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Abstract: Nearly 40 percent of worldwide energy and process-related CO2 emissions are produced
by the construction sector. China’s construction industry is the largest in the world, with Chinese
construction enterprises completing a total output value of RMB 26.39 trillion in 2020; these buildings
contribute to about 20 percent of China’s overall carbon emissions and 20 percent of the global total
emissions. There is an urgent need to prove whether construction enterprises are benefiting from the
carbon trading policy. Compared to the traditional method, a double difference model can be used to
highlight the consequences of different states of construction enterprises’ responses to carbon trading
regimes. In this study, we examine the following results based on cross-sectional data collected from
2006 to 2021, from listed construction enterprises: (1) Existing carbon emission policies have had a
significant impact on the improvement of construction enterprises’ total factor productivity. This
improvement is more pronounced in large state-owned enterprises in particular. (2) Construction
enterprises’ greater involvement in carbon trading income is most strongly influenced by their
green innovation level. (3) Construction enterprises located in eastern and central China benefit
significantly from carbon trading, but construction enterprises based in the west do not. The research
result indicates that future incentive initiatives should pay more attention to western regions and
privately owned building enterprises. The leading role of large state-owned building enterprises
should be reinforced.

Keywords: total factor productivity; building enterprise; carbon emission trading policy; double difference

1. Introduction

In January 2020, global land and ocean surface temperatures were 1.14 degrees Celsius
warmer than the 20th century average January temperature (12 degrees Celsius), surpassing
the record set in January 2016. For the 44th consecutive January, temperatures were
above the 20th century average January temperature, with the 10 hottest Januarys, since
meteorological records, all occurring since 2002 [1]. Arctic sea ice cover is 5.3% below the
1981–2010 average and Antarctic sea ice cover is 9.8% below the 1981–2010 average [2].
Rapid human economic development and urbanization are accelerating global carbon
emissions and, consequently, the global greenhouse effect. China, as the world’s largest
emitter of carbon, is under pressure to make a low-carbon transition [3]. Several studies
have shown that fine particulate matter (PM2.5) over urban built-up land has increased
with urbanization, and land use patterns may be the second key driver after fossil fuel
combustion [4–6].

Nowadays, worldwide sustainable development is advancing two significant pro-
cesses simultaneously. One is to promote the United Nations Sustainable Development
Agenda 2030, which aims to achieve coordination and balance between global economic
development, social progress, and environmental protection; the other is the implementa-
tion of the Paris Agreement, which aims to promote energy development and to achieve
low-carbonization transformation. These two documents are consistent and trigger an
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extensive synergy. To realize the goal of controlling global warming and solving the energy
shortage, more and more individuals support establishing a low-carbon energy system
by forming a green, cyclical economic system, and through collaborative management,
address oversize carbon dioxide emissions [7]. Therefore, many governments worldwide
have strengthened carbon emission regulations [8,9]. These regulations include mandatory
regulations, market-oriented regulations, and voluntary actions [10]. Carbon emission
trading, as one of the exemplary implementations to reach emission reduction goals, has a
significant advantage in cost [11]. Consequently, such market-oriented implementations
have now been widespread in the United States, Europe, Japan, China, and other countries
with noticeable effects [9]. Especially by promotion of the Kyoto Protocol in 1997, there
are also a variety of countries that have announced their aim to establish carbon trading
markets [12–15].

China’s 14th Five-Year Plan period is currently in progress and involves maintain-
ing its determination and adherence to goals aimed at energy conservation and carbon
reduction. Figure 1 shows the milestones of China’s carbon trading policy. In 2011, China
established Beijing, Shanghai, Tianjin, Chongqing, Shenzhen, and other regions as pilot
areas [16]. Five years later, in 2017, the national carbon emission trading system started
operating, which represented the start of the era of carbon emission trading in China.
Carbon emission trading is a flexible and efficient environmental regulatory method [8] and
its core mechanism is officially allocated quotas of carbon emissions. The fewer quotas an
industry or an enterprise receives, the more stringent the control is, and as a consequence,
the more influence it has on shaping enterprise green behavior [17]. Through fluctuations
in carbon prices, the carbon emission trading system aims to achieve the optimal allocation
of emission reduction resources [18]. Environmental protection does not mean giving up
economic development. To address the decrease in capital returns and disappearance of
demographic dividends, the Fifth Plenary Session of the 19th Central Committee of the
Communist Party of China states the importance of promoting total factor productivity
to shift the current mode of economic growth in China. Total factor productivity can be
defined as a measure of a company’s production ability, and it is widely applied in enter-
prise performance assessments in competitiveness and growth investigation situations [19].
By analyzing the literature, previous studies have reported that total factor productiv-
ity can comprehensively reflect the development of an enterprise compared with other
indicators [20]. To some extent, total factor productivity could be a critical indicator for
assessing the environmental performance of the Chinese society [21]. As a consequence,
many scholars have used total factor productivity to evaluate green policy effects and the re-
lationship between policy implementation and TFP fluctuation [22–24]. For instance, some
scholars have redefined the total factor productivity theory and extended the theory into to-
tal factor energy productivity for green action evaluation [25,26]. In addition, China’s total
factor energy productivity has been tested and its fluctuations decomposed into technical
factors and efficiency changes [22]. Alternatively, research has classified Chinese industry
according to geographical locations such as the Qinling-Huaihe River and cities to analyze
the regional differences in green total factor productivity [27–29]. Moreover, with the matu-
ration of information technology, studies have also investigated the relationship between
digital economy and total factor productivity under environmental regulation [30–34].
Interestingly, since the pilot of China’s carbon emission trading policy in 2012, a growing
number of scholars have used various methods to assess the impact of carbon trading
policies on business conditions and sustainable development [35,36]. Among these studies,
the development of agricultural enterprises has received the most attention [37,38]. In
terms of research methodology, some studies have used multi-agent simulation to analyze
the operations of 100 companies under a carbon trading system, revealing the operational
mechanisms and dynamic evolution of the carbon trading market [39].
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Figure 1. The milestones of China’s carbon trading policy.

The current research methods have mostly involved simulations and analyses to
establish a CGE model, but have lacked the support of empirical data [40]. In addition,
most research has involved listed enterprises, with a focus on the entire industry, but lacked
micro investigations into engineering enterprises. Moreover, previous studies also reflect a
shortage in testing the heterogeneity of the economic effect of carbon emission trading in
different enterprises, and there is a relatively small number of studies in the literature that
have been concerned with the green invention development of engineering enterprises,
especially through independent green patent application and publication perspectives.

To advance the research, by considering listed construction enterprises from 2006
to 2021, in this paper, we apply endogenous growth theory, innovation compensation
theory, and a dual path of a logical reasoning approach as well as mathematical derivation,
to deeply analyze the relationships among carbon emission trading and engineering enter-
prises‘ total factor productivity. Then, an empirical test is carried out, and its heterogeneity
is deeply analyzed. The contributions of this study are as follows:

Firstly, this study offers direct empirical evidence for an accurate assessment of the pi-
lot carbon emission trading policy from the perspectives of the environment and economics,
which fills the shortage of empirical evidence in China’s carbon trading.

Secondly, by combining with the industry traits, this study evaluates the impact of
emission trading policies on the total factor productivity of listed construction enterprises
and expands the research perspective of carbon trading fields.

Thirdly, in order to analyze the heterogeneity of the economic effect of carbon emission
trading in different types of enterprises, this research, through multiple tests, ensures the
research’s conservativeness and develops the existing studies from a micro perspective.
To sum up, the scientific problem of this study is to determine if carbon trading policies
have had favorable effects on the total factor productivity of construction enterprises, and
to investigate the elements via which these benefits are mediated, and to determine if the
effects of carbon trading programs varied for different features of construction enterprises
and what future policy changes should be made to promote better results.

The objectives of this study are to assess whether trading policies have contributed
to the improvement of total factor productivity of listed construction enterprises, and to
reveal those factors that played a key role in the process. On this basis, this study also
aims to conduct a flexible carbon trading policy according to the different characteristics of
construction enterprises.

The remainder of this paper is structured as follows: Section 2 describes the materials
and methods; Section 3 demonstrates the research process and methodology; Section 4
outlines the empirical analysis; the final section states conclusions based on all the research
results and implications.
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2. Materials and Methods
2.1. Theoretical Analysis and Hypotheses

In 2011, China launched a pilot scheme for carbon emission trading in seven provinces
and cities, including Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong, and Shen-
zhen. Under the scheme, enterprises acquired the right to emit greenhouse gases into the
atmosphere in accordance with the law. In the pilot cities, a carbon emission trading policy
was implemented, whereby enterprises obtained quotas for greenhouse gas emissions for a
certain period of time, as approved by the local development and reform commission (now
under the responsibility of the environmental protection department). When an enterprise’s
actual emissions exceeded the quota, the excess had to be purchased at a cost; when the
enterprise’s actual emissions were less than the quota, the balance could be carried forward,
to be used or sold to the public. Therefore, the aim of this research, at the provincial scale,
was to study the policy impact of carbon emission trading policy on building enterprises’
total factor productivity in China.

The price mechanism of carbon emission trading achieves control over carbon emis-
sions during the production and operation of enterprises by internalizing the external costs
of the carbon emissions of construction enterprises. Cost-push and revenue incentives
are the two main approaches to enable the above process. Cost-push means that com-
mercialized carbon emission rights are strictly regulated by government departments [41].
Under governmental regulations, construction enterprises whose carbon emissions exceed
their allowances are required to buy more allowances from the government or the market,
resulting in higher operating costs. In such a context, the total factor productivity (TFP)
of enterprises decreases to some extent. Enterprises that do not comply with the regula-
tions are fined, which undoubtedly increases the costs of enterprises, pushing them to use
their carbon emission allowances more efficiently. The revenue incentive effect is mainly
manifested in the fact that carbon emission rights can be traded under a certain market
mechanism, which creates space and opportunities for the participants to reap profits. On
this basis, construction enterprises can reduce their carbon emissions by improving their
technological innovation abilities, and the remaining allowances can be traded to generate
income. Specifically, when the cost of emission reduction is lower than the market price
of carbon, carbon emission allowances can be sold in carbon exchanges, and the profit
generated is the difference between the cost and the selling price. Motivated by this effect,
enterprises have become more efficient in technological innovation, resulting in lower
emission reduction costs and higher carbon trading profits [41]. The market trading mech-
anism facilitates an effective allocation of carbon emission allowances, and thus reduces
carbon emissions and the costs of emission reduction of different stakeholders as much
as possible. Therefore, in terms of the effect of the implementation of policies on carbon
emission trading, in this paper, we proposed the following hypothesis:

H1. The carbon emission trading pilot project promotes TFP development of construction enterprises.

Developing scientific and technological innovation is also a major way to enhance
the TFP of construction enterprises. On the one hand, with the given carbon allowances,
construction enterprises in the pilot areas pay more attention to research related to emission
reduction technology to reduce the cost of emission reduction and to improve the efficiency
of emission reduction. On the other hand, these enterprises save some carbon allowances
by developing their green emission reduction technologies and generate profits by trading
the surplus allowance in the carbon trading market. In the long run, the optimal choice for
profit-oriented construction enterprises is to develop and use green emission reduction tech-
nologies to solve the problem of carbon emission constraints and emission reduction costs.
Therefore, the formulation and implementation of carbon trading policy urge construction
enterprises to conduct research and development on green innovations. This phenomenon
not only enables the total carbon emissions of the construction industry to meet the goal of
carbon emission constraints set by the government but also stimulates green innovations
across the industry, thus increasing the TFP of the whole industry. For this reason, in
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this paper, we selected green patents, and then tested the transmission mechanism of the
conducted policy. To confirm that the pilot project increases the TFP of building enterprises
in pilot areas through increasing the green creation ability of construction enterprises, we
proposed the following hypothesis:

H2. The carbon emission trading pilot project increases the TFP of construction enterprises through
promoting innovation.

2.2. Methods

The difference-in-differences (DID) technique is widely applied in the field of econo-
metrics and quantitative research. The rationale for choosing regression analysis is that
this method is suitable for large sample regressions and, in particular, it better reflects
trends in large samples of data. Data on 1040 listed construction enterprises were ob-
tained for this study, which met the research requirements for a large sample regression.
The logic underlying this method was applied as early as the 1850s by John Snow and
is named a “controlled before-and-after study” [42]. Especially in social sciences, it tries
to mimic experimental research through observational data by analyzing the differential
performance of a treatment on a ”treatment group” versus a ”control group” in a natural
experiment [43]. This method evaluates the performance of a treatment on an outcome by
comparing and contrasting typical traits or changes over time in the outcome variable for
the treatment group to that for the control group. Before conducting DID experimental
research, the time-series data of treatment and control groups require two or more different
ranges, particularly, at least one before the treatment point and at least one after that point.
This method has been widely applied to assess the performance of certain treatments or
interventions, such as the passage of laws, or enactment of a certain policy, as well as
mega project implementation. Figure 2 explains the primary mechanism of a DID model
for inspecting a particular treatment or policy [44]. In the sub figure a of Figure 2, the
performance of the treatment group is represented by line M, and the performance in the
control group is represented by line N. The outcome variable for both groups is assessed
at time t1 before either group has received the policy treatment, which refers to points M1
and N1. The treatment group then acquires the policy intervention, and two groups are
tested a second time at time t2. The gap between the two groups at time t2 (that is, the
difference in M2 and N2) is not precisely tested as the performance of the treatment or a
specific policy, because the treatment group and the control group may not initially be the
same at time t1. As a consequence, DID evaluates the ordinary difference in the outcome
elements between treatment and control groups, which is represented by the dotted line H.
Notably, the slope from M1 to H is the same as that of N1 to N2. Consequently, the treatment
or policy intervention effect can be tested based on the difference between the observed
outcome (M2) and the normal outcome H (the difference between M2 and H). In Figure 2b,
the performance of the treated group before and after the therapy is represented by the
letters YM1 and YM2 respectively. ∆Ytreat, which is determined by deducting the value of
YM1 from the value of YM2, represents the variation in the treatment group’s performance
between before and after the treatment. YN1 and YN2, by analogy, represent, respectively,
the performance of the control group prior to and following the treatment. By deducting
the value of YN1 from the value of YN2, which is the value of ∆Ycontrol, it was possible to
determine the difference in the performance of the control group before and after receiving
treatment. Contrarily, the difference between the treated and control groups is shown in
the figure as ∆Ytreat minus ∆Ycontrol.
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Figure 2. Double difference model visualization [44].

A constant difference can be observed between the normal outcome H and the normal
outcome of line N, which refers to N2.

In order to ensure that the estimation of the intervention effect is critical, there are
several assumptions that should be made, i.e., exchangeability, positivity, and stable unit
treatment value assumptions, as follows:

• There is no relationship between intervention and baseline outcome, which means the
intervention allocation is not attributed to the outcome.

• A parallel trend can be seen between the treatment group and control groups (see line
M and line N).

• Performance of intervention and comparison results is consistent for repeated
research design.

• No spillover phenomenon exists.

3. Research Design
3.1. Theoretical Framework

The research framework and experimental findings of this study not only reveal the
changes in the total factor productivity of construction enterprises after participating in
carbon trading policies but also provide a theoretical framework for evaluating the effec-
tiveness of carbon trading policies and for guiding practice. In terms of generalizability,
as shown in Figure 3, the industry sector should be identified before the carbon trading
policy evaluation is conducted, for example, the research area of this paper is listed con-
struction enterprises. This is followed by the collection and screening of data on the listed
construction enterprises, from which experimental data are identified. Before constructing
the benchmark double difference regression model, the research variables should be deter-
mined with include the dependent variable, independent variable, intermediary variable,
and control variable. Subsequently, the benchmark double difference regression model
is determined based on each research variable, and the benchmark regression model is
tested for multicollinearity to ascertain that there is no serious multicollinearity between
the variables before conducting the research results and a series of robustness tests. In
conducting the study, different business entities will have different characteristics and will
respond differently to the effects of the policy. Therefore, robustness checks are added to
the Figure 3 research framework to explore the effects of different characteristics of firms’
responses to carbon trading. This research framework enriches the theoretical framework of
carbon trading policy evaluation, and has strong generalizability and scientific significance.
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3.2. Model Setting
3.2.1. Data Description

In this study, for the explained variable, similar to a study by J. Hua [41], we took
into account the endogenous problems faced by sample selection and statistical methods.
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Afterward, semiparametric methods (the Olley_Pakes method and the Levinsonh and
Petrin method) were adopted to calculate the TFP. The results of the Levinsonh and Petrin
(LP) method were applied for baseline regression, and then the output of the Olley–Pakes
(OP) method was applied for robustness testing. The method for calculating total factor
productivity and the indicators selected are as follows (the base period for the above
variables is 2006):

TFPijt = αjt + β jtLijt + δjtCijt + ωjt Mijtεijt (1)

TFPijt—the logarithm of the TFP of private enterprise i in industry j in year t
Lijt—the logarithm of the labor input intensity of enterprise i in industry j in year t
Cijt—the logarithm of enterprise i capital input in industry j in year t Mijt—the logarithm
of enterprise i intermediate capital input in industry j in year t εijt—the random error terms

In the above model, in this study, we regress Model (1) to test the effect of carbon
emission trading policy on the total factor productivity of construction enterprises. If the
coefficient is significantly positive, it indicates that there is a positive linear relationship
between the implementation of carbon emission trading policy and the total factor pro-
ductivity of construction enterprises. If the coefficient is significantly negative, it means
that there is a negative linear relationship between the implementation of carbon emission
trading policy and the total factor productivity of construction enterprises.

To avoid estimation bias, in this study, we drew on the elements that could possibly
influence the TFP of construction enterprises, determined by existing studies, and selected
the following variables as control variables: enterprise size (Size), return on assets (Roa),
asset-liability ratio (Lev), agency cost (Cost), cash flow from operations (CF), factor inten-
sity (Capital), and the shareholding ratio of the largest shareholder (Top1). The specific
definition of each variable is listed in Table 1.

Table 1. Definitions of variables.

Variable
Symbol Variable Name Description

TFP Total factor productivity of
enterprises

Calculated by the C-D production
function approach, the OP method, and

the LP method

DID Difference-in-differences
interaction term Treat * Post

Size Enterprise size Ln (total assets at the end of the period)
ROA Return on assets Net profit/total assets

Lev Asset-liability ratio
Total liabilities at the end of the
period/total assets at the end of

the period

Cost Agency cost Administrative expenses/income from
main businesses

CF Cash flow from operations Cash flow from operations/total assets at
the end of the period

Capital Factor intensity Ln (actual net fixed assets per capita)

Top1 The shareholding ratio of the
largest shareholder

The proportion of shares of the
largest shareholder

GreInvia The enterprise’s innovation of
green inventions

The number of green
invention applications

GreUmia The enterprise’s innovation of
green utility models The number of utility applications

* Treat denotes the dummy variable of policy treatment (1 for provinces located in pilot areas and 0 for provinces
located in non-pilot areas) and Post denotes the dummy variable of time (1 for the post-policy period and 0 for the
pre-policy period).
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3.2.2. Model Construction and Theories

To explore the effects of carbon emission rights on the TFP of construction enterprises,
in this study, we constructed the following model:

TFPi,t = α0 + β1DIDi,t + β2Sizei,t + β3ROAi,t + β4Levi,t + β5Costi,t
+β6CFi,t + β7Capitali,t + β8Top1i,t + δt + µi + εi,t

(2)

The following model was constructed to test the existence of the mechanism effect:

TFPi,t = α0 + β1DIDi,t × Patenti,t + β2DIDi,t + β3Patenti,t + β4Sizei,t + β5ROAi,t + β6Levi,t
+β7Costi,t + β8CFi,t + β9Capitali,t + β10Top1i,t + δt + µi + εi,t

(3)

TFPit reflects the TFP of building enterprises of sample enterprise i in the observa-
tion period t, α0 represents the constant term (constant), and β represents the regression
coefficient of each variable. If β1 > 0, the TFP of building enterprises that are affected by
carbon emission trading is significantly higher than that of those not affected by carbon
emission trading. In other words, policies on carbon emission rights increase the TFP of
construction enterprises. DID refers to Treati ∗ Timet, the interaction term of the treatment
effect (Table 1), which reflects the average difference between the TFP of building enter-
prises affected by carbon emission trading and that of those not affected by carbon emission
trading. Specifically, Treat denotes the dummy variable of policy treatment. Locations of
pilot areas are assigned the value 1, and provinces located in non-pilot areas are assigned
the value 0. Time is the dummy variable of time. The period before policy implementation
is assigned the value zero, and the period after policy implementation is assigned the
value one. Patenti,t is a variable related to the levels of green innovation of enterprises,
which refers to the number of green inventions or the number of green utility models of
construction enterprises in this study; δt is used to measure the time effect in the temporal
dimension; µi is used to measure the fixed effect in the individual dimension; εi,t is the
random disturbance term that varies with the individual and time.

4. Empirical Analysis
4.1. Descriptive Statistics and Data Sources

As we all know, the data of listed enterprises have better accessibility and accuracy.
At the same time, the data of listed construction enterprises are usually derived from
the annual reports of the enterprises, which are highly standardized. Such data are very
convenient for scientific research. For this reason, in this study, we selected all listed
construction enterprises on the Shanghai and Shenzhen Stock Exchanges that belong to the
building industry, and the data used were in line with the industry classification standard
issued by the China Securities Regulatory Commission (CSRC). It included construction
materials; real estate; construction of municipal roads; construction of municipal public
utilities; water distribution projects; centralized heating, water supply and gas supply
projects; construction of public welfare facilities such as cultural, educational, health,
sports and music facilities; construction of monumental architectural facilities; and various
construction enterprises. The annual data of the enterprises during the sample period
(2006–2021) were selected, and the relationship between the rights to carbon emissions and
trading, green innovation of construction enterprises, and the TFP of the civil engineering
and construction industry. The data were preprocessed and cleaned before being used. The
study obtained data from a sample of 1728 construction enterprises, from which 688 sample
data did not qualify for the study and were removed. Therefore, 1040 observed values were
obtained. The financial data of the listed construction enterprises involved were obtained
from the Chinese Research Data Services (CNRDS) (http://www.cnrds.com) (accessed on
10 October 2022), and the data of green technology patents of enterprises were obtained
from the national patent database. The data of the TFP of building enterprises were obtained
by using the opreg command program in Stata17.0, the China Stock Market & Accounting
Research Database (CSMAR) (https://www.gtarsc.com/) (accessed on 10 October 2022)

http://www.cnrds.com
https://www.gtarsc.com/
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and the RESSET Database were also data sources, supported by Tonghuashun (stock
software) and Sina Finance.

This research used the level of green innovation of construction enterprises as the
mechanism variable. There are three categories of patents in China, i.e., invention, utility
model, and appearance, among which invention and utility model are technology-related
patents. This study used the number of green invention applications and green utility appli-
cations to measure the green innovation of enterprises. The data of the listed construction
enterprises’ green innovation were obtained from the China National Intellectual Property
Administration (http://english.cnipa.gov.cn/) (accessed on 15 October 2022), and the data
were selected applying the green technology patent classification defined by the World
Intellectual Property Organization (WIPO) (https://www.wipo.int/portal/en/index.html)
(accessed on 15 October 2022) to obtain the amount of green invention applications and
green utility applications. Greater numbers mean higher levels of green innovation in
enterprises. Then, 16,083 green invention applications and 21,354 green utility applications
were acquired.

Table 2 shows the results of descriptive statistics of the main variables. As shown
in Table 2, the mean value, the minimum value, and the maximum value of the TFP
of construction enterprises are 9.532, 6.685, and 12.959, respectively, and the standard
deviation is 1.125, indicating significant fluctuations in the TFP of private enterprises and a
wide dispersion of data. The mean values of the number of green invention applications and
that of the number of green utility model applications of enterprises are 9.307 and 11.753,
respectively, and the standard deviations are 34.535 and 40.437, respectively, suggesting
huge gaps exist between construction enterprises’ levels of green innovation during the
sample period.

Table 2. Descriptive statistics of the main variables.

N Mean SD Min Median Max

TFP 1040 9.532 1.125 6.685 9.562 12.959
DID 1040 0.409 0.492 0 0 1
Size 1040 22.858 1.802 16.185 22.507 28.502
ROA 1040 0.015 0.076 −0.986 0.022 0.502
Lev 1040 0.643 0.188 0.028 0.675 1.89
Cost 1040 0.064 0.098 0.001 0.044 1.404
CF 1040 −0.001 0.365 −11.056 0.013 0.43

Capital 1040 12.03 1.137 4.431 12.06 15.386
Top1 1040 0.375 0.151 0.044 0.36 0.786

GreInvia 1040 9.307 34.535 0 0 534
GreUmia 1040 11.735 40.437 0 1 396

In the descriptive statistics of the data (see Table 2), Mean is the sample mean; SD is
the sample standard deviation, representing the degree of dispersion of the data; Min is the
sample minimum; Max is the sample maximum; and Median denotes the median value.

4.2. Multicollinearity Test

Multicollinearity refers to precise or high correlations between the explanatory vari-
ables in a regression model, which leads to skewed results or makes the results hard to
estimate [45]. To remove multicollinearity, in this study, we adopted the variance inflation
factor (VIF) method to perform a multicollinearity test on the model. When the maximum
value of VIF is greater than 10, there might be serious multicollinearity [46]. When all
VIF values are less than 10, there is no multicollinearity problem in the model [46]. Multi-
collinearity affects the results of model estimation and causes the results to be unreliable. In
this study, Table 3 shows that there is no multicollinearity problem because all VIF values
are less than 10.

http://english.cnipa.gov.cn/
https://www.wipo.int/portal/en/index.html
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Table 3. Multicollinearity test.

Variable VIF 1/VIF

Size 1.850 0.540
Lev 1.540 0.649

Top1 1.170 0.852
Cost 1.170 0.853
ROA 1.160 0.862
DID 1.150 0.872

Capital 1.060 0.946
CF 1.030 0.971

Mean VIF 1.270

4.3. Analysis of Regression Results

The regression results of regression model are shown in Table 4. Column (3) shows
the regression results of the DID model, and Columns (1) and (2) show the regression
results of the DID model after the individual and time fixed effects were controlled. As can
be seen from the experimental results in Table 4 below, the coefficients of the regression
model underlying this study are positive, demonstrating that there is a positive linear
relationship between the introduction of a carbon emission trading policy and the total
factor productivity of construction enterprises. Therefore, the positive linear relationship in
Equations (2) and (3) derived from the base regression model also holds.

Table 4. Model results.

(1) (2) (3)

VARIABLES TFP TFP TFP

DID 0.1483 ** 0.4338 *** 0.2451 ***
(0.0737) (0.0391) (0.0607)

Size 0.3826 *** 0.3878 ***
(0.0136) (0.0277)

ROA 1.2609 *** 1.2183 ***
(0.2553) (0.1944)

Lev 1.1627 *** 0.7200 ***
(0.1183) (0.1228)

Cost −1.8069 *** −0.7403 ***
(0.1989) (0.1641)

CF −0.1110 ** −0.1399 ***
(0.0500) (0.0391)

Capital −0.1478 *** −0.1220 ***
(0.0162) (0.0165)

Top1 0.3749 *** 0.3497 *
(0.1284) (0.2044)

Constant 8.2875 *** 1.5953 *** 1.0127 *
(0.0916) (0.3079) (0.5789)

Observations 1040 1040 1040
R-squared 0.5301 0.7374 0.7741

Number of id 96 96 96
Firm Yes no yes
Year yes no yes

F value 65.44 *** 361.8 *** 95.30 ***
Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

In Table 4, “standard errors in parentheses” under the table indicates that the robust
standard errors in parentheses are White’s standard errors. The * symbol indicates the
significance level of the model. Specifically, * indicates significance at the 10% level,
** indicates significance at the 5% level, and *** indicates significance at the 1% level. Yes,
in the row of the Firm variable means that individual fixed effects are controlled, and
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Yes in the row of Year variable means that time fixed effects are controlled. F-test is the
significance test of the model, and *** indicates that the model is significant at the 1% level,
which suggests a good fit and the ability to fully reflect the interactions among variables in
the model.

In Column (1) of Table 4, control variables are not included, and two-way fixed effects
are included. The coefficient is 0.1483, showing significance at the 1% level. In Column
(2), control variables are included, and fixed effects are not. The coefficient is 0.4338, still
significantly positive at the 1% level. Meanwhile, a significant increase in R2 suggests a
better fit after the addition of control variables, and the results are still robust. In Column (3),
both control variables and two-way fixed effects are included, and the coefficient is 0.2451,
significantly positive at the 5% level. The regression results show that the pilot policy
of carbon emission trading affects the TFP of construction enterprises, and thus verifies
the reasonable addition of individual and time fixed effects to the baseline regression.
According to the above consequence, the coefficients of the interaction terms of explanatory
variables are significantly positive, indicating that the pilot project of carbon emission
trading improves the TFP levels of building enterprises to some extent, preliminarily
verifying H1. In order to confirm this conclusion, in this study, we performed a range of
robustness tests.

5. Robustness Test
5.1. Parallel Trend Test

The parallel trend assumption is one of the basic preconditions for applying the DID
method. Based on this, the data of the experimental group and the indicators of the control
group should be largely consistent with each other, with a parallel trend, before 2013 when
the government issued the pilot policy of carbon emission trading; otherwise, the conditions
of using the DID model are not satisfied and the results may be skewed. In this study,
the regression equation for constructing the parallel trend test using dummy variables
is as follows: As Equation (4) evolves from the underlying Equation (1), and the results
in Table 4 demonstrate a positive linear relationship between the implementation of a
carbon emission trading policy and the total factor productivity of construction enterprises.
Therefore, the positive linear relationship in Model 4 also holds.

TFPi,t = α0 + β1Pre3i,t + β2Pre2i,t + β3Pre1i,t + β4Currenti,t + β5Post1i,t + β6Post2i,t + β7Post3i,t
+β8Sizei,t + β9ROAi,t + β10Levi,t + β11Costi,t + β12CFi,t + β13Capitali,t + β14Top1i,t + δt + µi + εi,t

(4)

In Equation (4), Pre3i,t denotes the third year before enterprise i is affected by a carbon
emission trading pilot area in period t. The value of this variable is one when the enterprise
is in the third year before being affected; otherwise, its value is zero. Post1i,t denotes the
first year after enterprise i is affected by a carbon emission trading pilot area in period t.
The value of this variable is one when the enterprise is in the first year after being affected;
otherwise, its value is zero. Currenti,t denotes the current period of enterprise i being
affected by a carbon emission trading pilot area in period t. The value of this variable is one
when the enterprise is in the current period of being affected; otherwise, its value is zero.
The rest of the variables are defined in the same way as in the regression results. According
to the test results shown in Column (1) of Table 5 below, the regression coefficients from
Pre_3 to Current are not significant, and the regression coefficients from Post_1 to Post_3
are significantly positive. These results indicate that, before the implementation of the pilot
policy, there were no significant differences between the experimental group and the control
group, meeting the parallel trend assumption. In the pilot areas, carbon emission trading is
effective in promoting the TFP of construction enterprises, but the implementation of this
policy has a certain lag. At the same time, Figure 4 also shows the parallel trend test results
which were acquired from the results of Table 5. In summary, the design of this study meets
the assumption of using the DID method. Before Current (i.e., the implementation of the
policy), there are no significant differences between the experimental group and the control
group (the confidence interval covers zero) when the covariates Size, ROA, Lev, Cost, CF,
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Capital, and Top1 are controlled, indicating that the parallel trend assumption is satisfied.
The confidence intervals of the first, second, and third periods after the implementation of
the policy do not cover zero (the lower limit is greater than zero), suggesting that the policy
significantly promotes TFP.

Table 5. Parallel trend test results.

(1)

VARIABLES TFP

Pre_3 −0.1974
(0.1228)

Pre_2 −0.1915
(0.1300)

Pre_1 −0.1428
(0.1119)

Current 0.0318
(0.1145)

Post_1 0.2402 **
(0.1089)

Post_2 0.2130 **
(0.1031)

Post_3 0.2287 **
(0.0912)

Size 0.3753 ***
(0.0667)

ROA 1.2287 *
(0.6330)

Lev 0.7529 **
(0.3070)

Cost −0.7536 **
(0.3071)

CF −0.1245 ***
(0.0273)

Capital −0.1222 **
(0.0482)

Top1 0.2106
(0.4509)

Constant 1.3276
(1.0568)

Observations 1040
Number of id 96

R-squared 0.7064
Firm yes
Year yes

F value 35.30 ***
Robust standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

5.2. Placebo Test

To achieve robustness of the experimental results, in this study, we drew on Topaova’s
study [47] to perform a placebo test using a counterfactual test. Specifically, the policy time
of the sample data was adjusted to 2011 and 2012, before the implementation of the policy,
for the regression analysis. If the pilot policy of carbon emission trading implemented
in 2013 could indeed increase the TFP of construction enterprises, the coefficient of the
interaction term should be insignificant in the regression results of the year of a dummy
carbon emission trading pilot area. In Columns (1) and (2) of Table 6 below, Test2011
refers to an assumption that the policy came into force in 2011, and Test2012 refers to
an assumption that the policy came into force in 2012. The coefficients of interaction
terms DID2011 and DID2012 are not significant, verifying that the increase in the TFP
of construction enterprises results from the pilot policy implemented in 2013. It is indi-
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cated that the pilot policy of carbon emission trading significantly increases the TFP of
construction enterprises in the pilot area.
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Table 6. Placebo test results.

(1) (2)

VARIABLES TFP (Test2011) TFP (Test2012)

DID2011 −0.1679
(0.1962)

DID2012 0.2166
(0.1752)

Size 0.3813 *** 0.3860 ***
(0.0697) (0.0708)

ROA 1.2303 * 1.2200 *
(0.6464) (0.6457)

Lev 0.7400 ** 0.7307 **
(0.3228) (0.3234)

Cost −0.7644 ** −0.7545 **
(0.3120) (0.3129)

CF −0.1388 *** −0.1380 ***
(0.0282) (0.0281)

Capital −0.1215 ** −0.1222 **
(0.0488) (0.0492)

Top1 0.2754 0.3195
(0.4414) (0.4470)

Constant 1.1672 1.0616
(1.1330) (1.1336)

Observations 1040 1040
R-squared 0.7007 0.7025

Number of id 96 96
Firm yes yes
Year yes yes

F value 26.85 *** 26.84 ***
Robust standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.
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5.3. Propensity Score Matching

The above results can only prove that, on average, the pilot policy of carbon emission trading
can increase the TFP of construction enterprises. However, the exact causal relationship between
the policy and the TFP of construction enterprises cannot be precisely revealed. In addition,
enterprise size and investments in research and development (R&D investments) are closely
related to the increase in the TFP of construction enterprises, and the influences of related variables
such as enterprise size and R&D investments should be removed to confirm that the increase in
the TFP of construction enterprises is not a random or accidental event. Therefore, in this study,
we used the propensity score matching method to correct the selective biases of the sample to
reduce the disturbance in the experimental results, and thus, strengthen the robustness of this
study. In Table 7 below, kernel, neighbor, and radius refer to kernel matching, neighbor matching,
and radius matching, respectively. Table 7 shows that the coefficient signs and significance levels
of the interaction term DID are consistent with the previous analysis, indicating that the regression
results are robust. This also verifies the results of the basic regression that the pilot policy of carbon
emission trading promotes the improvement of the TFP of construction enterprises.

Table 7. Propensity score matching results.

(1) (2) (3) (4) (5)

VARIABLES TFP (Kernel) TFP
(Neighbor) TFP (Radius) tfp_op TFP

DID 0.2346 *** 0.2383 *** 0.2451 *** 0.1156 ***
(0.0578) (0.0836) (0.0607) (0.0410)

L.DID 0.2257 ***
(0.0595)

Size 0.4034 *** 0.4332 *** 0.3878 *** −0.4844 *** 0.4091 ***
(0.0282) (0.0411) (0.0277) (0.0187) (0.0274)

ROA 1.8580 *** 1.2500 *** 1.2183 *** 0.0645 1.0474 ***
(0.2350) (0.3783) (0.1944) (0.1311) (0.1883)

Lev 1.0121 *** 1.0727 *** 0.7200 *** 0.2337 *** 0.5797 ***
(0.1354) (0.2195) (0.1228) (0.0828) (0.1251)

Cost −0.8097 *** −2.3120 *** −0.7403 *** −0.1277 −0.8029 ***
(0.1936) (0.4180) (0.1641) (0.1107) (0.1591)

CF 0.1263 −0.0240 −0.1399 *** −0.1534 *** −0.1376 ***
(0.1905) (0.2633) (0.0391) (0.0264) (0.0377)

Capital −0.1161 *** −0.1163 *** −0.1220 *** 0.7978 *** −0.1432 ***
(0.0157) (0.0215) (0.0165) (0.0111) (0.0169)

Top1 0.3332 * 0.4270 0.3497 * 0.0963 0.3902 *
(0.2021) (0.3012) (0.2044) (0.1379) (0.2063)

Constant 0.4066 −0.2459 1.0127 * 5.1146 *** 1.5324 **
(0.5879) (0.8263) (0.5789) (0.3906) (0.6306)

Observations 1032 469 1040 1040 944
R-squared 0.7278 0.7855 0.7041 0.9374 0.7095

Number of id 96 88 96 96 96
Firm yes yes yes yes yes
Year yes yes yes yes yes

F value 106.2 *** 57.01 *** 95.30 *** 599.3 *** 91.69 ***
Standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1.

5.4. Substitution of Explained Variables

Column (4) of Table 7 shows the TFP calculated using the OP method. The results show
that the regression coefficients of pilot carbon emission trading and the TFP of construction
enterprises are still significantly positive, thus, indicating that the regression results are robust.

5.5. One-Period Lag of Explanatory Variables

Given the possible lag effect of the policy implementation, the core explanatory vari-
ables were regressed in the following period (the coefficient L. DID in the table), as shown in
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Column (5) of Table 7. The results show that the regression coefficients are still significantly
positive, indicating that the regression results are robust.

6. Mechanism Test

The above results show that the TFP of construction enterprises can be significantly
increased by the implementation of the pilot strategy of carbon emission trading. In terms
of its mechanism of action, however, some scholars have suggested that green technological
innovations related to carbon emission reduction technologies can significantly affect the
fluctuation of TFP. Based on this, in this study, we attempted to use a mediating effect model,
with green technological innovation as the mediating variable, to test the mechanism of the
effect of carbon emission trading on the TFP of construction enterprises. In Table 8 below,
the interaction term DID_Inv in Column (1) is the interaction term with the number of green
invention applications (GreInvia) of construction enterprises. The coefficient is 0.0031, and
this significantly positive value indicates that GreInvia positively moderates (accelerating
effect) the positive relationship between DID and TPF. The interaction term DID_Um in
Column (2) is the interaction term between DID and the number of green utility model
applications (GreUmia). The coefficient is 0.0027, and this significantly positive value
indicates that GreUmia positively moderates (accelerating effect) the positive relationship
between DID and TPF. The above tests prove that construction enterprises can increase
their TFP by strengthening research on green innovation technology.

Table 8. Mechanism test results.

(1) (2)

VARIABLES TFP TFP

DID_Inv 0.0031 ***
(0.0011)

GreInvia −0.0004
(0.0010)

DID_Um 0.0027 **
(0.0013)

GreUmia −0.0008
(0.0014)

DID 0.1901 *** 0.1892 ***
(0.0617) (0.0628)

Size 0.3917 *** 0.3914 ***
(0.0275) (0.0277)

ROA 1.1927 *** 1.2026 ***
(0.1923) (0.1929)

Lev 0.7674 *** 0.7525 ***
(0.1218) (0.1221)

Cost −0.7453 *** −0.7486 ***
(0.1623) (0.1629)

CF −0.1450 *** −0.1419 ***
(0.0387) (0.0388)

Capital −0.1264 *** −0.1274 ***
(0.0163) (0.0164)

Top1 0.4324 ** 0.3509 *
(0.2031) (0.2031)

Constant 0.9202 0.9767 *
(0.5731) (0.5767)

Observations 1040 1040
R-squared 0.7112 0.7093

Number of id 96 96
Firm yes yes
Year yes yes

F value 90.54 *** 89.71 ***
Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.
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7. Further Discussion
7.1. Analyzing by Enterprise Size

The size of a construction enterprise largely determines the amount of carbon emis-
sions it needs to reduce and the costs of the reduction process. For this reason, to examine
whether the role of carbon emission trading in promoting the TFP of construction enter-
prises is different for enterprises of different sizes, in this study, the median asset size of
construction enterprises was selected for the sample data. Firms above the median are
considered to be large scale firms, and those below the median are considered to be small
scale firms. Basic regressions were conducted on large and small enterprises separately. The
regression results in Columns (1) and (2) of Table 9 below show that implementation of the
policy has a greater impact on larger construction enterprises than on smaller enterprises.
The phenomenon might be related to the stronger anti-risk capabilities of larger enterprises.
When a new policy is implemented in the market, larger construction enterprises have
relatively stable industrial chains, which, coupled with the effects of economies of scale,
their long-accumulated market shares, and reputations, make it easier for these enterprises
to avoid the risk of the new policy. It is worth noting that larger construction enterprises are
more likely to receive subsidies from the government due to their greater social influence,
and therefore, embark on the road to independent transformation.

Table 9. The first part of heterogeneity.

(1) (2) (3) (4) (5) (6)

VARIABLES TFP
(BigSize)

TFP
(SmallSize)

TFP
(State)

TFP
(Private)

TFP
(HighLev)

TFP
(LowLev)

DID 0.4524 *** 0.2544 ** 0.1471 ** 0.0986 0.2987 *** 0.1696 *
(0.0643) (0.1104) (0.0645) (0.1038) (0.0847) (0.0902)

Size 0.3256 *** −0.0351 0.4180 *** 0.0316 0.4339 *** 0.2107 ***
(0.0349) (0.0595) (0.0368) (0.0581) (0.0459) (0.0562)

ROA 2.2481 *** 0.9156 *** 2.0884 *** 1.5757 *** 2.1470 *** 0.5898 **
(0.4484) (0.2210) (0.3413) (0.2824) (0.3275) (0.2839)

Lev 0.5320 ** 1.2783 *** 0.8098 *** 1.3571 *** 0.5554 ** 1.2261 ***
(0.2463) (0.1684) (0.1888) (0.1846) (0.2570) (0.2292)

Cost −3.9732 *** −0.6114 *** −0.9457 *** −1.0357 *** −1.0736 *** −0.3362
(0.3984) (0.1912) (0.2284) (0.2499) (0.2788) (0.2501)

CF 0.2313 −0.0973 ** 0.4235 ** −0.0501 −0.1126 *** 0.0141
(0.2232) (0.0481) (0.2056) (0.0553) (0.0408) (0.2441)

Capital −0.1547 *** −0.0612 *** −0.1776 *** −0.0896 *** −0.1210 *** −0.0953 ***
(0.0242) (0.0211) (0.0274) (0.0208) (0.0356) (0.0204)

Top1 0.3878 ** 0.2697 0.0101 −1.5812 *** 0.3917 0.2090
(0.1897) (0.4037) (0.2027) (0.5084) (0.2619) (0.3825)

Constant 3.3091 *** 8.8143 *** 1.0599 8.7615 *** 0.4494 4.0085 ***
(0.7428) (1.1965) (0.8546) (1.2311) (1.0743) (1.1679)

Observations 520 520 550 490 520 520
R-squared 0.7818 0.4340 0.8211 0.5193 0.7175 0.6223
Number of

id 64 79 52 61 71 77

Firm yes yes yes yes yes yes
Year yes yes yes yes yes yes

F value 67.45 *** 13.93 *** 94.80 *** 19.07 *** 47.04 *** 30.09 ***
Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

7.2. Analyzing by Enterprise Ownership

The functions of construction enterprises in society vary according to their ownership,
which is especially true for state-owned enterprises and private enterprises. Therefore,
in this study, we constructed a dummy variable for enterprise ownership and divided
the sample enterprises into two groups of data, i.e., state-owned enterprises and private
enterprises. The DID method was applied to the two groups of data, and the results
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are shown in Columns (3) and (4) of Table 9. The TFP of state-owned enterprises shows
significantly positive effects, and the coefficient of the interaction term is 0.1471, while the
coefficient of the interaction term of private enterprises is not significant. The results suggest
that the national policy of carbon emission trading has a greater impact on state-owned
enterprises than on private enterprises, possibly because China’s state-owned enterprises
in the construction industry, whose business operations are under state control, shareholder
more responsibilities and undertake more missions than private enterprises. The increase
in TFP of state-owned enterprises is usually in line with the development of macro policies
issued by the national government, and these enterprises are likely to be industry leaders.

7.3. Analyzing by Financial Structure

According to the principles of financial leverage, borrowing can somewhat lower a
company’s cost of capital to conduct business activities, thus helping the company to reap
profits. For management, the higher the debt ratio, the greater the equity concentration [41].
In such a context, a shareholder can earn more profits from each project. In construction
enterprises with risk preferences, in particular, the increase in the debt ratio will push up
investments in more risky projects. The median debt ratio of construction enterprises for
the sample data was selected for this study. Construction enterprises above the median
are considered to have a high debt level and those below the median are considered to
have a low debt level. Consequently, this study classified the sample enterprises into two
groups with high and low debt levels, respectively, and regressions were conducted on the
two groups separately to try to explore whether the policy of carbon emission trading has
different effects on enterprises with different debt levels. Columns (5) and (6) of Table 9
show the results of construction enterprises with high debt levels and those with low debt
levels, respectively. The coefficient of the interaction term for enterprises with high debt
levels is significantly positive at the 1% statistical level, and that for enterprises with low
debt levels is significantly positive at the 5% statistical level, suggesting that the policy of
carbon emission trading has a greater impact on construction enterprises with high debt
levels than those with low debt levels. This phenomenon may be because a high debt ratio
reflects an enterprise’s confidence in making profits in the future.

7.4. Analyzing by Geographical Location

China is a vast country, and the eastern and western regions have significantly different
development levels. In his study, we categorized the pilot regions based on the division
of the eastern, central, and western regions by using the National Bureau of Statistics
of China (www.stats.gov.cn/ztjc/zthd/sjtjr/dejtjkfr/tjkp/201106/t20110613_71947.htm)
(accessed on 20 October 2022). The eastern regions are Beijing, Tianjin, Shanghai, and
Guangdong; the central region is Hubei; and the western region includes Chongqing. In the
construction industry, similarly, different regions are affected by the pilot policy of carbon
emissions to different extents. Therefore, in this study, we divided the sample enterprises
into three groups according to their locations. The results are shown in Table 10 below.
Columns (1), (2), and (3) present the regression results for the eastern, central, and western
groups, respectively. The coefficients of the interaction item are 0.2397 for the eastern group
and 0.8990 for the central group, and they are significant at the 1% statistical level. The
difference between these two regions shows that the same policy has a greater impact
on construction enterprises in central China than in eastern China. The coefficient of the
interaction item for the western group is not significant, indicating that the policy does not
have a significant impact on this region. It is said that carbon emission trading, as a new
policy tool, is more effective in economically developed regions [41]. The current situation
of the inactive market in western China relies mainly on traditional high-energy-consuming
construction technologies, which are not enough to give full play to this new policy.

www.stats.gov.cn/ztjc/zthd/sjtjr/dejtjkfr/tjkp/201106/t20110613_71947.htm
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Table 10. The second part of heterogeneity.

(1) (2) (3) (4) (5)

VARIABLES TFP (East) TFP
(Middle) TFP (West) TFP (YES) TFP (NO)

DID 0.2397 *** 0.8990 *** 0.2284 0.2374 *** 1.2236 ***
(0.0736) (0.1906) (0.1687) (0.0643) (0.3908)

Size 0.3514 *** 0.5789 *** 0.6616 *** 0.3934 *** 0.1149
(0.0303) (0.0870) (0.0598) (0.0280) (0.1924)

ROA 1.0911 *** 2.7451 *** 7.2857 *** 0.9582 *** 0.1656
(0.2009) (0.6982) (2.2270) (0.2354) (0.5468)

Lev 0.6578 *** 1.0717 ** 0.9739 ** 0.7315 *** −0.0454
(0.1291) (0.4688) (0.4606) (0.1288) (0.4862)

Cost −1.0754 *** 0.0390 4.4635 *** −1.2561 *** 0.1870
(0.1980) (0.3158) (1.3190) (0.2292) (0.4155)

CF −0.1379 *** −0.0783 0.6572 −0.1234 *** 0.6723
(0.0399) (0.4911) (0.8775) (0.0382) (0.5413)

Capital −0.0942 *** −0.3218 *** −0.2861 *** −0.1414 *** −0.1453 **
(0.0173) (0.0603) (0.0744) (0.0193) (0.0589)

Top1 0.8081 *** −1.7837 *** 0.2846 0.3370 −0.8615
(0.2434) (0.5863) (0.3243) (0.2066) (1.0601)

Constant 1.4196 ** −0.6186 −3.5124 *** 1.8078 *** 7.7415 *
(0.6325) (1.9576) (1.2185) (0.6592) (4.2954)

Observations 817 129 94 944 96
R-squared 0.6929 0.9039 0.8831 0.6967 0.6789

Number of id 75 11 10 96 36
Firm yes yes yes yes yes
Year yes yes yes yes yes

F value 70.53 *** 38.83 *** 21.71 *** 86.24 *** 4.563 ***
Standard errors in parentheses *** p < 0.01, ** p< 0.05, * p < 0.1.

7.5. Analyzing by Official Subsidies

Government subsidies affect the business activities of enterprises to some extent. To
further examine whether the policy of carbon emission trading affects enterprises with and
without government subsidies in different ways, in this study, we constructed a dummy
variable for government subsidies and divided the sample data into enterprises with and
without government subsidies. Basic regressions were conducted on the two groups, and
the results are shown in Table 10. According to Columns (4) and (5), the TFP of enterprises
in both groups significantly increases, regardless of government subsidies. The coefficient
of the interaction item for the group with government subsidies (0.2374) is lower than
that for the other group (1.2236). To explain this phenomenon, it is said that construction
enterprises not subsidized by the government constantly improve their innovation and
managerial abilities in order to survive in the changing market, which drives up their TFP
and improves their performance [41].

8. Conclusions and Policy Recommendations
8.1. Conclusions

The policy of carbon emission trading is the policy tool for reducing emissions that
China has initially used at the market level to tackle global climate change and the energy
crisis. In addition, it is an important strategy to promote the green and low-carbon develop-
ment of the country and a crucial measure to peak CO2 emissions before 2030 and achieve
carbon neutrality before 2060.

Subsequently, in this study, we used the data of A-share and the ChiNext board listed
construction enterprises from 2006 to 2021, and adopted a DID model and a mediating effect
model to empirically test the effects of the policy of carbon emission trading implemented
in China on the TFP of construction enterprises in the country, and conducted an in-depth
analysis of the mechanism.
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Based on the study results, the following conclusions have been drawn: The policy
of carbon emission trading significantly promotes the TFP of construction enterprises;
green technological innovation has a mechanism effect on the TFP of China’s construction
enterprises during the policy implementation; the heterogeneity analysis of sample data
shows that the policy has greater effects on large construction enterprises, state-owned
construction enterprises, and construction enterprises with high debt levels. Meanwhile,
the TFP of construction enterprises located in eastern and central regions increases more
significantly than that of enterprises located in western regions.

Ultimately, this study also has its own limitations. Since the data for this study
were sourced from listed construction enterprises, non-listed micro enterprises in the
construction industry were not included in the scope of this study. Therefore, the findings
of this study do not apply to unlisted construction enterprises. The double difference model
in this study, based on data from China, can only be used to draw conclusions for the
national context of China. Other scholars, internationally, can draw on Equation (1) in this
study and select relevant data from other countries or regions for their research.

In future studies, the impact of carbon emission policies on enterprises in other
industries could be assessed and data from unlisted enterprises should be included in the
study for a more accurate judgement of such studies.

8.2. Policy Recommendations

The construction of a national carbon market is a complex and systematic project.
According to the results of this study, efforts need to be made in various aspects of the
construction work, such as the top-level design, market system, and subsidy mechanism.
Based on this, we propose the following recommendations:

First, various regulations and supporting systems need to be established and improved
for the carbon market to ensure that carbon allowances can be traded in a lawful manner
in China’s carbon trading market, to give full play to the role of the policy of carbon
trading in promoting enterprises’ TFP, and to facilitate the transformation and upgrading
of construction enterprises. At the same time, the government should strengthen the
promotion of the policy, call on market participants to consciously abide by the market
order, create an excellent atmosphere in the carbon trading market, and further improve the
TFP of the construction industry. From the experiments on firm size and firm ownership
groupings, larger construction enterprises have a greater social effect due to their huge
market share and well-established industrial chain. In the construction industry, due to
the huge initial capital requirements and long investment cycles, the larger enterprises are
generally state-owned enterprises. Therefore, it is suggested that government departments
can appropriately strengthen the performance incentives for large state-owned construction
enterprises to participate in carbon emission trading policies, so that these enterprises can
form a leading role in the industry.

Second, from the experiments with different liability groupings, it is recommended
that banks or financial institutions appropriately expand green financial loans, issue green
bonds, and avoid discrimination against the construction industry for its slow capital
turnover. This will encourage construction enterprises to actively participate in the market
for carbon emission trading. The carbon financial market system should be gradually
improved to strengthen the incentive effect of market mechanisms on innovative enterprises.
China’s market of carbon financial products is still in a nascent stage; the pilot trading
and use of carbon financial products are not active and not accepted by the general public.
Therefore, the construction of the carbon market in China should extend further into the
derivatives market, and incentive-based financial instruments should be developed for
green innovation technologies, as an attempt to reinforce the role of green innovation in
increasing the TFP of construction enterprises.

Third, from the experiments on whether or not to receive government subsidies, the
government should avoid excessive subsidies to enterprises and use the market mechanism
to urge enterprises to forge ahead independently on the road of “peaking carbon emission
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and carbon neutrality”. Meanwhile, carbon emission transfers across regions due to
different regional subsidy policies should be avoided, and the subsidy mechanism should
serve as a booster for carbon emission reduction. As a consequence, subsidies could
encourage building enterprises to enter carbon emission trading to earn profits from it and
to develop financing channels. The government should then set a benchmark for subsidies;
provinces and municipalities could adjust the benchmark subsidies according to the actual
situation, and their adjustments should not exceed a certain range, so as to co-ordinate the
carbon emission situation of construction enterprises nationwide and make the subsidy
mechanism a booster for carbon emission reduction.

Fourth, from the experiments of the different regional economic groupings, the western
region did not benefit from the carbon pilot policy because of its economic backwardness. It
is recommended that the state strengthen its policy of encouraging participation in carbon
emission trading in the western region, and keep up with the green transformation and up-
grading of western construction enterprises, abandoning overly traditional and backward
construction techniques. Under this case, it is suggested that the state should set different
policies on carbon emission trading according to the industrial and economic development
characteristics of different regions. For the eastern region, tough policies should be adopted
to abandon traditional and dated technologies; construction enterprises in the western
region should adopt flexible policies to release some space for development in order to
keep pace with the green transformation and upgrading. In addition, a favorable compet-
itive environment should be established to maximize the policy effect of environmental
regulations, so that high production capacity can be decoupled from high carbon emissions
as soon as possible.
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