location update is shown in the following equation:

Xi,j
q+1 =

{
Xbest

q + β×
∣∣Xi,j

q − Xbest
q|, i f fi > fg

Xi,j
q+1 + K×

(Xi,j
q−Xworst

q

( fi− fw)+ε

)
, i f fi = fg

(7)

where Xbest is the optimal position occupied by the discoverer; Xworst is the current global
position; β is the control parameter of step size, which follows the normal distribution
random number with the mean of 0 and variance of 1; K ∈ [−1, 1] represents the random
number; fi is the fitness value of current sparrow individuals; fg is the fitness value of the
sparrow in the current global optimal position; fw is the fitness value of the sparrow in the
current global worst position; and ε is a constant.

Among these, fi > fg indicates that sparrows are on the periphery of the population and
highly vulnerable to predators. When fi = f, it demonstrates that sparrows in the middle
of the population know the danger and should approach other sparrows to reduce the
predation risk. K controls the direction of the sparrow’s movement and step size.

3.2.2. Optimization of BP Neural Network Algorithm

During the calculation process, the selection of the number of neurons in the hidden
layer significantly impacts the model’s calculation accuracy and speed. The more neurons
in the hidden layer, the higher the model’s accuracy, but the slower the computation
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speed. On the contrary, the smaller the number of neurons, the lower the computational
accuracy of the model, but the faster the model operates. As a result, it is critical to
reasonably determine the number of neurons in the hidden layer, which not only preserves
a certain accuracy in the model but also increases its computational speed. According to
the relevant literature [32], the number of neurons in the model can be calculated using the
following formula:

Q =
√

M + N + A (8)

where Q is the number of neurons in the hidden layer, M is the number of neurons in the
input layer, N is the number of neurons in the output layer, and A is an integer between 1
and 10.

Considering the influence of overfitting and underfitting, after repeated debugging, Q
is 10, and the test accuracy of the model is the highest. The calculation process of the entire
model is shown in Figure 4.
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Figures 5 and 6 demonstrate the prediction results of the SSA-BP neural network and
the BP neural network. Figures 7 and 8 show that the SSA-BP model has a high R2 (0.93) and
the lowest RMSE (0.0378), which indicates that the updated model can accurately forecast
the concentration of surface corrosion factors and the diffusion coefficient of corrosion
factors. In addition, BP requires 13 iterations to achieve convergence, whereas the SSA-BP
model only requires 9 iterations, indicating a significant improvement in the convergence
speed of the SSA-BP model. The model was trained and simulated 20 times to compare the
robustness of the SSA-BP model with the BP model, and the results are shown in Figure 9.
The coefficient of variation of the SSA-BP model was found to be between 5% and 18%,
whereas the coefficient of variation of the BP model was between 7% and 35%.
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4. Analysis of Parameter Sensitivity

The SSA-BP neural network model was used to calculate the weights between the
input and hidden layer to analyze the impact of various parameters on the diffusion
coefficient D of corrosion factors and the concentration Cs of surface corrosion factors. The
results are shown in Tables 2 and 3, respectively.

Table 2. Results of connection weights for the input and hidden layer.

Hidden Layer Defect Size Dip Angle Temperature Humidity Corrosion Time Deviation

B1 −0.06 −0.14 −0.38 −0.15 0.12 0.05
B2 −0.35 0.92 0.27 0.31 0.87 0.08
B3 −0.72 −0.23 −0.01 −0.34 −0.15 −0.65
B4 0.25 0.14 0.52 −0.22 −0.05 −0.53
B5 0.52 −0.25 0.12 0.64 −0.05 −0.27
B6 −0.23 0.08 0.38 −0.59 0.07 0.42
B7 −0.36 0.17 −0.27 −0.19 −0.34 0.28
B8 0.54 −0.09 −0.32 0.65 −0.58 −0.47
B9 0.47 −0.51 −0.33 −1.04 0.85 −0.02

B10 −0.72 0.23 −0.47 0.58 0.09 −0.41

Table 3. Weight values of the hidden and output layer.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 Bias

−0.53 0.41 0.36 0.54 −0.47 −0.38 −1.22 1.08 0.17 0.41 0.62
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The Garson formula was used to calculate the significant impacts of input parameters
on the transfer coefficient of corrosion factors and the concentration of surface corrosion
factors, as indicated in the following equation:

Zik =

L
∑

j=1

 wij
N
∑

r=1
wrj

vjk


N
∑

i=1

 L
∑

j=1

 wij
N
∑

r=1
wrj

vjk




(9)

where wrj is the connection weight value between the input neuron and the hidden layer
neuron j, and vjk is the connection weight value between the hidden layer neuron j and the
output neuron K.

The impact of input parameters on the concentration of surface corrosion factors and
diffusion coefficient of corrosion factors can be obtained using the steps above based on the
connection weights value and biases between the input, hidden, and output layers. The
results are shown in Figure 10.
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(a) Concentration of surface corrosion factors; (b) Transfer coefficient of corrosion factors.

Figure 10 depicts the impact of various parameters on the concentration of surface
corrosion factors and the transfer coefficient of corrosion factors. The results demonstrate
that the dip angle and the defect area of the cable have the most significant effect on both,
with weight values all greater than 0.25. Although environmental temperature, humidity,
and corrosion time all impact the diffusion rate of corrosion factors, their weight values
are all within 0.2. According to the results of the weight analysis of the SSA-BP neural
network model, the concentration of surface corrosion factors and diffusion coefficient
of corrosion factors of the cable above the defect location (A1 segment cable) and the
cable below the defect location (B1 segment cable) were fitted using the tilt angle of cables
by the distinguishing criterion, and were based on multiple nonlinear regression criteria.
The fitting equation for the concentration of surface corrosion factors and the diffusion
coefficient of corrosion factors on the A1 segment cable is shown in the following equation:

Cs = α·(t)A1 ·(h)A2 ·(T1)
A3(W)A4 ·(cos θ)A5 + H

D =
[

β·(t)B1 ·(h)B2 ·(T1)
B3(W)B4 ·(cos θ)B5 + Q

]
× 10−10

}
(10)
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Referring to Equation (10), according to the difference between the concentration of
surface corrosion factors and the diffusion coefficient of corrosion factors on the A1 and B1
cable sections, the concentration of surface corrosion factors and the diffusion coefficient of
corrosion factors on the B1 cable section can be expressed as the following equation:

Cs = η1

[
α·(t)A1 ·(h)A2 ·(T1)

A3(W)A4 ·(cos θ)A5 + H
]

D = η
[

β·(t)B1 ·(h)B2 ·(T1)
B3(W)B4 ·(cos θ)B5 + Q

]
× 10−10

 (11)

where t is the corrosion time of the cable, h is the relative humidity of the environment, T1
is the ambient temperature, W is the defect size area, θ is the dip angle of the cable, and
A1–A5, B1–B5, H and Q are undetermined parameters.

MATLAB software programming was used to calculate Equation (10) and bring the
known parameters into Equation (10) based on the nonlinear regression function to calculate
the concentration of surface corrosion factors and diffusion coefficient of corrosion factors
on the cable under different working conditions. The expression of the concentration of
surface corrosion factors and the diffusion coefficient of corrosion factors on the A1 segment
cable is as follows:

Cs= 0.387·(t)0.32·(h)0.08·(T1)
0.12(W)0.52·(cos θ)0.43 + 0.216

D =
[
11.42·(t)0.23·(h)0.05·(T1)

0.11(W)0.54·(cos θ)0.41 + 1.231
]
× 10−10

}
(12)

The diffusion rate of corrosion factors differs between the A1 and B1 segment cables
due to the inclination of the cable. The diffusion rate is faster in the B1 section of the
cable but slower in the A1 section. According to Equation (12), the expression of the
concentration of surface corrosion factors and the diffusion coefficient of corrosion factors
on the B1 segment cable is as follows:

Cs = η1

[
0.387·(t)0.32·(h)0.08·(T1)

0.12(W)0.52·(cos θ)0.43 + 0.216
]

D = η
[
11.42·(t)0.23·(h)0.05·(T1)

0.11(W)0.54·(cos θ)0.41 + 1.231
]
× 10−10

 (13)

The values of η1 and η under different tilt angles based on the differences in the
concentrations of corrosion factors between different layers inside the A1 and B1 cable
segments are shown in Table 4.

Table 4. The range of values of η1 and η under different tilt angles.

Tilt Angle η1 η

0 1.02 1.01
30 0.92 1.12
45 0.85 1.18
60 0.72 1.26

Table 4 shows that when the inclination of the cable increases, the concentration of
surface corrosion factors on the B1 cable section gradually decreases compared to the A1
cable section. However, the diffusion coefficient of corrosion factors follows the reverse law,
with the diffusion coefficient of corrosion factors on the B1 cable segment being significantly
greater than that on the A1 cable section, which indicates that the diffusion rate of corrosion
factors downward along the cable’s inclination angle is more significant than that upward
along the cable’s inclination angle. This phenomenon is caused by the following: as the
cable’s inclination increases, substances such as water, corrosion factors, and oxygen travel
lower along the cable, and the corrosion factors continually penetrate from the surface to
the interior. As a result, the concentration of surface corrosion factors in section B1 is low,
and the diffusion coefficient of corrosion factors is large. The gravity effect will obstruct the
upward diffusion of corrosion factors and other substances along the A1 cable segment,
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resulting in the aggregation of corrosion factors on the cable surface and a decrease in the
diffusion coefficient of corrosion factors.

The above depicts the process of solving the concentration of surface corrosion factors
and diffusion coefficient of corrosion factors on square-hole defect cable. The diffusion
form of corrosion factors in the annular hole cable is studied using the analysis method
described above. The spatial diffusion model of corrosion factors in the annular hole defect
cable is built to obtain the expression of the concentration of surface corrosion factors and
the diffusion coefficient of corrosion factors. It can still be separated into two segments
for convenience of representation: the C1 segment above the defect location and the D1
segment below the defect location. The expression is as follows.

(1) The expression of concentration of surface corrosion factors and diffusion coefficient
of corrosion factors in the C1 cable segment:

Cs= 0.393·(t)0.24·(h)0.12·(T1)
0.16(W)0.57·(cos θ)0.46 + 0.413

D =
[
13.32·(t)0.26·(h)0.06·(T1)

0.13(W)0.63·(cos θ)0.47 + 1.572
]
× 10−10

}
(14)

According to the expression method of the concentration of surface corrosion factors
and diffusion coefficient of corrosion factors on the C1 cable section, the concentration
of surface corrosion factors and diffusion coefficient of corrosion factors on the D1 cable
section can be expressed as follows.

Cs = η2

[
0.393·(t)0.24·(h)0.12·(T1)

0.16(W)0.57·(cos θ)0.46 + 0.413
]

D = η3

[
13.32·(t)0.26·(h)0.06·(T1)

0.13(W)0.63·(cos θ)0.47 + 1.572
]
× 10−10

 (15)

Table 5 shows the values of η2 and η3 at different tilt angles. The amplification
coefficients of the concentration of surface corrosion factors and diffusion coefficients of
corrosion factors on the D1 segment cable under tilt angles are shown in Table 5. Compared
with the results shown in Table 4, the tilt angle has a more significant impact on the
concentration of surface corrosion factors and diffusion coefficient of corrosion factors on
the ring defect cable.

Table 5. The range of values of η2 and η3 under different tilt angles.

Tilt Angle η2 η3

0 1.04 1.02
30 0.89 1.17
45 0.81 1.22
60 0.68 1.35

5. Spatial Diffusion Model of Corrosion Factors

Based on the analysis results above, the spatial diffusion model of corrosion factors in
the cable can be established under various tilt angles, temperatures, humidity, corrosion
periods, and defect areas, divided into upper and lower cable sections for display. Firstly,
the spatial diffusion model of corrosion factors in the square hole defective cable is exhibited.
The results are shown below.

(1) The spatial diffusion model of corrosion factors in the A1 cable segment.

Cs= 0.387·(t)0.32·(h)0.08·(T1)
0.12(W)0.52·(cos θ)0.43 + 0.216

D =
[
11.42·(t)0.23·(h)0.05·(T1)

0.11(W)0.54·(cos θ)0.41 + 1.231
]
× 10−10

C(x, y, z) = CS ×
(

1− er f x
2
√

D×t
× er f y

2
√

D×t
× er f z

2
√

D×t

)
 (16)
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(2) The spatial diffusion model of corrosion factors in the B1 cable segment.

Cs = η1

[
0.387·(t)0.32·(h)0.08·(T1)

0.12(W)0.52·(cos θ)0.43 + 0.216
]

D = η
[
11.42·(t)0.23·(h)0.05·(T1)

0.11(W)0.54·(cos θ)0.41 + 1.231
]
× 10−10

C(x, y, z) = CS ×
(

1− er f x
2
√

D×t
× er f y

2
√

D×t
× er f z

2
√

D×t

)
 (17)

Among them, the values of η1 and η under different tilt angles are shown in Table 5.
The spatial diffusion model of corrosion factors within the annular defect cable can be
depicted as follows using the approach described above.

(1) The spatial diffusion model of corrosion factors in the C1 cable segment.

Cs= 0.393·(t)0.24·(h)0.12·(T1)
0.16(W)0.57·(cos θ)0.46 + 0.413

D =
[
13.32·(t)0.26·(h)0.06·(T1)

0.13(W)0.63·(cos θ)0.47 + 1.572
]
× 10−10

C(x, y, z) = CS ×
(

1− er f x
2
√

D×t
× er f y

2
√

D×t
× er f z

2
√

D×t

)
 (18)

(2) The spatial diffusion model of corrosion factors in the D1 cable segment.

Cs = η2

[
0.393·(t)0.24·(h)0.12·(T1)

0.16(W)0.57·(cos θ)0.46 + 0.413
]

D = η3

[
13.32·(t)0.26·(h)0.06·(T1)

0.13(W)0.63·(cos θ)0.47 + 1.572
]
× 10−10

C(x, y, z) = CS ×
(

1− er f x
2
√

D×t
× er f y

2
√

D×t
× er f z

2
√

D×t

)
 (19)

Among them, Table 5 shows the values of η2 and η3 under various tilt angles. The
concentration of corrosion factors at each spatial position of the cable was calculated using
this model to verify the accuracy of the model above. The calculated results were compared
with the measured results, as shown in Figures 11–14. The findings demonstrate that the
prediction results of the model are lower than the experimental test results, and the relative
error between the two is within 15%, illustrating that the prediction model proposed in this
article has a certain accuracy.
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concentration of corrosion factors at each spatial position of the cable was calculated using 
this model to verify the accuracy of the model above. The calculated results were com-
pared with the measured results, as shown in Figures 11–14. The findings demonstrate 
that the prediction results of the model are lower than the experimental test results, and 
the relative error between the two is within 15%, illustrating that the prediction model 
proposed in this article has a certain accuracy.  
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Figure 11. Comparison results of the A1 segment cable (defect size is 2 cm × 2 cm): (a) tilt angle 30°; 
(b) tilt angle 45°. 

Figure 11. Comparison results of the A1 segment cable (defect size is 2 cm × 2 cm): (a) tilt angle 30◦;
(b) tilt angle 45◦.
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Figure 12. Comparison results of the B1 segment cable (defect size is 2 cm × 2 cm): (a) tilt angle 30°; 
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6. Conclusions

The spatial diffusion model of corrosion factors was built using the ML method based
on the test results of concentrations of corrosion factors at various positions in the space of
the cable system and Fick’s second law. The relevant empirical formulae were presented,
and the accuracy of the theoretical model was verified using multiple nonlinear regression
analysis methods, taking into account the effect of various parameters on the diffusion
coefficient of corrosion factors and the concentration of surface corrosion factors. The
specific conclusions are as follows:

(1) Five ML algorithms were used to investigate the impacts of environmental tempera-
ture, humidity, cable inclination angle, and cable defect size on the diffusion coefficient
of corrosion factors and the concentration of surface corrosion factors. According
to the simulation findings, the optimized BP neural network method has the best
simulation effect, with fast convergence speed and good robustness.

(2) The inclination angle and the defect size of the cable are the primary parameters influ-
encing the diffusion coefficient of corrosion factors and the concentration of surface
corrosion factors—their weight values are all above 0.25. Although environmental
temperature, humidity, and corrosion time all affect the diffusion rate of corrosion
factors, they are more limited, and their weight values are all within 0.2.

(3) Due to the increase in the inclination of the cable, substances such as water, corrosion
factors, and oxygen will move downwards along the cable, and corrosion factors will
continually penetrate from the surface to the interior of the cable. The concentration
of surface corrosion factors on the cable above the defect is low, and the diffusion
coefficient of corrosion factors is high. The gravity effect will impede the upward
diffusion of corrosion factors and other substances along the cable, resulting in the
aggregation of corrosion factors on the surface of the cable below the defect and a
drop in the diffusion coefficient of corrosion factors.

(4) The cross-sectional loss or corrosion weight loss of the steel wire inside the cable
mainly occurs where corrosion factors gather. The area with the highest concentration
of corrosion factors is the area where corrosion occurs most severely. The diffusion
path of corrosion factors is the area where corrosion is most likely to occur during
the service process of the cable. Studying the diffusion trend of corrosion factors can
provide guidance for the corrosion protection of steel wires in different parts. The
concentration of corrosion factors at each spatial position of the cable was calculated
using the model in this article. The predicted results of the spatial diffusion model of
cable were lower than the measured results of the experiment, with a relative error of
15%, showing a good level of agreement, which can effectively forecast and assess the
spatial diffusion status of cable’s corrosion factors in practical engineering.
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