Using Network Analysis Theory to Extract Critical Data from a Construction Project
Abstract
:1. Introduction
1.1. Background
1.2. Assumption and Procedure of Research
- (1)
- To process the quantity of available data, the information must be decomposed to elementary items.
- (2)
- A conceptual information network should be developed based on the corresponding characteristics of the information flow and network theory. The authors firstly proposed the virtual item of information as the physical individual in traditional network analysis. The information flow structure is indicated via a network graph.
- (3)
- Information network analysis processes are developed based on the analysis data that needs to be transferred from the original practical documents. Connections between data must be indicated in the nodes of the information network.
- (4)
- Finally, data (nodes) are evaluated by network analysis metrics using a case study. Moreover, this study compares the analysis results of the case study against the practical application of critical data for a construction project, and verifies the results obtained using the information extracted from the case study.
2. Relationship between Network Theory and Information Processes
3. Basic Information Network Concept
3.1. Information Network Components
3.2. Correlation between Data Utilities and Metrics
4. Analysis Procedure
4.1. Establishing an Information Network for Construction Projects
4.2. Information Network Evaluation
4.2.1. Centrality Issue Metrics
- A.
- Degree metric
- B.
- Closeness
4.2.2. Bridge Issue Metrics
5. Case Study for Verification
5.1. Data Adoption for the Case Study
5.2. Collating Data for Refurbishing Heritage Buildings
5.3. Establishing Connecting Frames of the Information Network
5.4. Information Network Comparison and Evaluation Results
5.4.1. Information Network Metric Graphs
5.4.2. Clustering Superior Data Using Metric Values
5.5. Verification for the Critical Data Result in the Information Network
5.5.1. Influence Analysis of Direct Citation of Data and Definition of the Core Data
5.5.2. Important Analysis Sequence for the Three Data Metrics and the Definition of Essential Data
5.5.3. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cristóbal, J.R.S.; Carral, L.; Diaz, E.; Fraguela, J.A.; Iglesias, G. Complexity and project management: A general overview. Complexity 2018, 154, 121–132. [Google Scholar] [CrossRef]
- He, X.; Liu, R.; Issa, R.R.A.; Anumba, C.J. A Data Tracking Tool to Improve Cost Management Reporting for Large Capital Projects. In Proceedings of the ASCE International Conference on Computing in Civil Engineering 2021, Orlando, FL, USA, 12–14 September 2021. [Google Scholar]
- Mak, S. A model of information management for construction using information technology. Autom. Constr. 2001, 10, 257–263. [Google Scholar] [CrossRef]
- Daher, P.; Dias, R.; Ergan, S. Owner requirements in as-built BIM deliverables and a system architecture for FM-specific BIM representation. Can. J. Civ. Eng. 2020, 47, 215–227. [Google Scholar]
- Sheng, D.; Ding, L.; Zhong, B.; Love, E.D.P.; Luo, H.; Chen, J. Construction quality information management with blockchains. Autom. Constr. 2020, 120, 103373. [Google Scholar] [CrossRef]
- Shahi, A.; Safa, M.; Haas, C.T.; West, J.S. Data fusion process management for automated construction progress estimation. J Comput. Civ. Eng. 2015, 29, 04014098. [Google Scholar] [CrossRef]
- Ekanayake, B.; Wong, K.W.; Fini, A.; Smith, P.V. Computer vision-based interior construction progress monitoring: A literature review and future research directions. Autom. Constr. 2021, 127, 103705. [Google Scholar] [CrossRef]
- Solihin, W.; Eastman, C.M.; Lee, Y.; Yang, D.H. A simplified relational database schema for transformation of BIM data into a query-efficient and spatially enabled database. Autom. Constr. 2017, 84, 367–383. [Google Scholar] [CrossRef]
- Chen, W.; Das, M.; Chen, K.; Cheng, C.P. Ontology-based data integration and sharing for facility maintenance management. In Proceedings of the Construction Research Congress 2020, Tempe, AZ, USA, 8–10 March 2020. [Google Scholar]
- Beach, T.; Petri, I.; Rezgui, Y.; Rana, O. Management of collaborative BIM data by federating distributed BIM models. J. Comput. Civ. Eng. 2017, 31, 04017009. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lu, Y.; Peh, L. A review and scientometric analysis of global building information modeling (BIM) research in the architecture, engineering and construction (AEC) industry. Buildings 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Noor, B.A.; Yi, S.R. Review of Building information modeling in construction industry: Meta-analysis. Constr. Innov. 2018, 18, 433–452. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. A BIM-data mining integrated digital twin framework for advanced project management. Autom. Constr. 2021, 124, 103564. [Google Scholar] [CrossRef]
- Khaja, M.; Seo, J.D.; McArthur, J.J. Optimizing BIM metadata manipulation using parametric tools. Procedia Eng. 2016, 145, 259–266. [Google Scholar] [CrossRef]
- What Is Blockchain Technology? Available online: https://www.ibm.com/topics/blockchain (accessed on 22 May 2023).
- Li, J.; Greenwood, D.; Kassem, M. Blockchain in the built environment and construction industry: A systematic review, conceptual models and practical use cases. Autom. Constr. 2019, 102, 288–307. [Google Scholar] [CrossRef]
- Sacks, R.; Koskela, L.; Bhargav, A.D.; Owen, R. Interaction of lean and building information modeling in construction. J. Constr. Eng. Manag. 2010, 136, 14157555. [Google Scholar] [CrossRef] [Green Version]
- Leung, N.N.; Chan, S.L.; Issa, R.R.A. Meta-Data-Based Collaboration in Construction Project Management. In Proceedings of the Fourth Joint International Symposium on Information Technology in Civil Engineering, Nashville, TN, USA, 15–16 November 2003. [Google Scholar]
- Rob, P.; Coronel, C. Database Systems: Design, Implementation, and Management, 13th ed.; Cengage Learning: Boston, MA, USA, 2011; p. 88. [Google Scholar]
- Rasdorf, W.J.; Abudayyeh, O.Y. NIAM conceptual data-base design in construction management. J. Comput. Civ. Eng. 1992, 6, 41–62. [Google Scholar] [CrossRef] [Green Version]
- Bansal, S.; Sharma, P.C. 5—Classification criteria for data deduplication methods. In Data Deduplication Approaches-Concepts, Strategies, and Challenges; Thwel, T.T., Sinha, G.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 69–96. [Google Scholar]
- Rob, P.; Coronel, C. Database Systems: Design, Implementation, and Management, Cengage Learning, 14th ed.; Cengage Learning: Boston, MA, USA, 2022; p. 88. [Google Scholar]
- Giorginisa, T.; Ougiarogloubc, S.; Evangelidisc, G.; Dervo, D.A. Fast data reduction by space partitioning via convex hull and MBR computation. Pattern Recognit. 2022, 126, 108553. [Google Scholar] [CrossRef]
- Melo, V.S.; Panisson, A.R.; Bordini, R.H. Meta-information and argumentation in multi-agent systems. iSys-Braz. J. Inf. Syst. 2017, 10, 74–97. [Google Scholar] [CrossRef]
- Chowdhury, S.; Zhu, J. Investigation of critical factors for future-proofed transportation infrastructure planning using topic modeling and association rule mining. J. Comput. Civ. Eng. 2023, 37, 04022044. [Google Scholar] [CrossRef]
- Nettleton, D. Data mining of social networks represented as graphs. Comput. Sci. Rev. 2013, 7, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Tao, B.; Dai, H.N.; Wu, J.; Ho, W.H.; Zheng, Z.; Fong, C.C. Complex network analysis of the bitcoin transaction network. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 1009–1013. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Johnson, J.C. Analyzing Social Networks; Sage: London, UK, 2022. [Google Scholar]
- Brandhorst, R.; Krzyzowski, L. Biographical Reconstructive Network Analysis (BRNA): A Life Historical Approach in Social Network Analysis of Older Migrants in Australia. Forum Qual. Soc. Res. 2022, 23, 4. [Google Scholar]
- Yuret, T. Network analysis of econometric society fellows. Scientometrics 2022, 127, 7615–7631. [Google Scholar] [CrossRef]
- Arif, T.; Ali, R.; Asger, M. Social network extraction: A review of automatic techniques. Int. J. Comput. Appl. 2014, 95, 975–8887. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Figueiredo, C.; Azevedo, J. Central nodes and surprise in content selection in social networks. Comput. Hum. Behav. 2015, 51, 382–392. [Google Scholar]
- Mel, A.; Kang, B.; Lijffijt, J.; De Bie, T. Fondue: A framework for node disambiguation and deduplication using network embedding. Appl. Sci. 2022, 11, 9884. [Google Scholar] [CrossRef]
- Brandes, U.; Borgatti, S.P.; Freeman, L.C. Maintaining the quality of closeness and betweenness centrality. Soc Netw. 2016, 44, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Prajnawrdhi, T.A.; Karuppannan, S.; Sivam, A. Preservation of cultural heritage buildings is an action in maintaining the sustainability of architectural diversity in Indonesia. Procedia Environ. 2015, 28, 557–566. [Google Scholar] [CrossRef] [Green Version]
Design Phase Documentation | Design Phase Data | Construction Phase Documentation | Construction Phase Data |
---|---|---|---|
|
|
|
|
Rank | Data Code | Metric of Degree | Data Code | Metric of Closeness | Data Code | Metric of Betweenness |
---|---|---|---|---|---|---|
1 | B45I7 | 0.624 | B45I7 | 0.795 | B45I7 | 0.093 |
2 | A12I1, A14I1, A12I2, A12I3 | 0.592 | A14I1 | 0.769 | A14I1 | 0.069 |
3 | A11I1, A13I1, A11I2, A11I3 | 0.520 | A12I1, A12I2, A12I3 | 0.747 | A33I29, A33I30 | 0.034 |
4 | A15I1 | 0.472 | A13I1 | 0.721 | A12I1, A12I2, A12I3 | 0.030 |
5 | B32I27 | 0.440 | A11I1, A11I2 A11I3 | 0.716 | A32I26 | 0.025 |
6 | A33I29 A33I30 | 0.392 | A15I1 | 0.695 | A32I25 | 0.024 |
7 | A33I28 | 0.368 | A33I29, A33I30 | 0.679 | A13I1 | 0.023 |
8 | A32I26 | 0.360 | B32I27 | 0.677 | A15I1 | 0.022 |
9 | A32I25 | 0.352 | A33I28 | 0.670 | A11I1, A12I1, A11I3, A33I28 | 0.021 |
10 | B35I7, B31I23 | 0.304 | A32I26 | 0.649 | B32I27, B35I30 | 0.017 |
11 | B35I18 | 0.296 | A32I25 | 0.646 | B42I34 | 0.015 |
12 | B33I28, B42I34 | 0.288 | B31I23 | 0.642 | A32I27 | 0.012 |
13 | A12I6, A31I21, B31I22, B35I28 | 0.280 | B35I7 | 0.638 | B35I7, B32I18 | 0.011 |
14 | B41I31 | 0.264 | B33I28 | 0.635 | B31I23 | 0.010 |
15 | A34I31, B14I7, B41I7, B32I18, B43I36 | 0.248 | B35I28 | 0.614 | B35I18, B31I22 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, C.-H.; Chen, W.-T.; Ho, C.-K. Using Network Analysis Theory to Extract Critical Data from a Construction Project. Buildings 2023, 13, 1539. https://doi.org/10.3390/buildings13061539
Kao C-H, Chen W-T, Ho C-K. Using Network Analysis Theory to Extract Critical Data from a Construction Project. Buildings. 2023; 13(6):1539. https://doi.org/10.3390/buildings13061539
Chicago/Turabian StyleKao, Chih-Han, Wei-Tong Chen, and Chung-Kuang Ho. 2023. "Using Network Analysis Theory to Extract Critical Data from a Construction Project" Buildings 13, no. 6: 1539. https://doi.org/10.3390/buildings13061539
APA StyleKao, C. -H., Chen, W. -T., & Ho, C. -K. (2023). Using Network Analysis Theory to Extract Critical Data from a Construction Project. Buildings, 13(6), 1539. https://doi.org/10.3390/buildings13061539