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Abstract: In this paper, the bending behavior of rectangular plates with stepped thickness resting
on an elastic half-space foundation is investigated through an analytic method. Combined with the
bending theory of the rectangular thin and moderately thick plate, the stepped rectangular plate is
divided into upper and lower plates, and the Fourier series is used to obtain the analytical solution of
the deflection of the plate and the interaction force between the plate and foundation. The influence
of the elastic modulus of the plate, plate theory, and the dimension of the plate on the deflection
of the stepped rectangular plate is also discussed. The results show that the analytical solution is
basically the same as the existing research results, and it is also verified by the analysis results of the
models established by ABAQUS software. The deflection at the center of the stepped rectangular
plate increases with the increase of the elastic modulus of the upper plate and the decrease of the side
length of the upper plate, while the plate theory has little effect on the deflection of the plate. This
method not only overcomes some of the disadvantages of numerical methods but also eliminates
the assumptions of the Winkler foundation model and the two-parameter foundation model, thus
obtaining a more reasonable and accurate bending performance of the stepped rectangular plate
resting on the elastic half-space foundation.

Keywords: stepped rectangular plate; thin plate theory; moderately thick plate theory; static;
bending performance

1. Introduction

Plate-foundation systems have become a research hotspot in civil engineering. Much
practical engineering, such as foundation plates in civil engineering [1], piezoelectric
laminated plates in electronic engineering [2], and pavement plates supporting the traffic
load [3], can be simplified into a mechanical model for analysis [4]. In order to provide
necessary parameters for the model of these structures, two methods are usually used.
One is to provide accurate models for various types of plates and the interaction between
the plate and foundation. The other one is to develop a numerical analysis method and
computer codes for the solution of practical engineering problems.

In the past few centuries, much work has been done to develop simplified models of
foundations to promote applications in engineering design. The Winkler foundation model,
in which the foundation is assumed as a single layer of vertical springs, was first proposed
in the 1860s [5]. However, the accuracy of this model cannot be guaranteed in the analysis
of nonlinear conditions of the foundation. Thus, the linear spring is replaced by a nonlinear
type of model to overcome this shortage [6]; this model can be used in static analysis [7]
and dynamic analysis [8], but it still cannot accurately analyze the frictional foundation due
to the reason that the analysis model of the Winkler foundation eliminates the interfacial
shear stress. Thus, researchers have proposed two-parameter and multi-parameter models
to solve this problem. Compared to the Winkler model, the two-parameter Pasternak
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foundation model has shear and vertical stiffness with nonlinear properties, which is
helpful to improve the efficiency of the model, without resulting in significant loss of the
accuracy of calculation results [9,10]. In addition, the three-parameter model [11] and the
frictional model [7] were also proposed by researchers. Although the refinement of the
parameters could improve the applicability of the foundation model, the increase of the
number of the parameters will enhance the complication of the calculation process.

The plate theory also plays an important role in the simulation of numerical models
and the structure design of the plate-foundation system. The Kirchhoff plate theory [12]
and the Mindlin plate theory [13] are the two types of classical plate theories widely used
in the simulation of plate foundations. The in-plane deformation of the plate is assumed to
be linearly changed in the classical plate theories, and these theories could only be used
in the analysis of thin and moderately thick plates. Many studies have been carried out
using the classical plate theories. Ozdemir [14,15] investigated the static performance, free
vibration properties, and transient response of thick plates resting on the elastic Winkler
foundation with the finite element method. Farida et al. [16] presented the efficient analysis
of plates resting on an elastic half-space foundation using the boundary element method.
Ragpba et al. [17] used convolution and indirect meshless techniques to obtain the vibration
performance of irregular composite plates on the linear and parabolic Winkler foundations.
Ferreira et al. [18] investigated the free vibration problem of the plate resting on the Winkler
foundation using the wavelet collocation method. Investigations of the Kirchhoff plate
on foundations are also reported in the literature. Yue et al. [19] analyzed the influence
of soil heterogeneity on the bending of a circular thin plate using two modified Vlasov
foundation models. Mohammadimehr et al. [20] obtained the buckling and free vibration
response of functionally graded materials resting on a Pasternak foundation. To promote
the development of the plate theory, higher-order shear deformation theory and quasi-3D
theory have attracted the attention of researchers in recent years, and these theories take
into account the nonlinear deformation of the plates. Singh et al. [21] used the stress-
function Galerkin method to investigate the dynamic response of a sandwich functionally
graded plate resting on a Pasternak elastic foundation. Huang et al. [22] studied the
nonlinear dynamic performance of functionally graded material plates using an improved
perturbation technique. Rachid et al. [23] and Vu et al. [24] used different quasi-3D theories
to analyze the static response of the plate. Kumar et al. [25] investigated the vibration
performance of stepped FGM plates using the dynamic stiffness method.

Based on the foundation models and the different plate theories, analytical models can
be used to obtain the accurate solution for the plate-foundation systems. Compared with
the literature using numerical methods, analytical methods are not commonly used due to
the difficulties in the partial differential equations and various boundary conditions [26].
Yan [27] introduced the usage of the Fourier series in the analysis of the bending, stability,
and vibration of the plate. The deflection of the plate was expressed as a double Fourier
series, and the various boundary conditions were used to obtain the analytical solution of
the plate resting on the Winkler foundation. Wang [28] used the method mentioned in [27]
to investigate the interaction and deflection of the thin plate resting on the elastic half-space
foundation. The foundation models eliminated the assumptions of the Winkler foundation
to overcome the shortages of the Winkler model to obtain a more accurate and reasonable
analytical solution. Li et al. [29] presented the analytic bending solution of a thin plate
resting on the Winkler foundation. The governing differential equations of the plate were
transferred into Hamilton canonical equations, and the analytic solution could be obtained
with all edges slidingly supported. Bai et al. [30] studied the bending problem of the free
orthotropic rectangular thin plate (RTP) on a two-parameter elastic foundation under a
concentrated load by using the symplectic superposition method. Tenenbaum et al. [31]
gave the analytical solutions for the buckling loads of thin rectangular plates with internal
supports and different boundary conditions. The solution had a series form, and the coeffi-
cients were solved to match the edge conditions. With the development of economy and
technology, multilayer structures under static loading or dynamic loading have been delt
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with in recent years. Multilayer structures, whose material properties are discontinuous at
each interface of the plate, are different from traditional laminated composites. Functionally
graded material (FGM) is one of the multilayer structures that is attracting tremendous
research interest. The analytical solution for the bending performance of the FGM plate was
first introduced in the 1990s [32]. Afterwards, FGM plates were widely used in engineering
structures, and the buckling and dynamic response [33-35], post buckling behavior [36,37],
and elastoplastic mechanical performances [38-40] of the FGM plates were introduced.

As far as the authors know, there are few studies about the kinematical equations
suitable for a stepped rectangular plate. It also seems to be a fact that there are few research
papers on the static bending analysis of stepped rectangular plates resting on the elastic
half-space foundation. To bridge this gap, this paper used traditional plate theory that is
common in the analysis of single plates resting on an elastic foundation. In order to promote
the application of traditional plate theories, the stepped rectangular plate is considered
to be composed of two plates with different dimensions and properties (upper and lower
plates), and taking into account the thickness of the upper and lower plates, the analytical
method is divided into three cases: (1) the upper and lower plates are both thin plates;
(2) one plate is a thin plate, while the other one is a moderately thick plate; (3) the upper and
lower plates are both moderately thick plates. A Fourier series is used to establish the basic
equations and the coordination equation of the plate-foundation system, and the boundary
conditions are also used to obtain the analytical solution. In addition, the influence of plate
theory, the elastic modulus of the plate-foundation system and dimensions of the plate on
the bending performance of the stepped rectangular plate are analyzed.

2. Governing Equations and Results

A stepped rectangular plate, whose upper and lower plate dimensions are a; x by
(length x width) and a; x b, (length x width), respectively, is referred to the Cartesian
systems of coordinates x11; and x,1; associated with the external surfaces of the upper and
lower plates (Figure 1). The contact surface between the upper and lower plates is assumed
to exclude their mutual slipping. A uniformly distributed load g(x1,y1) is applied on the
external surface of upper plate.

/L Foundation

S

Figure 1. Research model.

2.1. Both Upper and Lower Parts of the Plate Are Thin Plates
2.1.1. Basic Equations and Boundary Conditions

S

Taking the upper plate as an example, the bending equation of the upper plate can be
expressed as [27]:
DV*V?w(x,y) = q(x,y) — F(x,y)

where w(x,y) is the deflection of the plate, D is the bending stiffness, q(x,y) and F(x,y) are the

loadings applied on upper and lower surface of the plate, respectively, and V? = % + %

is the Laplacian operator.
Therefore, in the analysis process of the stepped rectangular plate resting on the elastic
half-space foundation (Figure 1), the force of the upper and lower plates is different. The
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upper and lower loadings applied on the upper plate are q(x1,y1) and F(x1,y1), respectively,
while for the lower plate, these two values are F(x3,1) and Q(x2,2), respectively, in which
F(x1,y1) and Q(x2,12) are the interaction force between the upper and lower plates and the
subgrade reaction, respectively. After that, the bending equation of the upper and lower
plates can be written as below:

a4w1 a4ZU1 84ZU1
Diy 5ot +2Hi5 5 5+ Dy g+ Fvuwn) = () (12)
Duy gt +2Ha5 gy + D + Qv v2) = Fln ) (Ib)

where Dy, = Eyh?/12(1 — Ui) and Dy, = E,h?/12(1 — U;i) are the bending stiffness of
x;-axis direction and y;-axis direction, respectively. w; is deflection of the plate, k; is the
thickness of plate, vy, and vy, are the Poisson ratio of x;-axis direction and y;-axis direction
respectively, H; = Dy,vy, + 2Dy, is equivalent stiffness, and Dy, is torsional stiffness.
The upper and lower plates are numbered i = 1 and i = 2, respectively.

The internal force of the upper and lower plates could be written in terms of
deflection functions:

My, xz(a;Z;i + vy, 8;;12)1)
My, = —Dy,( aazuf + oy, a;j‘;)
My = =2 aig;
0u = ~D 5~ (B 2Dy o
Qy, = Dy, a;u?’l (H; +2Dxyy,) aaj;z >
Ry = —2Dyy, (1 — v)aa;;‘;i

in which My, and My, are the bending moment of the x;-axis direction and y;-axis direction,
respectively, My,y, is the twisting moment, Q,;, and Q,, are the shear force of the x;-axis
direction and y;-axis direction, respectively, and R is the counterforce at the corner of the
upper and lower plates.

The boundary restrictions are given as:

Atx=0,x=a
%w; 9%w;
W.Zl + vy[ﬁzl: 0 (My, =0) (2a)
1 1
3w, ?Pw;
D, —* H;+2D,,)——~=0 =0 2b
Xi ax;j + ( l+ xtyl)axiaylz (sz ) ( )
Aty=0,y=a
Bzwi azwi
— —=0(M,;, =0 2
o T (My, = 0) (20)
w; Pw;
D, — H;, +2D..,.)——==10 =0 2d
Yi ay? +( 1+ X,yl)ayiaxiz (sz ) ( )



Buildings 2023, 13, 1671

50f22

At the corner of the plate

Bzwi
9x;0y;

=0 (Ryy, =0) (2e)

2.1.2. Coordination Equation and Analytical Solution

The deflections of the upper and lower plates can be expressed as a double cosine
series with supplementary terms [27] (Appendix A):

©  x 2212 gphy3_4p2y2 —yh
wi= Bt cos M cos Mt b {[uzm.y.’”’ TOL . iy
=07;=0 =0 P i
Zb,yl y, m,2 yit—2b; 2%2 mrfx,
+ 77 | Cmi + [ H2myy, a,2 24b; 2h2 Dim; g cos =5
o0 2,22 3_4,2,2 4 222
n;cmea;” 4aix;® —4a;7x; —x; 2a;x; n;~mea; (3)
+HEO{ |:‘u2mix1_ i b.2 e R 24L;i41 i + 12;1.2 Xi :|Gn’ _|_ [Van-x,- i hiz i
4_522.2
Xi —251,' X ninty;
2404 }H”z} b
(mi:O,l,Z, 5 n;=0,12,---)
H;+2Dy, H;+2D . ,
where gy, = %, Homy; = #, Winn;» Cmyr Dm;, Gn,, Hy; are undetermined
-1 1

parameters.

Equation (4) has four steps” derivation for a rectangular plate with four free edges,
which could satisfy the boundary conditions, such as the shear force at the boundary
(Equation (2b,d)) and the corner condition (Equation (2e)). If the plate is made of isotropic
material, the Equation (4) can degenerate into an expression of an isotropic rectangular
plate.

Based on Equation (la,b), it could be found that F(x1,y;) is related to the control
differential equations of the upper and lower plates, so F(x1,y1) can be expanded into a
double cosine series represented by x1, y; and x3, 5.

o0 [ee]
miq7tXxq n,7tY1
F(x1,1) = 2 Z Amyng Fnyng cO8 cos 1b 4)
11=017=0 m 1
vy My 7IX: N7ty
F(x2,y2) = L X Awmyny Fnyny cOs =272 cos ==

01,=0 2 (5)
(ml:0/1/2// nizolllzl"')

where
1/4, ml = 1’11- = O
Ay = 1/2, m; =0, n; >00rm; >0, n; =0
1/4, mi> 0,n;>0
4 [borm mq7TXq ny7Ty,
Fyymy = 7/ / Fy(x1,y1) cos cos dxidy,
YombiJo o ’ 1 by
_ 4 bz @ r My 7TX 1o 7Ty
Fuyny = 25> Jo Jo (xl,yl) cos ™22 cos —y dxody
4 (b2 ra mqITx n Mo TTX n
= a,by 02 ()2 Z Z Aml”’lle”l Ccos 1 L cos 1b 4sil CcOoSs 2 2 cos 2 yz dx2dy2
m] 071]70
= a2b2 Z Z f o Amyny Fryny cos L cos nlgtyl cos #2722 cos = yz dxodyy
1 =0n 1*
= ﬂzbz Z Z Amyny Fmyny fo ? cos "7 cos nlbnjl cos #2722 cos L y2 dxrdy,
07‘[]—

(mi_orl/z/ ‘y le‘—o,l,z,"')
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X0, Yo represent the relationship between the x1y; and x,y, coordinate systems, and
substituting xp = x1 + xq, Y2 = y1 + Yo into the integral part of expression of Fy;,,:

bz a m17TX1 n17ty, YLD n27tYo
fo cos €os =<+ cos —4=2 cos —p- dxodyy

xo+a h s
°+ 1 fy°+ 1 cos mlgxl cos ”1;?1 cos ngxz cos nzhzyz dxdy;

Xo+ﬂ1 f]/OJFhl my 7T(;Clz*%o) cos M ﬂ(%z—yo) cos m2a72fxz cos nzbzyz dxady,
{% cos ™. ﬂxo (m1Z§ﬁ-]mzﬂ1) [Sin ”(m1ﬂ2+2’122a'111)(x0+ﬂ1) _ sin n(mlﬂzj‘arflﬂl)xo}

_|_2 cos mlmfo (mgajmzal) sin ﬂ(mlﬂz*zﬂzzaﬂl1)(xo+ﬂ1) _sin 77("11”22*“7:!2”1)950}
_|_ sin m171Tx0 (1’”1;;111’”2!11) cos ”(mlﬂi;nfzﬂl)xo _ cos ”(m1ﬂ2+?22;1)(x0+ﬂ1)}
+j sip M7t —— Zzﬂ_1m | cos ﬂ(mlﬂi—amzﬂl)xo —cos ﬂ(mlﬂz—;nzﬂﬂl)(xo-i-ﬂl)
{%COS ﬂlliyo ((nlllljgi;rln:bll)) sin n(n1b2+21;£ll;1)(yo+h1) _ sin ”(nlb%ﬁ:ilbl)yo
_|_§ cos "1b7§yo n(nlllzyililnzbl) sin ﬂ("lbz—ziz;)(yﬁ'bl) _sin ﬂ("1b§]2—b?2b1)yo
_‘_% sin "1;?0 n(nlgiﬁ-lnzbl) cos ﬂ(ﬂlbz;);rhizzbl)yo — cos ﬂ(”1b2+7l§§gi)(yo+b1)
_}_% sin nlgljo 7r(n1£§lilnzb1) cos ﬂ(”lb%;biizhl)yo _ cos ﬂ(nlbz*zigi)(yo+h1)} }
=B

(ml:()/l/z// ni:0/1/2/"')

Hence, the expression for Fy,, is rewritten as

4 () [e9)
b Z )\mlanmlnlB
ﬂz 2 1111:0 711:0

q(x1,y1) is expanded into a double cosine series represented by x; and y;.

o0 [ee)
7T
gqx1,y1) = ¥ X AwmynGmyn, COS ””‘1 cos 1 yl
ml—Onl—O (6)

( 1_0/1/2/"'; nizolllzl"')

where

4 b mq7TX1 n17ty,
= —0 dxqd
Gmyny ﬂ1b1/0 /0 q(x1,y1) cos @ cos by X14Y1

The subgrade reaction can be expressed in terms of the double cosine series as

My 7TX Nnp 7T
Q(x2,y2) = 2 Z Mgy Qmgny COS 2772 Ccos szyz

mo—= Oi’lz 0 2

where

X ny Tt
Qmany = azbz/ / (x2,12) cos 2{12 2 cos Zb LEw 2dyn

Substituting Equations (3)-(6) into Equation (1a,b), and then expanding the polynomial
of the supplementary terms in the formulas to the cosine series. Comparing the coefficients
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of the corresponding items on both sides of the Equation (1a,b), the expressions can be
obtained as:

where &,

Considering the boundary conditions of the bending moment, we could obtain:

[Dxl D‘m14 + 2Hl"‘4 m12187112 + Dylﬁn14]wm1”1+

Hy+2Dx my22by 2 i hny hy By
2D. & 4[ 1Y1 .M 1 1My M 1
x&m | =D, o \Bnto? 0 ) TR e | T
4 2(Hi+2Dy )

2 _
2Hl”‘ml Dy, Bn, 2b12 h”l + aml [Hl —2Dx1y1]hn1 le—i—

H1+2Dy m nzb hy, 7hn hy H

2D.. 4[ Y1 .M 1 1 _ 1 "M
{ xy Xmy Dy, a12 By 1017 + 70 Bo2bZ T T2 +
4 2(Hi+2Dyy,)
Dy1/g"12hl2

2

T ny+1

hnl [Hl - 2Dx1yl]hn1 (_1) 1 Dm1+
4 [ H142Dxy, _71127f21112 Hmy E _ hml

{ZDylﬁnl |: Dxl “ml4”1 90 QX 12111

s 22D,

] "
D“( Xmq 2“1

4[Hit2Dey 2 H a1 LR W R
{ZDylﬁm [ Dy, o dar® T 720 w22~ 12| T
4 2H1+2DY1y1)

Dy, ttmy 2012

ZHlﬂém]

2H1Bn,

my

wlmm%%ﬁ

2H By, -

ny

2 my+1
[Hl 2Dx1y1] my (_1) Hy,

= )‘mlm(qmml - le”l)

(m1 =0,1,2,---;, n1=0,1,2,-- )

[sz ‘sz +2H2‘X my 18712 +Dy213”2 ]wmzn +

H2+2Dny2 my 7-[2[72 hn2 hn2 hnz @
{2Dx20€m2 [ Dy, a2 By b 9% ) Bny2b2? + 5|t

4 2(H242Dxy))

2
lez
2H2‘Xm2 Dy By 2027 hnz + v [ 2 — 2Dx2y2]h m2+
4 [H2o+2Dxyyp  mp272by2 hnz 7hn2 hnz h”z
{2sz"‘mz [ Dy a?  \ Bt T 70 perc i vl
2(Hy+2Dx,y,) vcm 2 T 1
4 ARTEY0) 2 ny+
2H21xm2 Dyzﬁnzzhzz hnz [ Zszyz]h }( ) Dy, +

H,+2D, h h .
P%mﬂ%WLW@<@—@)-W+yh

X txmzzuzz
2 H2+2DY )
2H. 4, 2Y2
2ﬁn2 D*( Xy 2a;2

4 [H2a+2Dxyyy 1152 7'( az 7hmz hmz %

{2Dyzﬁnz [ Dy, 4a24 + 70 2 12| T
4 2(H2+2Dxyy,) —

2H2Bn,” - Dy, tmy 222

= Amyny (Fnyny — szﬂz)
(m2:0/1/2/"'; nzzoilizi"')

my

my

; ; 0,i = —_—  — 1,i=0
ZHZ;T,,Bm,':n;;ZT/hmi:hm:{l | £ 0 /andhmi:hni:{0,i7é0

@)

®)
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(1) When x; = 0, My, = 0 (Equation (2a)):
®© ® [ H+2D, heo B
Y (a2 —i—vylﬁn YWn, +2 Y {Tﬂzbz o <54 o 970,)
m;=0 my= i
H;+2Dy,y, n
Jrami *ﬁ%ibizh + 5 :| +0¢m, B = B bzhn, U;‘bz‘ }sz
ni+1 el H+2D*zz 2 4 h”, 7hy,
+2(-1) m’éo{ D, bi (54 b T 720> )
}ly‘ H;+2Dy.,. Uy Ny
*Oégni [‘3’2’ilbizh + -121 + Dé%ni‘(ly,- : Dyi i 52 bzhn, ;xb21 }Dm:
H;+2D,,,. Hi+2D,,,,.
+ (P B+ ) G+ (T B — W)Hni =0
(n=0,1,2,---)
(2) When x; = a;, My, = 0 (Equation (2a)):
© ) o  Hi+2Dy.,. T, Ny
mZ:IO (—1)7”; ([x%"i —+ inﬁ%l,-)w"’li”i + ZmEO{ (_1)711, Diyixyrbizﬂéznl1 ( 4,bli4 W)
Hi+2D,.,. n;
‘HX%@ ﬁz bzhn, :| + mm, ’UJZ Dj,. i ‘32 bzhn, vézbz }Cm,
i+1 i H+2Dxll, ni
F2(-1)"H § {(—1) - b2ad, (ﬂ4b4+7 )
=0 (10)
2 H,‘FZDXI.‘
—s, 3 bzh": + 12 + a2, vy, - D, R, bzhnx sz Dy,

( 0y, H+2Dw,)a12 4 +(% H;+2D,

! 2 1
n; 2 6Dl”) 1 P)GYHJF

Jr

2

z Pt ) B~ e Hn = 0
(nj = )
(3) Wheny; =0, My, = 0 (Equation (2c)):
i (B2, + vx 03, )W, n,+<%a$ﬂ + b}ﬁ)Cmi + (%ﬁ""’”zxﬁ,i — #)Dm‘
+2(—1)m"+1n§O{H‘+§f“‘“ 2B4 <uc4 = 77'120)
-8 | = azh% +3 } + Loy, - H“f .l oz, + ”;ah"" }Hni =0
(m; = 0,1,2, )
(4)

When y; = b;, M, = 0 (Equation (2c)):

H+2Dyy B, T T,
2y {( )" —p " a;? ?‘1,(“4 = —) + B2 [ z uzhm,+'}
nj= *i i

6
H;+2D
+B5,0x; - -

1

1 Ux hm
o, + Gn,
in; 4

1

Dy, '«
) ® . Hi+2Dxy. hm 7hm
+2(_1)m1+1 ZO{(_l)nsz’t 12 4 < >
_l’_
)

(12)
P o ,14 + 70
H+2Dl x; hm
'B |:IX azhmz :| + IB ’ xi ) Dé%l.luiz hmi + z }Hnl - 0
(mi - 0/1/2/' o

The deflection of the upper and lower plates could be expressed by formula [27]

[ ol o]

TTX n; 7Ty,
l l 1 1
w; (xi,y;) 2 Z Ay Wim,n; COS 0 cos ==

=0n;= i
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where b
4 i [di m;7tX; n;7ty;
Wimn, = —/ / w;(x;,Y;) cos cos dx;dy;
v lll'bl'. 0 JO ne aj; bi
B g o [ he T ha T
w,'m,-n,- - wmini + 2 |:V2m,-y,-bi Déml_ (‘3;11};4 - 901) - /527[;2 + ?1 Cmi
-~ i 1 _ )‘Ll 1
Iy, 7hy,. Iy, Ny, .
2.2 n n n n n;+1
+2 | pamy; i "‘mi(ﬁg,é# + 7zd> ~ gz~ 1 | ("1 Dy
1 1
B, T, B, T,
232 L W R L}
+2 | Pomx; i ,Bn, a;inia]l.zl 90 o702 + 5" |Gy
T, Thy, T T, .
202 m m m m m;+1
+2 Hom;x; 4 ﬁni aﬁl‘;i‘t + 7201> - “’Zn_,zll.z - 121](_1) ! H”i
1 1

(ml- =0,1,2,---; n; = 0,12, - )

Expanding the deflections of the lower plate into the double cosine series at the
contacting position with the upper plate:

[ee) o0
mi7Txy n17tYq
wy(x1,y1) = Z Z Mgy Wamyny €OS cos

m1:O 1’[1:0 al bl
b
wzmln] — gl4b1 01 Oal Wz(le yz) CcOS mzi:[xl CcOS nlhiriyldxldyl
o (e )
4 by Mo 7TX: Ny 7Ty My 7TX nq 7Y
= @b Jo Jo Zo ZO)\mznZWzmznz cos 2722 cos “2H2 cos ML cos M dxydy
mp=Unp=

[e0] [e9)
_ _4 by o my7xp 2 7TY2 my7Tx) 117t
_ﬂlblmZOnZ Ay Wamany fo Jo ! cos #2722 cos =42 cos #LEL cos = dxidyy
2=UHn2=

(m;=0,1,2,--+ n;=0,1,2,--)

Substituting x, = x1 + xg and y» = y; + Y into the expression of wy;,, ,,, we obtain:

by 1 7TXp na 7Yy iy 7Txy nmy
0 fo cos =2 =2 cos =5 2= cos ==t cos = dx1dyq

- fobl o cos mﬂ(;ﬁx“) cos HZH%WO) cos "L cos Mt dxydyy
= {4 cos a0t in Tty D)

Fhcos g oo

_% sin mzﬂzxa n(mzzfj-lmlaz) 1— cos ”C(ngzlzmﬂz)]

_% sin mzazrxo n(mzzflilmmz) 1—cos ml(mf’z}ll_mluzw }

{% cos nzbzyo n(nzgfilnlbz) sin ﬂbl(”éi;ﬂjﬂlbz)

+cos B b gin gyl

f% sin ﬂzlzyo n(@}’jfi]nlbz) 1— cos ﬂd(ﬂzl?b-:"lbz)]

—Jsin P20 ot 1 cos TEmBl | | = D

(ml 2011/2/' Ty ni :O/]-/Z/' : )

The expression of wy,,,, can be rewritten as:

4 [e9) [e9)
Z /\H’lzi’lz W2m2n2 D

Wamgn, = ——
myny a1by o=

Taking into account that the deflections of the upper and lower plates at the contact
position are the same, the deformation equation of compatibility is expressed as:
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hy Ty hy, hn
Winyny +2 |:]’l2m1ylb12a%”1 </34 ; i 901> - B2, ; 2 I]le
hy 7h,1 +1
+2 :u2m1y1b1 lxzml (,34 b114 + 720) ’32 bl — 721 (-1)”1 Dm1

hml

+2 | Hamx 41 :Bnl ok

242 & % _ﬂ_
2| Hoamyx, 41 ,Bnl ok o + 70 A 1

4 2

Gnl

”l

}(—UmlHHn

ha B ha hn
1 E Z AmZﬂZmenZD_‘_ albl Z Z )\mZleD 2|:V2m2y2 2 %12( 4 24 - 902> - 2 2:|Cm2 (13)

my=0n,=0 ) my=0n,=0

[e)

+-4 E NongnaD 2 | pamyyybn202, (it Ta ) e | qymtip
U many 2may272 Fma \ B b, T 720 B, 12 2
+ 4 g § A D-2 [ a 2‘32 hmz _ Emz _ h'"z + Emz G
mbr 112=0 11,=0 a2 ,uZmzxz 2 Py wmyaz® 90 iy 12” 6 "
o ) I T 7
4 hmz 7hm2 hmz hmz my+1
Taby mZOHZO’\’”Z”ZD'Z Ham;xy A2 ﬁ”z( 1t t 70 | — Gy | 12 (-1) Hy,
r=0ny=
(mi:O/ll // ni:Or]-lzl"')

The double Fourier transformation of the ground reaction force is expressed as:

[@@nm—ﬂhﬂwwW—ﬂ

Q( Z 2 )\mZi’lemz}’Q o ) (14)
Expanding w|,—¢ into the double cosine series form:
2 My TTX Ny 7T
Wlz—0 = Y Y AmynyWzymyn, COS 2{1 2 cos zb LE (15)
mZ:O Yl2:0 2 2
in which:
4 o2 b My TTX Np 7T
Wzymony = @/ /O w|22:0 cos 2612 2 cos szyZ dxady, (16)
1 )\ + 2‘11
where

_ )Pl — (1Y%l — 1J[(—1)"e7i — 1][(~1)"e " 1]
ey N EZP—(ngL%%ﬂ}P—Fﬂ}ﬁ—Gﬁﬂ

Equation (4) could be rewritten in a double cosine series form, and considering that
the plate and surface of the elastic foundation have the same vertical displacement, thus

dgdn
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the coefficients of the corresponding items are also the same. The deformation equation of
compatibility is given as:

1 (A+2p) E °Z°: Qpo A
2m2ayby (A p)p pa/rpallpqmang Amany

h h h I,
_ 2 n n n n
= Wmyny +2 |:,u2m2y2b2 Xy (/3;412%,4 - 902> ‘32 ;2 + 62] sz

Iy 7hy T, T ny+1

+2 b2, (g + Ja ) -t e qymtlp

Hamay, b2" &, Bi,b* 720 pa,b? 12 (1) o (18)

hm Em I Em

+2 H2myx, 42 ,an o :2 - 902 - 04%12;22 z Gn,
hmz 7hm2 hm2 7m2 m2+1

+2 Homyx, 42 ,an % 2u24 + 70 - ‘X%nzﬂzz -1 (_1) an

(ml:O/]-/Z// 1_011/2/)

Therefore, the undetermined coefficients wy,n,, Fuinys Cimys Diys Grys Hiyy Wingny,
Qmynys Ciiyr Dinys Gy, and Hy, could be obtained by twelve equations (Equations (7)-(18)),
in which N1, Ny, M1, and M, are the maximum values of 1y, np, my, and mj, respectively.
Thus, the number of the governing equation is 2(M; + 1)(N1 + 1) + 2(M; + 1) + 2(N1 + 1) +
2(Mp + 1)(Ny + 1) + 2(Mp + 1) + 2(N3 + 1), which can be used to solve the same number of
undetermined coefficients. In order to ensure the correctness of the calculation results, the
maximum values of M1, My, N1, and N, are taken to 20. Substituting the solved coefficients
into Equation (1a,b), the deflection of the plate can be obtained, and further, the internal
force and the foundation reaction can also be calculated.

2.1.3. Example

Case 1: We consider a stepped rectangular plate resting on the surface of an elastic
half-space foundation. The dimensions of the upper and lower plates are 4.0 m x 0.2 m
(side length x thickness) and 4 m x 0 m (side length x thickness), respectively, and the
uniform load q(x1,y1) on the plate is 0.98 MPa. In this case, the stepped rectangular plate
degenerates into a rectangular plate. The performance parameters of the plate and the
foundation are given in Table 1.

Table 1. Performance parameters.

Poisson Ratio Elastic Modulus (MPa)
Plate 0.167 34,300
Foundation 0.4 343

The subgrade reaction, bending moment, and deflection of the plate could be obtained
by the solution, as shown in Figure 2.

Table 2 shows that the calculated results are consistent with the results in [28]. This
comparison proves the effectiveness of the theory proposed in this paper.

Table 2. Comparison of calculation results of thin plate.

In This Paper [28]

Maximum deflection (m) 0.0107 0.0107
Maximum bending moment (kN-m) 35.558 35.558
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Figure 2. Calculation results using thin plate theory: (a) Subgrade reaction; (b) Bending moment of
the plate (My); (c) Bending moment of the plate (My); (d) Deflection of the plate.
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Case 2: We consider a stepped rectangular plate resting on the surface of an elastic
half-space foundation. The dimensions of the upper and lower plates are 4.0 m x 0.2 m
(side length x thickness) and 4 m x 0.2 m (side length X thickness), respectively, and
the concentrated loading on the plate is F = 100 kN. The performance parameters of the
stepped plate and the foundation are given in Table 3.

Table 3. Performance parameters of the stepped rectangular plate.

Component Name Poisson Ratio Elastic Modulus (MPa)
Upper plate 0.167 26,000
Lower plate 0.167 26,000
Foundation 0.4 343

Figure 3 shows the comparison of the analytical solution and the simulation results,
in which the model is created by ABAQUS software. For the deflection at the center of
the lower plate, the result of the finite element model is smaller than that of the analytical
solution when it is close to the edge of the plate, while when it is close to the center of the
plate, the situation is just the opposite (Figure 3a). For the bending moment of the lower
plate at x = 0.5 m and y = 0.5 m, the curve increases slowly at the edge of the plate, and as it
approaches the center of the plate, the curve increases first and then decreases (Figure 3b,c).
It can be concluded that the results of finite element model well support the present results
using the thin plate theory.
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Figure 3. Verification of finite element software: (a) Deflection at the center of the lower plate;
(b) Bending moment of the lower plate at x = 0.25 m (My); (c) Bending moment of the lower plate at
y=025m (My).

2.2. Both Upper and Lower Parts of the Plate Are Moderately Thick Plates

2.2.1. Basic Equations and Boundary Conditions

The governing differential equations of the moderately thick plate are determined by
formulas [27]:

D1 a;z’;l + Des a;i;l + (D12 + Des) ;;ay;l + 11%:1 — @y, =0
Dy, a;i? + Des aazi? + (D12 + Des) ; ;q;;ll + 22? — Cp®y, =0
TS R LT
Dy BBZ:CIZ? + D6éa;::;2 + (D12 + D66)aajj;y;2 + 11%]22 —C1®y, =0
Dx a;;:yf + Des a;i? + (D12 + Dse)sxi);zz + Cx2 ng Cn®y, =0
Cn1 22;;]22 +Cx ?:;;]22 —Cn BSIZQ —Cp a;;ZZ +F-Q=

where @y, @, w;, F, Q are unknown coefficients.
Boundary restrictions are given as:

My, = Myy, = Qx, = 0(x; = 0,x; = a)

My, = Myy, = Qy, = O(y; =0,y; =b)

2.2.2. Coordination Equation and Analytical Solution
Expanding ®y,, ®y,, w;, F, Q, g into a Fourier series

Dy, =Y Y Qun; SNy, X; COS B,y

mi nj

Dy, =YY P, COS X Sin By

mi 1

w; = 2 Z Win;n; COS Ay, X; COS P, Yi

mi nj
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F =YY" Fuyn, COS X, X3 COS B2

my nyp

Q = Z 2 Qmini COs “mixj COS :Bniyi
m; n;

q=Y_Y Gmn, oS, x1 cOS B Y1
my m
in which @y, Yy Winn;s Fingngs Gmyny and Qun; are unknown coefficients.
Taking into account the continuous differentiability of the formula on the boundary of
the plate, we can write:

awi (0/ ]/1

ow;(x;,0)
00 5, conp 2

:—EZb COS Ky, X;
ayl 4 - m; m;

a; b;
@, (0,y;) = —Zlchi o8 B, i Py, (x;,0) = _ledmi COS Ay X
n; n;

dw;(a;, ow;(x;, b; b:
lchll-yl = —*Zenl cos B, Yi; l(yl- ) = _Z’nzifmi COS Uy, X;
D, (az,yz = Zgnl cos By, Yi; Py, (x;,b;) = thl COS . X;

where ay;, by;, cn; dm;y €n,s fm;, §n; and hy, are unknown coefficients. According to
boundary conditions, we obtain the expressions:

anl- = Cni’ eni - gnl-/ bm,— - dml-/ fm,- = hm,—

(1) Derived from M,, = 0 on the edge x; = 0, we obtain the expression:

Em: Em:
)y [ 5 Du(en; cosmirt — an) — ;@i D1 + =5 (f; cO8 mi7r — by ) D1 — ﬁnﬂlﬂmm,Dlz} =0
mj

(2) Derived from My, = 0 on the edge x; = a;, we obtain the expression:

Em,
Z { ;’ D11 (en; cos m;mw — ay,) — &, @m;n; D11 + (fm €os 17T — by ) D1p — ﬁnilpminiDlZ] cos &y, a; = 0
mi

(3) Derived from M,; = 0 on the edge y; = 0, we obtain the expression:

Em:
Z {%Du (enl, COSmM; 7T — Ay ) Xm; Pm; n,D12 + (f”h COS M 7T — bmt )D22 ﬁnilpminiDZZ} =0

nj

(4) Derived from M,; = 0 on the edge y; = b;, we obtain the expression:

Em.
Z [ ;”1 D1 (en,; cos m;m — ap;) — &, @m;n; D12 + (fml o8 1M;7T — by, ) Doy — ﬂn,-llim,-n,-Dzz} cos By, b = 0
n;

Substituting the unfolded Fourier form of ®y,, ®,,, and w into the governing differen-
tial equations, the expressions can be written as:

Xmq Em Xmqy€n Xmq€m Xmqy€n
11 Dy1ay, + 12 1 Dlzbml — 12 L D11 cos my Tten, — 12 L D15 cos nlﬂfm]

+ (D102, + DeoPi, 4 C11) @myny + (D12 + Do)y By Ymyny + &y Cr1@Wiyny = 0

%Dlzanl + ‘Bnlzenl DZme1 - (ﬁn];ml D12 COs 1y 7'() eny — ('Bnl A D22 cos ny 7'[) fml
Jr“mlﬁnl (DlZ + D66)(Pm1nl + (;3311 Dy + “%11 Des + sz)lpmln] + ,Bnlczzwmlnl =0
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“H’H Cll q)mlnl + ,81’11 szl/)mlnl + (“%11 C11 + ,8%1 CZZ)wm1n1 + lenl - lenl

Limy Em
—5—2D11ay,

+(D1104%n2 + D66l3$l2 + C11) @myny + (D12 4 Dé6 ) tmy By Winyny + Xy C11Wingny = 0

Xy Emy Xy Eny
— TDH COsS My Ttey, — TDQ COS 1y ﬂfmz

€ € € &
,5112 ny D12an2 + ﬁnz 1y D22bm2 _ ,3112 iy 1)12 COS My 7T en, — (‘6”27"2D22 CcoS 7127T) fmz

+0€m2/3n2(D12 + D66)(Pm2n2 + (B, Dzz + a2, D6 + C2) Ymyny + Py CooWimyn, = 0

D‘mzcll Pmony + ﬁnz CZZI,menZ + (a%nzcll + ﬁ;212 CZZ)wm2n2 + sznz = sznz

Considering the same displacement of the upper and lower plates at the contacting
position, thus, the deflection equations of the upper and lower plates could be expanded
into a double cosine series as:

[ee) o0
TTX;
w;(x;,y;) = 2 Y Amnlwlmn,cos - =t cos
On, 0
m;7tx; n;
Wimmn; = 75 fo o wl (xi,y;) cos L= cos & y‘dx idy;
by

o 4 mlmcl n17tY,
Waminy = a5, 0 Wz(xz,yz) COS —;— €OS 7dx1dy1

n; 7Tyl

_ 4 by rm 17TX1
ﬂ o Jo Z Z Ay W2y, COS cos

m2 =0 npy=

n 1ty mp7TXp na7ty?
py o COs =2 =2 cos = dx1dy;

nq 7T n
/\mznzw2mznzfo 1 cos mlm‘l cos 11; Y cos mzmz cos yz dx1dy,

O
=

- 0187 18 118

(=)

mp7t(x14+x0) na7t(y1+yo)
- cos Ty dx1dyq

n
)mewz,nznzfo ! cos "L cos Ht cos

o
=
o

I
NoER MSNM

/\mZ 12 wm2n2 D

o
=
o

—~
3
Il
=
~ )
=

-, n;=0,1,2,-- )

The deformation coordination equation between the upper and the lower plates is

expressed as:
4 o] [o 0]
w1m1 ny = 1 Z /\H’IQWQWZMZHZD
albl m2:O 1’!2:0

The deformation coordination equation between the lower plate and the foundation is

given as:
1 A+ 2y
=w

Using the same method in Section 2.1, the undetermined coefficients a;,, by, ex,,
fm1/ Py Wigngr Winings Fmng, and Quuyn, could be simultaneously solved. Substituting the
solved coefficients into related formulas, the subgrade reaction, deflection, and internal
force of the plate could be obtained.

2.2.3. Example

Case 3: Recalculating case 1 in Section 2.1.3. According to the theory mentioned in this
section, the results are given in Figure 4. Through the comparison of Figures 2 and 4, it can
be seen that the subgrade reaction, deflection, and internal force of the plate are basically
the same.
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Figure 4. Calculation results using thick plate theory: (a) Subgrade reaction; (b) Bending moment of
plate (My); (c) Bending moment of plate (My); (d) Deflection of plate.

Meanwhile, the analytical solution in this paper is consistent with the results in [28],
as shown in Table 4. This comparison proves the effectiveness of the theory proposed in
this paper.

Table 4. Comparison of calculation results of thick plate.

In This Paper Thin Plate Theory [28]
Maximum deflection (m) 0.0107 0.0107 0.0107
Maximum bending 35.551 35.558 35.558

moment (kN-m)

Case 4: The recalculated results of case 2 in Section 2.1.3 also indicate that the influence
of plate theory on the internal force and deflection of the plate is relatively small. Due to
the limited length of this article, the specific curve is no longer listed.

When the stepped rectangular plate is simultaneously analyzed using both moderately
thick plate theory and thin plate theory, the same method (as shown in Sections 2.1 and 2.2)
could be used to obtain the internal force and deflection of the stepped rectangular plate.

3. Discussion
3.1. Effect of Elastic Modulus on the Deflection of Plate
The dimensions, Poisson ratios, and elastic modulus of the rectangular stepped plate

and foundation are given in Table 5. The vertical uniform load value is 0.98 MPa. The
deflection curve of the center line of the plate is shown in Figure 5, in which the number of
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the curves 1, 2, 3, and 4 indicate that the elastic modulus of the upper plate is 34,300 MPa,
343,000 MPa, 686,000 MPa, and 1,029,000 MPa, respectively.

Table 5. Dimensions and properties of plates with different elastic modulus.

Component Side Length (m)  Thickness (m) Poisson Ratio Elastic Modulus
Name (MPa)
Upper plate 2.0 0.1 0.167 Variable
Lower plate 4.0 0.3 0.167 34,300
Foundation - - 0.4 343

5.5

Side length of upper plate/m

Figure 5. Deflection curve of lower plates with different elastic modulus.

Through the analysis of Figure 5, it can be seen that the variation trend of the deflection
curve of the lower plate is the same as that of Figure 3a. The deflection value of the lower
plate is largest when the elastic modulus of the upper and lower plates is the same. The
deflection along the center line of the plate decreases with the increase of the elastic modulus
of the upper plate, while the deflection at the edge of the plate is just the opposite.

3.2. Influence of Plate Theory on Calculation Results of Plate Deflection

The dimensions, Poisson ratios, and elastic modulus of the rectangular stepped plate
and foundation are given in Table 6. The vertical uniform load value is 0.98 MPa, and the
thickness of the lower plate is 0.2 m, 0.3 m, 0.4 m, 0.5 m, 0.6 m, 0.7 m, 0.8 m, 0.9 m, and
1.0 m, respectively. The deflection of the center of the lower plate is given in Table 7, in
which wq and w; are the deflection values calculated by thin plate theory and moderately
thick plate theory, respectively.

Table 6. Dimensions and properties of plates with different thickness.

Component Side Length (m) Thickness (m) Poisson Ratio Elastic Modulus
Name (MPa)
Upper plate 2.0 0.2 0.167 34,300
Lower plate 2.0 Variable 0.167 34,300
Foundation - - 0.4 343

Through the calculation results in Table 7, it can be obtained that when the thickness
of the upper plate is constant, the maximum deflection of the lower plate decreases with
the increase in the thickness. Meanwhile, the comparison of w; and w, shows that the plate
theory has little influence on the analytical solution of the maximum deflection of the plate.
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Table 7. Deflection at the center of the lower plate.

Thickness of Lower Plate (m) wq (m) wy (m)
0.2 0.0053 0.0052
0.3 0.0042 0.0041
04 0.0035 0.0034
0.5 0.0030 0.0030
0.6 0.0027 0.0027
0.7 0.0025 0.0025
0.8 0.0024 0.0024
0.9 0.0023 0.0023
1.0 0.0022 0.0023

3.3. Influence of Side Length of Upper and Lower Plates on Calculation Results of Plate Deflection

The dimensions of the stepped rectangular plates are given in Table 8. The vertical
uniform load value is 0.98 MPa. Calculation results can be seen in Figure 6, in which
1, 2, 3, and 4 indicate the side lengths of the upper plate are 3.0 m, 2.0 m, 1.0 m, and
0.5 m, respectively.

Table 8. Dimensions and properties of plates with different side length.

Component Side Length (m) Thickness (m) Poisson Ratio Elastic Modulus
Name (MPa)
Upper plate Variable 0.2 0.167 34,300
Lower plate 4.0 0.3 0.167 34,300
Foundation - - 0.4 343

0 1 2 3 4
Side length of lower plate/m

Figure 6. Deflection curve of lower plates with different side length.

It can be seen from Figure 6 that the deflection of the center of the plate increases as
the size of the upper plate increases. It can also be found that when the coordinates of x are
between 0-1 or 3—4, the deflection growth rate is relatively fast, while the growth rate of
deflection is slow when 2 < x < 4, indicating that the existence of the upper plate increases
the stiffness of the lower plate.

4. Conclusions

This paper presents a new solving method to obtain the bending moment and deflec-
tion of the stepped rectangular plate using traditional thin plate theory and moderately
thick plate theory. The stepped rectangular plate is divided into an upper plate and lower
plate, and the analytical solution could be obtained through the differential equation and
boundary conditions of the plate-foundation system. Several conclusions can be drawn
as follows.

(1) The analytical solution is basically the same as those in the existing literature and the

simulation results using ABAQUS software, indicating that the traditional plate theory
could be used to analyze the bending property of stepped rectangular plate. The
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analysis results also demonstrate that the analytical solution of the stepped rectangular
plate is not related to the plate theory adopted.

(2) The increase in the elastic modulus of the upper plate can effectively reduce the
deflection at the center of the plate and slightly increase the deflection at the edge of
the plate, showing that the increase in the elastic modulus of the upper plate could
effectively improve the stiffness of the stepped rectangular plate.

(3) The thickness and maximum deflection of the plate are negatively related when
the thin plate theory or moderately thick plate theory is used for analysis, and the
analytical solution obtained by using these two types of plate theory is basically
the same.

(4) The greater the difference in the side length of the upper and lower plates, the greater
the deflection of the stepped rectangular plate. The increase in the deflection at the
edge of the plate is not as significant as that at the center of the plate.

Due to the limitations of time, level, and vision, the research on the topics of this paper
is not yet complete. In the future, more in-depth research can be conducted regarding the
following aspects:

(1) The interaction between the plate and the elastic half-space foundation is discussed
in this paper, but the characteristics of the stepped rectangular plate resting on a
two-parameter foundation should be analyzed in the future.

(2) The bending performance of the plate resting on an elastic half-space foundation
under static load is analyzed in this paper, while the dynamic characteristics of the
plate should be studied in future research.

(3) The characteristics of the stepped rectangular plate embedded in the foundation
should be studied in follow-up research.
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Appendix A
The deflection of the plate could be expressed using a double cosine series

w=®(x,y) +P1(x,y) + P2(x,y) (A1)

in which ®(x, y) is the double cosine series, ®1(x,y) and P, (x,y) are the cosine series of x
and y, respectively.

(] (e
O(x,y) = ¥ ¥ Wpycos m;rx COS%
o0 m=0n=0
Prloy) = Zo (Atmy* + By’ + Cimy® + D1my) cos 7
m=

0
<I>2(x,y) = Z (A2nx4 + anx3 + anxz + Dlnx) cos #
n=0

where Aj,,~D1,, and Ay, ~Dy, are undetermined parameters.
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The shear force and rotating angle along the four sides of the plate are expressed by
the cosine series.

> 1 mrx
Fsy(x,0) Z A cos Fsy(x b) = mgOEBm cos — (A2)
> 1 mrx > 1 mrx
= Z ECm cos ,0y(x,b) = Z EDm cos — (A3)
m=0 m=0
> 1 nrt
Fex (0,7) 2 En cos 7Y -‘/  Fax(a,y) = H;OEFH cosTy (A4)
*ilG cosn—ﬂ‘VG(a )*ilH cos 7Y (A5)
—7an b/x/]/—ian b
n=0 n=0
in which A~Dm and E,~H;, are undetermined parameters.
The total shear force could be written as
Pw dPw Fy o%w Pw Fix
oy 7Y _ oY oY A6
Py 1Pz T D, x TPty T D, (A6)
where oy, = %ﬁwf, Homy = %}?x’y", D, and D, are the bending stiffness of x-axial

and y-axial direction, respectively.
With account of Equations (A1)-(A6), A1,~Doy, and Ay, ~Dy, could be represented by
Am~Dy, and E;~H,,. Equation (A1) could be rewritten as:

(9] [e9)
_ mrmx nrw m?m?b?  (Dm—Cm) | Aw—B 4
wi= LT wmicos Bt cos 5+ B {0 - Py + Sapeyt+
2,2
i ) m2 22 Cu _ Aum . (3+V2my b2 megh 5 L )Crm (6_V2my b2 n? ;I )Dm
Homy = == " "6b — &bD, v 2 1257
_ 2Au+B 2 . Cu mrrx m2m2a®  (Hn—Gu) En—F, | 4 A7
1£"bDym:|y + 3 ]/} cos + ngo { [ﬂme 52 ozt 24nuZDn x*+ (A7)
r 2,22 2,22
+ . m27r2[12 . Q _ E, 3 (3+H2mx'a2'mb%)c'n o (6 Homx- ﬂ2 %)HH
Homx b2 6a  6aDy 6a2 1242

_ 2E4+Fqi |2 Gn nmx
712an}x + tx pcos 5=

If the four sides of the plate are free and considering that the stepped plate is divided
into lower and upper plates, it can be known that A,, = B, = E;, = F, = 0. Therefore,
Equation (A7) can be expressed as:

©  ® 2,212 3 2.2 4
m;7Tx; n; 7'[ mi#eh;s 4by;° —4bity; i
w; = § Y, W m; COS ———* cos y, + § { {‘uZmi% lav2 L i 24};‘4% Yi
On, 0 ,:O ! !
2by; y m;? 2 b;? y —2b%y;? M;TTX;
+7’ Tt }Cm, {VZm;yi ’az 24b’4 : +2b2 Dy, ¢ cos —a

22,2 2.2

n;~mtea; 4a-x-374a-2x-27x-4 2a;x; n; 27r a;
+n§0{ |:]’l2m,'xl zhzt it 24;[41 i _|_ lzéli l Gn, + ,uZm x; i i

1
4 2.2 2
X;*—2a;7x; X; n; ny,
7T + 72»1,-2} Hn,.} cos

References

1.  Kotousov, A. Effect of plate thickness on stress state at sharp notches and the strength paradox of thick plates. Int. J. Solids Struct.
2010, 47, 1916-1923. [CrossRef]

2. Jiang, HJ.; Liang, L.H.; Ma, L.; Guo, J.; Dai, H.L.; Wang, X.G. An analytical solution of three-dimensional steady thermodynamic
analysis for a piezoelectric laminated plate using refined plate theory. Compos. Struct. 2017, 162, 194-209. [CrossRef]

3. He, G.H, Li, X.W,; Zhong, S.Q.; Zhou, X.; Sheng, X.Z. Weak-form differential quadrature element analysis of plate on a tensionless
and frictional foundation using a higher-order kinematics. Appl. Math. Model. 2023, 117, 87-117. [CrossRef]


https://doi.org/10.1016/j.ijsolstr.2010.03.029
https://doi.org/10.1016/j.compstruct.2016.11.078
https://doi.org/10.1016/j.apm.2022.12.026

Buildings 2023, 13, 1671 21 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Lewandowski, R.; Switka, R. Unilateral plate contact with the elastic-plastic Winkler-type foundation. Comput. Struct. 1991,
39, 641-651. [CrossRef]

Winkler, E. Theory of Elasticity and Strength; Dominicus: Prague, Czechoslovakia, 1867.

Jeong, S.; Kim, Y.; Kim, J. Influence on lateral rigidity of offshore piles using proposed p-y curves. Ocean Eng. 2011, 38, 397-408.
[CrossRef]

He, G.; Li, X;; Lou, R. Nonlinear FEA of higher order beam resting on a tensionless foundation with friction. Geomech. Eng. 2016,
11, 95-116. [CrossRef]

Bayat, M.; Andersen, L.V.; Ibsen, L.B. p-y-y curves for dynamic analysis of offshore wind turbine monopile foundations. Soil Dyn.
Earthg. Eng. 2016, 90, 38-51. [CrossRef]

Ghorbanpour-Arani, A.H.; Sharafi, M.M.; Kolahchi, R. Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric
nanobeam systems. Meccanica 2016, 51, 25-40. [CrossRef]

Arani, A.G.; Abdollahian, M.; Kolahchi, R. Nonlinear vibration of embedded smart composite microtube conveying fluid based
on modified couple stress theory. Polym. Compos. 2015, 36, 1314-1324. [CrossRef]

Kerr, A.D. A study of a new foundation model. Acta Mech. 1965, 1, 135-147. [CrossRef]

Timoshenko, S.P.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1959.

Mindlin, R.D. Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. ASME ]. Appl. Mech. 1951,
18, 31-38. [CrossRef]

Ozdemir, Y.I. Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation. Struct.
Eng. Mech. 2018, 65, 213-222.

Ozdemir, Y.I. Dynamic analysis of thick plates resting on Winkler foundation using a new finite element. Iran. J. Sci. Technol.
Trans. Civ. Eng. 2020, 44, 69-79. [CrossRef]

Farida, A.F; Reda, M.; Rashed, Y.F. Efficient analysis of plates on nonlinear foundations. Eng. Anal. Bound. Elem. 2017, 83, 1-24.
[CrossRef]

Ragba, O.; Matbulya, M.S.; Civalek, O. Free vibration of irregular plates via indirect differential quadrature and singular
convolution techniques. Eng. Anal. Bound. Elem. 2012, 128, 66-79. [CrossRef]

Ferreira, A.J.M.; Castro, L.M.S.; Bertoluzza, S. Analysis of plates on Winkler foundation by wavelet collocation. Meccanica 2011,
46, 865-873. [CrossRef]

Yue, F; Wang, F; Jia, S.; Wu, Z.; Wang, Z. Bending analysis of circular thin plates resting on elastic foundations using two modified
Vlasov models. Math. Probl. Eng. 2020, 2020, 2345347. [CrossRef]

Mohammadimehr, M.; Mehrabi, M.; Afshari, H.; Salemi, M.; Torabi, K. Free vibration and buckling analyses of functionally
graded annular thin sector plate in-plane loads using GDQM. Struct. Eng. Mech. 2019, 71, 525-544.

Singh, S.J.; Harsha, S.P. Nonlinear dynamic analysis of sandwich S-FGM plate resting on pasternak foundation under thermal
environment. Eur. . Mech.-A/Solids 2019, 76, 155-179. [CrossRef]

Huang, X.L.; Dong, L.; Wei, G.Z.; Zhong, D.Y. Nonlinear free and forced vibrations of porous sigmoid functionally graded plates
on nonlinear elastic foundations. Compos. Struct. 2019, 228, 111326. [CrossRef]

Rachid, A.; Ouinas, D.; Lousdad, A.; Zaoui, F.Z.; Achour, B.; Gasmi, H.; Butt, T.A. A Tounsi Mechanical behavior and free
vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and
quasi-3D HSDTs. Thin-Walled Struct. 2021, 172, 108783. [CrossRef]

Vu, T.-V,; Nguyen, H.T.T.; Nguyen-Van, H.; Nguyen, T.-P,; Curiel-Sosa, J.L. A refined quasi-3D logarithmic shear deformation
theory-based effective meshfree method for analysis of functionally graded plates resting on the elastic foundation. Eng. Anal.
Bound. Elem. 2021, 131, 174-193. [CrossRef]

Kumar, S.; Jana, P. Accurate solution for free vibration behaviour of stepped FGM plates implementing the dynamic stiffness
method. Structures 2023, 45, 1971-1989. [CrossRef]

Reddy, J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis; CRC Press: Boca Raton, FL, USA, 2003.

Yan, Z.D. Fourier Series Solution Method in Structural Mechanics; Tianjin University Press: Tianjin, China, 1989. (In Chinese)
Wang, C.L. Study on Theory of Elastic Half-Space for Soli-Foundation Dynamic Interaction. Master’s Thesis, Xi’an University of
Architecture and Technology, Xi’an, China, 2006. (In Chinese).

Li, R.; Zhong, Y.; Li, M. Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new
symplectic superposition method. Proc. R. Soc. 2013, A469, 20120681. [CrossRef]

Bai, E.; Zhang, C.; Chen, A.; Su, X. Analytical solution of the bending problem of free orthotropic rectangular thin plate on
two-parameter elastic foundation. J. Appl. Math. Mech. 2021, 101, €202000358. [CrossRef]

Tenenbaum, J.; Eisenberger, M. Analytic solution for buckling of rectangular isotropic plates with internal point supports. Thin
Wall Struct. 2023, 163, 107640. [CrossRef]

Feldman, E.; Aboudj, J. Buckling analysis of functionally graded plates subjected to uniaxial loading. Compos. Struct. 1997,
38, 29-36. [CrossRef]

Yang, W.; Zhang, W.; Wang, X.; Lu, G. Nonlinear delamination buckling and expansion of functionally graded laminated
piezoelectric composite shells. Int. . Solids Struct. 2014, 51, 894-903. [CrossRef]


https://doi.org/10.1016/0045-7949(91)90206-2
https://doi.org/10.1016/j.oceaneng.2010.11.007
https://doi.org/10.12989/gae.2016.11.1.095
https://doi.org/10.1016/j.soildyn.2016.08.015
https://doi.org/10.1007/s11012-014-9991-0
https://doi.org/10.1002/pc.23036
https://doi.org/10.1007/BF01174308
https://doi.org/10.1115/1.4010217
https://doi.org/10.1007/s40996-019-00260-4
https://doi.org/10.1016/j.enganabound.2017.07.003
https://doi.org/10.1016/j.enganabound.2021.03.023
https://doi.org/10.1007/s11012-010-9341-9
https://doi.org/10.1155/2020/2345347
https://doi.org/10.1016/j.euromechsol.2019.04.005
https://doi.org/10.1016/j.compstruct.2019.111326
https://doi.org/10.1016/j.tws.2021.108783
https://doi.org/10.1016/j.enganabound.2021.06.021
https://doi.org/10.1016/j.istruc.2022.10.035
https://doi.org/10.1098/rspa.2012.0681
https://doi.org/10.1002/zamm.202000358
https://doi.org/10.1016/j.tws.2021.107640
https://doi.org/10.1016/S0263-8223(97)00038-X
https://doi.org/10.1016/j.ijsolstr.2013.11.017

Buildings 2023, 13, 1671 22 of 22

34.

35.

36.

37.

38.

39.

40.

Duc, N.C.; Cong, PH.; Tuan, N.D.; Tran, P.; Anh, VM.; Quang, V.D. Nonlinear thermoelectro-mechanical dynamic response of
shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations. . Sandw.
Struct. Mater. 2016, 18, 445-473. [CrossRef]

Duc, N.D. Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic
foundations using the Reddy’s third-order shear deformation shell theory. Eur. ]. Mech.-A/Solids 2016, 58, 10. [CrossRef]

Lee, Y.; Zhao, X.; Reddy, J. Postbuckling analysis of functionally graded plates subject to compressive and thermal loads. Comput.
Methods Appl. Mech. Eng. 2010, 199, 1645-1653. [CrossRef]

Tung, H.V. Postbuckling behavior of functionally graded cylindrical panels with tangential edge constraints and resting on elastic
foundations. Compos. Struct. 2013, 100, 532-541. [CrossRef]

Ozturk, A.; Gulgec, M. Elastic—plastic stress analysis in a long functionally graded solid cylinder with fixed ends subjected to
uniform heat generation. Int. |. Eng. Sci. 2011, 49, 1047-1061. [CrossRef]

Eqlima, M.; Ali, G.; Akbari, A.R. Elastic-plastic analysis of functionally graded rotating disks with variable thickness and
temperature-dependent material properties under mechanical loading and unloading. Aerosp. Sci. Technol. 2016, 59, 57-68.
Sladek, J.; Sladek, V.; Repka, M. Evaluation of the T-stress for cracks in functionally graded materials by the FEM. Theoret. Appl.
Fract. Mech. 2016, 86, 332-341. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1177/1099636215602142
https://doi.org/10.1016/j.euromechsol.2016.01.004
https://doi.org/10.1016/j.cma.2010.01.008
https://doi.org/10.1016/j.compstruct.2012.12.051
https://doi.org/10.1016/j.ijengsci.2011.06.001
https://doi.org/10.1016/j.tafmec.2016.09.004

	Introduction 
	Governing Equations and Results 
	Both Upper and Lower Parts of the Plate Are Thin Plates 
	Basic Equations and Boundary Conditions 
	Coordination Equation and Analytical Solution 
	Example 

	Both Upper and Lower Parts of the Plate Are Moderately Thick Plates 
	Basic Equations and Boundary Conditions 
	Coordination Equation and Analytical Solution 
	Example 


	Discussion 
	Effect of Elastic Modulus on the Deflection of Plate 
	Influence of Plate Theory on Calculation Results of Plate Deflection 
	Influence of Side Length of Upper and Lower Plates on Calculation Results of Plate Deflection 

	Conclusions 
	Appendix A
	References

