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Abstract: In this paper, the bending behavior of rectangular plates with stepped thickness resting
on an elastic half-space foundation is investigated through an analytic method. Combined with the
bending theory of the rectangular thin and moderately thick plate, the stepped rectangular plate is
divided into upper and lower plates, and the Fourier series is used to obtain the analytical solution of
the deflection of the plate and the interaction force between the plate and foundation. The influence
of the elastic modulus of the plate, plate theory, and the dimension of the plate on the deflection
of the stepped rectangular plate is also discussed. The results show that the analytical solution is
basically the same as the existing research results, and it is also verified by the analysis results of the
models established by ABAQUS software. The deflection at the center of the stepped rectangular
plate increases with the increase of the elastic modulus of the upper plate and the decrease of the side
length of the upper plate, while the plate theory has little effect on the deflection of the plate. This
method not only overcomes some of the disadvantages of numerical methods but also eliminates
the assumptions of the Winkler foundation model and the two-parameter foundation model, thus
obtaining a more reasonable and accurate bending performance of the stepped rectangular plate
resting on the elastic half-space foundation.

Keywords: stepped rectangular plate; thin plate theory; moderately thick plate theory; static;
bending performance

1. Introduction

Plate-foundation systems have become a research hotspot in civil engineering. Much
practical engineering, such as foundation plates in civil engineering [1], piezoelectric
laminated plates in electronic engineering [2], and pavement plates supporting the traffic
load [3], can be simplified into a mechanical model for analysis [4]. In order to provide
necessary parameters for the model of these structures, two methods are usually used.
One is to provide accurate models for various types of plates and the interaction between
the plate and foundation. The other one is to develop a numerical analysis method and
computer codes for the solution of practical engineering problems.

In the past few centuries, much work has been done to develop simplified models of
foundations to promote applications in engineering design. The Winkler foundation model,
in which the foundation is assumed as a single layer of vertical springs, was first proposed
in the 1860s [5]. However, the accuracy of this model cannot be guaranteed in the analysis
of nonlinear conditions of the foundation. Thus, the linear spring is replaced by a nonlinear
type of model to overcome this shortage [6]; this model can be used in static analysis [7]
and dynamic analysis [8], but it still cannot accurately analyze the frictional foundation due
to the reason that the analysis model of the Winkler foundation eliminates the interfacial
shear stress. Thus, researchers have proposed two-parameter and multi-parameter models
to solve this problem. Compared to the Winkler model, the two-parameter Pasternak
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foundation model has shear and vertical stiffness with nonlinear properties, which is
helpful to improve the efficiency of the model, without resulting in significant loss of the
accuracy of calculation results [9,10]. In addition, the three-parameter model [11] and the
frictional model [7] were also proposed by researchers. Although the refinement of the
parameters could improve the applicability of the foundation model, the increase of the
number of the parameters will enhance the complication of the calculation process.

The plate theory also plays an important role in the simulation of numerical models
and the structure design of the plate-foundation system. The Kirchhoff plate theory [12]
and the Mindlin plate theory [13] are the two types of classical plate theories widely used
in the simulation of plate foundations. The in-plane deformation of the plate is assumed to
be linearly changed in the classical plate theories, and these theories could only be used
in the analysis of thin and moderately thick plates. Many studies have been carried out
using the classical plate theories. Özdemir [14,15] investigated the static performance, free
vibration properties, and transient response of thick plates resting on the elastic Winkler
foundation with the finite element method. Farida et al. [16] presented the efficient analysis
of plates resting on an elastic half-space foundation using the boundary element method.
Ragba et al. [17] used convolution and indirect meshless techniques to obtain the vibration
performance of irregular composite plates on the linear and parabolic Winkler foundations.
Ferreira et al. [18] investigated the free vibration problem of the plate resting on the Winkler
foundation using the wavelet collocation method. Investigations of the Kirchhoff plate
on foundations are also reported in the literature. Yue et al. [19] analyzed the influence
of soil heterogeneity on the bending of a circular thin plate using two modified Vlasov
foundation models. Mohammadimehr et al. [20] obtained the buckling and free vibration
response of functionally graded materials resting on a Pasternak foundation. To promote
the development of the plate theory, higher-order shear deformation theory and quasi-3D
theory have attracted the attention of researchers in recent years, and these theories take
into account the nonlinear deformation of the plates. Singh et al. [21] used the stress-
function Galerkin method to investigate the dynamic response of a sandwich functionally
graded plate resting on a Pasternak elastic foundation. Huang et al. [22] studied the
nonlinear dynamic performance of functionally graded material plates using an improved
perturbation technique. Rachid et al. [23] and Vu et al. [24] used different quasi-3D theories
to analyze the static response of the plate. Kumar et al. [25] investigated the vibration
performance of stepped FGM plates using the dynamic stiffness method.

Based on the foundation models and the different plate theories, analytical models can
be used to obtain the accurate solution for the plate-foundation systems. Compared with
the literature using numerical methods, analytical methods are not commonly used due to
the difficulties in the partial differential equations and various boundary conditions [26].
Yan [27] introduced the usage of the Fourier series in the analysis of the bending, stability,
and vibration of the plate. The deflection of the plate was expressed as a double Fourier
series, and the various boundary conditions were used to obtain the analytical solution of
the plate resting on the Winkler foundation. Wang [28] used the method mentioned in [27]
to investigate the interaction and deflection of the thin plate resting on the elastic half-space
foundation. The foundation models eliminated the assumptions of the Winkler foundation
to overcome the shortages of the Winkler model to obtain a more accurate and reasonable
analytical solution. Li et al. [29] presented the analytic bending solution of a thin plate
resting on the Winkler foundation. The governing differential equations of the plate were
transferred into Hamilton canonical equations, and the analytic solution could be obtained
with all edges slidingly supported. Bai et al. [30] studied the bending problem of the free
orthotropic rectangular thin plate (RTP) on a two-parameter elastic foundation under a
concentrated load by using the symplectic superposition method. Tenenbaum et al. [31]
gave the analytical solutions for the buckling loads of thin rectangular plates with internal
supports and different boundary conditions. The solution had a series form, and the coeffi-
cients were solved to match the edge conditions. With the development of economy and
technology, multilayer structures under static loading or dynamic loading have been delt
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with in recent years. Multilayer structures, whose material properties are discontinuous at
each interface of the plate, are different from traditional laminated composites. Functionally
graded material (FGM) is one of the multilayer structures that is attracting tremendous
research interest. The analytical solution for the bending performance of the FGM plate was
first introduced in the 1990s [32]. Afterwards, FGM plates were widely used in engineering
structures, and the buckling and dynamic response [33–35], post buckling behavior [36,37],
and elastoplastic mechanical performances [38–40] of the FGM plates were introduced.

As far as the authors know, there are few studies about the kinematical equations
suitable for a stepped rectangular plate. It also seems to be a fact that there are few research
papers on the static bending analysis of stepped rectangular plates resting on the elastic
half-space foundation. To bridge this gap, this paper used traditional plate theory that is
common in the analysis of single plates resting on an elastic foundation. In order to promote
the application of traditional plate theories, the stepped rectangular plate is considered
to be composed of two plates with different dimensions and properties (upper and lower
plates), and taking into account the thickness of the upper and lower plates, the analytical
method is divided into three cases: (1) the upper and lower plates are both thin plates;
(2) one plate is a thin plate, while the other one is a moderately thick plate; (3) the upper and
lower plates are both moderately thick plates. A Fourier series is used to establish the basic
equations and the coordination equation of the plate-foundation system, and the boundary
conditions are also used to obtain the analytical solution. In addition, the influence of plate
theory, the elastic modulus of the plate-foundation system and dimensions of the plate on
the bending performance of the stepped rectangular plate are analyzed.

2. Governing Equations and Results

A stepped rectangular plate, whose upper and lower plate dimensions are a1 × b1
(length × width) and a2 × b2 (length × width), respectively, is referred to the Cartesian
systems of coordinates x1y1 and x2y2 associated with the external surfaces of the upper and
lower plates (Figure 1). The contact surface between the upper and lower plates is assumed
to exclude their mutual slipping. A uniformly distributed load q(x1,y1) is applied on the
external surface of upper plate.
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Figure 1. Research model.

2.1. Both Upper and Lower Parts of the Plate Are Thin Plates
2.1.1. Basic Equations and Boundary Conditions

Taking the upper plate as an example, the bending equation of the upper plate can be
expressed as [27]:

D∇2∇2w(x, y) = q(x, y)− F(x, y)

where w(x,y) is the deflection of the plate, D is the bending stiffness, q(x,y) and F(x,y) are the
loadings applied on upper and lower surface of the plate, respectively, and ∇2 = ∂2

∂y2 +
∂2

∂x2

is the Laplacian operator.
Therefore, in the analysis process of the stepped rectangular plate resting on the elastic

half-space foundation (Figure 1), the force of the upper and lower plates is different. The
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upper and lower loadings applied on the upper plate are q(x1,y1) and F(x1,y1), respectively,
while for the lower plate, these two values are F(x1,y1) and Q(x2,y2), respectively, in which
F(x1,y1) and Q(x2,y2) are the interaction force between the upper and lower plates and the
subgrade reaction, respectively. After that, the bending equation of the upper and lower
plates can be written as below:

Dx1

∂4w1

∂x1
4 + 2H1

∂4w1

∂x1
2∂y1

2 + Dy1

∂4w1

∂y1
4 + F(x1, y1) = q(x1, y1) (1a)

Dx2

∂4w2

∂x24 + 2H2
∂4w2

∂x22∂y22 + Dy2

∂4w2

∂y24 + Q(x2, y2) = F(x1, y1) (1b)

where Dxi = Exi h
3
i /12(1− v2

xi
) and Dyi = Eyi h

3
i /12(1− v2

yi
) are the bending stiffness of

xi-axis direction and yi-axis direction, respectively. wi is deflection of the plate, hi is the
thickness of plate, vxi and vyi are the Poisson ratio of xi-axis direction and yi-axis direction
respectively, Hi = Dxi vyi + 2Dxiyi is equivalent stiffness, and Dxiyi is torsional stiffness.
The upper and lower plates are numbered i = 1 and i = 2, respectively.

The internal force of the upper and lower plates could be written in terms of
deflection functions:

Mxi = −Dxi (
∂2wi

∂x2
i
+ vyi

∂2wi

∂y2
i
)

Myi = −Dyi (
∂2wi

∂y2
i
+ vxi

∂2wi

∂x2
i
)

Mxiyi = −2Dxiyi

∂2wi
∂xi∂yi

Qxi = −Dxi

∂3wi

∂x3
i
− (Hi + 2Dxiyi )

∂3wi

∂xi∂y2
i

Qyi = −Dyi

∂3wi

∂y3
i
− (Hi + 2Dxiyi )

∂3wi

∂yi∂x2
i

Rxiyi = −2Dxiyi (1− v)
∂2wi

∂xi∂yi

in which Mxi and Myi are the bending moment of the xi-axis direction and yi-axis direction,
respectively, Mxiyi is the twisting moment, Qxi and Qyi are the shear force of the xi-axis
direction and yi-axis direction, respectively, and R is the counterforce at the corner of the
upper and lower plates.

The boundary restrictions are given as:
At x = 0, x = a

∂2wi

∂x2
i
+ vyi

∂2wi

∂y2
i
= 0 (Mxi = 0) (2a)

Dxi

∂3wi

∂x3
i
+ (Hi + 2Dxiyi )

∂3wi

∂xi∂y2
i
= 0 (Qxi = 0) (2b)

At y = 0, y = a
∂2wi

∂y2
i
+ vxi

∂2wi

∂x2
i

= 0
(

Myi = 0
)

(2c)

Dyi

∂3wi

∂y3
i
+ (Hi + 2Dxiyi )

∂3wi

∂yi∂x2
i
= 0 (Qxi = 0) (2d)
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At the corner of the plate

∂2wi
∂xi∂yi

= 0
(

Rxiyi = 0
)

(2e)

2.1.2. Coordination Equation and Analytical Solution

The deflections of the upper and lower plates can be expressed as a double cosine
series with supplementary terms [27] (Appendix A):

wi =
∞
∑

mi=0

∞
∑

ni=0
wmini cos miπxi

ai
cos niπyi

bi
+

∞
∑

mi=0

{[
µ2miyi

mi
2π2bi

2

ai
2 · 4biyi

3−4bi
2yi

2−yi
4

24bi
4

+ 2biyi−yi
2

2bi
2

]
Cmi +

[
µ2miyi

mi
2π2bi

2

ai
2 · yi

4−2bi
2yi

2

24bi
4 + yi

2

2bi
2

]
Dmi

}
cos miπxi

ai

+
∞
∑

ni=0

{[
µ2mixi

ni
2π2ai

2

bi
2 · 4aixi

3−4ai
2xi

2−xi
4

24ai
4 + 2aixi−xi

2

2ai
2

]
Gni +

[
µ2nixi

ni
2π2ai

2

bi
2

· xi
4−2ai

2xi
2

24ai
4 + xi

2

2ai
2

]
Hni

}
cos niπyi

bi

(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)

(3)

where µ2nixi =
Hi+2Dxiyi

Dxi
, µ2miyi =

Hi+2Dxiyi
Dyi

, wmini , Cmi , Dmi , Gni , Hni are undetermined
parameters.

Equation (4) has four steps’ derivation for a rectangular plate with four free edges,
which could satisfy the boundary conditions, such as the shear force at the boundary
(Equation (2b,d)) and the corner condition (Equation (2e)). If the plate is made of isotropic
material, the Equation (4) can degenerate into an expression of an isotropic rectangular
plate.

Based on Equation (1a,b), it could be found that F(x1,y1) is related to the control
differential equations of the upper and lower plates, so F(x1,y1) can be expanded into a
double cosine series represented by x1, y1 and x2, y2.

F(x1, y1) =
∞

∑
m1=0

∞

∑
n1=0

λm1n1 Fm1n1 cos
m1πx1

a1
cos

n1πy1

b1
(4)

F(x2, y2) =
∞
∑

m2=0

∞
∑

n2=0
λm2n2 Fm2n2 cos m2πx2

a2
cos n2πy2

b2

(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)
(5)

where

λmini =


1/4, mi = ni = 0
1/2, mi = 0, ni > 0 or mi > 0, ni = 0
1/4, mi> 0, ni> 0

Fm1n1 =
4

a1b1

∫ b1

0

∫ a1

0
F1(x1, y1) cos

m1πx1

a1
cos

n1πy1

b1
dx1dy1

Fm2n2 = 4
a2b2

∫ b2
0

∫ a2
0 F(x1, y1) cos m2πx2

a2
cos n2πy2

b2
dx2dy2

= 4
a2b2

∫ b2
0

∫ a2
0

∞
∑

m1=0

∞
∑

n1=0
λm1n1 Fm1n1 cos m1πx1

a1
cos n1πy1

b1
cos m2πx2

a2
cos n2πy2

b2
dx2dy2

= 4
a2b2

∞
∑

m1=0

∞
∑

n1=0

∫ b2
0

∫ a2
0 λm1n1 Fm1n1 cos m1πx1

a1
cos n1πy1

b1
cos m2πx2

a2
cos n2πy2

b2
dx2dy2

= 4
a2b2

∞
∑

m1=0

∞
∑

n1=0
λm1n1 Fm1n1

∫ b2
0

∫ a2
0 cos m1πx1

a1
cos n1πy1

b1
cos m2πx2

a2
cos n2πy2

b2
dx2dy2

(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)
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x0, y0 represent the relationship between the x1y1 and x2y2 coordinate systems, and
substituting x2 = x1 + x0, y2 = y1 + y0 into the integral part of expression of Fm2n2 :∫ b2

0

∫ a2
0 cos m1πx1

a1
cos n1πy1

b1
cos m2πx2

a2
cos n2πy2

b2
dx2dy2

=
∫ x0+a1

x0

∫ y0+b1
y0

cos m1πx1
a1

cos n1πy1
b1

cos m2πx2
a2

cos n2πy2
b2

dx2dy2

=
∫ x0+a1

x0

∫ y0+b1
y0

cos m1π(x2−x0)
a1

cos n1π(y2−y0)
b1

cos m2πx2
a2

cos n2πy2
b2

dx2dy2

=
{

1
2 cos m1πx0

a1

a2a1
π(m1a2+m2a1)

[
sin π(m1a2+m2a1)(x0+a1)

a2a1
− sin π(m1a2+m1a1)x0

a2a1

]
+ 1

2 cos m1πx0
a1

a2a1
π(m1a2−m2a1)

[
sin π(m1a2−m2a1)(x0+a1)

a2a1
− sin π(m1a2−m2a1)x0

a2a1

]
+ 1

2 sin m1πx0
a1

a2a1
π(m1a2+m2a1)

[
cos π(m1a2+m2a1)x0

a2a1
− cos π(m1a2+m2a1)(x0+a1)

a2a1

]
+ 1

2 sin m1πx0
a1

a2a1
π(m1a2−m2a1)

[
cos π(m1a2−m2a1)x0

a2a1
−cos π(m1a2−m2a1)(x0+a1)

a2a1

]}
·
{

1
2 cos n1πy0

b1

b2b1
π(n1b2+n2b1)

[
sin π(n1b2+n2b1)(y0+b1)

b2b1
− sin π(n1b2+n1b1)y0

b2b1

]
+ 1

2 cos n1πy0
b1

b2b1
π(n1b2−n2b1)

[
sin π(n1b2−n2b1)(y0+b1)

b2b1
− sin π(n1b2−n2b1)y0

b2b1

]
+ 1

2 sin n1πy0
b1

b2b1
π(n1b2+n2b1)

[
cos π(n1b2+n2b1)y0

b2b1
− cos π(n1b2+n2b1)(y0+b1)

b2b1

]
+ 1

2 sin n1πy0
b1

b2b1
π(n1b2−n2b1)

[
cos π(n1b2−n2b1)y0

b2b1
−cos π(n1b2−n2b1)(y0+b1)

b2b1

]}
= B
(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)

Hence, the expression for Fm2n2 is rewritten as

Fm2n2 =
4

a2b2

∞

∑
m1=0

∞

∑
n1=0

λm1n1 Fm1n1 B

q(x1,y1) is expanded into a double cosine series represented by x1 and y1.

q(x1, y1) =
∞
∑

m1=0

∞
∑

n1=0
λm1n1 qm1n1 cos m1πx1

a1
cos n1πy1

b1

(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)
(6)

where

qm1n1 =
4

a1b1

∫ b1

0

∫ a1

0
q(x1, y1) cos

m1πx1

a1
cos

n1πy1

b1
dx1dy1

The subgrade reaction can be expressed in terms of the double cosine series as

Q(x2, y2) =
∞

∑
m2=0

∞

∑
n2=0

λm2n2 Qm2n2 cos
m2πx2

a2
cos

n2πy2

b2

where

Qm2n2 =
4

a2b2

∫ b2

0

∫ a2

0
Q(x2, y2) cos

m2πx2

a2
cos

n2πy2

b2
dx2dy2

Substituting Equations (3)–(6) into Equation (1a,b), and then expanding the polynomial
of the supplementary terms in the formulas to the cosine series. Comparing the coefficients
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of the corresponding items on both sides of the Equation (1a,b), the expressions can be
obtained as:

[Dx1 αm1
4 + 2H1α4

m1
2βn1

2 + Dy1 βn1
4]wm1n1+{

2Dx1 αm1
4
[H1+2Dx1y1

Dy1
· m1

2π2b1
2

a1
2

(
hn1

βn1
4b1

4 −
hn1
90

)
− hn1

βn1
2b1

2 +
hn1
6

]
+

2H1αm1
4 · 2(H1+2Dx1y1 )

Dy1 βn1
2b1

2 hn1 +
αm1

2

b1
2

[
H1 − 2Dx1y1

]
hn1

}
Cm1+{

2Dx1 αm1
4
[H1+2Dx1y1

Dy1
· m1

2π2b1
2

a1
2

(
hn1

βn1
4b1

4 +
7hn1
720

)
− hn1

βn1
2b1

2 −
hn1
12

]
+

2H1αm1
4 · 2(H1+2Dx1y1 )

Dy1 βn1
2b1

2 hn1 +
αm1

2

b1
2

[
H1 − 2Dx1y1

]
hn1

}
(−1)n1+1Dm1+{

2Dy1 βn1
4
[H1+2Dx1y1

Dx1
· n1

2π2a1
2

b1
2

(
hm1

αm1
4a1

4 −
hm1
90

)
− hm1

αm1
2a1

2 +
hm1

6

]
+

2H1βn1
4 · 2(H1+2Dx1y1 )

Dx1 αm1
2a1

2 hm1 +
βn1

2

a1
2

[
H1 − 2Dx1y1

]
hm1

}
Gn1+{

2Dy1 βn1
4
[H1+2Dx1y1

Dx1
· n1

2π2a1
2

b1
2

(
hm1

αm1
4a1

4 +
7hm1
720

)
− hm1

αm1
2a1

2 −
hm1
12

]
+

2H1βn1
4 · 2(H1+2Dx1y1 )

Dx1 αm1
2a1

2 hm1 +
βn1

2

a1
2

[
H1 − 2Dx1y1

]
hm1

}
(−1)m1+1Hn1

= λm1n1(qm1n1 − Fm1n1)
(m1 = 0, 1, 2, · · ·; n1 = 0, 1, 2, · · ·)

(7)

[Dx2 αm2
4 + 2H2α4

m2
2βn2

2 + Dy2 βn2
4]wm2n2+{

2Dx2 αm2
4
[

H2+2Dx2y2
Dy2

· m2
2π2b2

2

a2
2

(
hn2

βn2
4b2

4 −
hn2
90

)
− hn2

βn2
2b2

2 +
hn2
6

]
+

2H2αm2
4 · 2(H2+2Dx2y2 )

Dy2 βn2
2b2

2 hn2 +
αm2

2

b2
2

[
H2 − 2Dx2y2

]
hn2

}
Cm2+{

2Dx2 αm2
4
[

H2+2Dx2y2
Dy2

· m2
2π2b2

2

a2
2

(
hn2

βn2
4b2

4 +
7hn2
720

)
− hn2

βn2
2b2

2 −
hn2
12

]
+

2H2αm2
4 · 2(H2+2Dx2y2 )

Dy2 βn2
2b2

2 hn2 +
αm2

2

b2
2

[
H2 − 2Dx2y2

]
hn2

}
(−1)n2+1Dm2+{

2Dy2 βn2
4
[

H2+2Dx2y2
Dx2

· n2
2π2a2

2

b2
2

(
hm2

αm2
4a2

4 −
hm2
90

)
− hm2

αm2
2a2

2 +
hm2

6

]
+

2H2βn2
4 · 2(H2+2Dx2y2 )

Dx2 αm2
2a2

2 hm2 +
βn2

2

a2
2

[
H2 − 2Dx2y2

]
hm2

}
Gn2+{

2Dy2 βn2
4
[

H2+2Dx2y2
Dx2

· n2
2π2a2

2

b2
2

(
hm2

αm2
4a2

4 +
7hm2
720

)
− hm2

αm2
2a2

2 −
hm2
12

]
+

2H2βn2
4 · 2(H2+2Dx2y2 )

Dx2 αm2
2a2

2 hm2 +
βn2

2

a2
2

[
H2 − 2Dx2y2

]
hm2

}
(−1)m2+1Hn2

= λm2n2(Fm2n2 −Qm2n2)
(m2 = 0, 1, 2, · · ·; n2 = 0, 1, 2, · · ·)

(8)

where αmi =
miπ

ai
, βmi =

niπ
bi

, hmi = hni =

{
0, i = 0
1, i 6= 0

, and hmi = hni =

{
1, i = 0
0, i 6= 0

.

Considering the boundary conditions of the bending moment, we could obtain:
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(1) When xi = 0, Mxi = 0 (Equation (2a)):

∞
∑

mi=0
(α2

mi
+ vyi β

2
ni
)wmini + 2

∞
∑

mi=0

{
Hi+2Dxi yi

Dyi
bi

2α4
mi

(
hni

β4
ni

bi
4 −

hni
90

)
+α2

mi

[
− 1

β2
ni

bi
2 hni +

hni
6

]
+ α2

mi
vyi ·

Hi+2Dxi yi
Dyi

· 1
β2

ni
bi

2 hni +
vyi hni
2bi

2

}
Cmi

+2(−1)ni+1 ∞
∑

mi=0

{
Hi+2Dxi yi

Dyi
bi

2α4
mi

(
hni

β4
ni

bi
4 +

7hni
720

)
−α2

mi

[
1

β2
ni

bi
2 hni +

hni
12

]
+ α2

mi
vyi ·

Hi+2Dxi yi
Dyi

· 1
β2

ni
bi

2 hni +
vyi hni
2bi

2

}
Dmi

+
( Hi+2Dxi yi

3Dxi
β2

ni
+ 1

ai
2

)
Gni +

( Hi+2Dxi yi
6Dxi

β2
ni
− 1

ai
2

)
Hni = 0

(ni = 0, 1, 2, · · ·)

(9)

(2) When xi = ai, Mxi = 0 (Equation (2a)):

∞
∑

mi=0
(−1)mi (α2

mi
+ vyi β

2
ni
)wmini + 2

∞
∑

mi=0

{
(−1)mi Hi+2Dxi yi

Dyi
bi

2α4
mi

(
hni

β4
ni

bi
4 −

hni
90

)
+α2

mi

[
− 1

β2
ni

bi
2 hni +

hni
6

]
+ α2

mi
vyi ·

Hi+2Dxi yi
Dyi

· 1
β2

ni
bi

2 hni +
vyi hni
2bi

2

}
Cmi

+2(−1)ni+1 ∞
∑

mi=0

{
(−1)mi Hi+2Dxi yi

Dyi
bi

2α4
mi

(
hni

β4
ni

bi
4 +

7hni
720

)
−α2

mi

[
1

β2
ni

bi
2 hni +

hni
12

]
+ α2

mi
vyi ·

Hi+2Dxi yi
Dyi

· 1
β2

ni
bi

2 hni +
vyi hni
2bi

2

}
Dmi

+
(
− vyi (Hi+2Dxi yi )

24Dxi
ai

2β4
ni
+
( vyi

2 −
Hi+2Dxi yi

6Dxi

)
β2

ni
+ 1

ai
2

)
Gni+(

− vyi (Hi+2Dxi yi )
24Dxi

ai
2β4

ni
+
( vyi

2 −
Hi+2Dxi yi

3Dxi

)
β2

ni
− 1

ai
2

)
Hni = 0

(ni = 0, 1, 2, · · ·)

(10)

(3) When yi = 0, Myi = 0 (Equation (2c)):

∞
∑

ni=0
(β2

ni
+ vxi α

2
mi
)wmini+

( Hi+2Dxi yi
3Dyi

α2
mi

+ 1
bi

2

)
Cmi +

( Hi+2Dxi yi
6Dyi

α2
mi
− 1

bi
2

)
Dmi

+2
∞
∑

ni=0

{
Hi+2Dxi yi

Dxi
ai

2β4
ni

(
hmi

α4
mi

ai
4 −

hmi
90

)
+ β2

ni

[
− 1

α2
mi

ai
2 hmi +

hmi
6

]
+β2

ni
vxi ·

Hi+2Dxi yi
Dxi

· 1
α2

mi
ai

2 hmi +
vxi hmi

2ai
2

}
Gni

+2(−1)mi+1 ∞
∑

ni=0

{
Hi+2Dxi yi

Dxi
ai

2β4
ni

(
hmi

α4
mi

ai
4 +

7hmi
720

)
−β2

ni

[
1

α2
mi

ai
2 hmi +

hmi
12

]
+ β2

ni
vxi ·

Hi+2Dxi yi
Dxi

· 1
α2

mi
ai

2 hmi +
vxi hmi

2ai
2

}
Hni = 0

(mi = 0, 1, 2, · · ·)

(11)

(4) When yi = bi, Myi = 0 (Equation (2c)):

+2
∞
∑

ni=0

{
(−1)ni H+2Dxiyi

Dxi
ai

2β4
ni

(
hmi

α4
mi ai

4 −
hmi
90

)
+ β2

ni

[
− 1

α2
mi ai

2 hmi +
hmi
6

]
+β2

ni
vxi ·

Hi+2Dxiyi
Dxi

· 1
α2

mi ai
2 hmi +

vxi hmi
2ai

2

}
Gni

+2(−1)mi+1 ∞
∑

ni=0

{
(−1)ni Hi+2Dxiyi

Dxi
ai

2β4
ni

(
hmi

α4
mi ai

4 +
7hmi
720

)
−β2

ni

[
1

α2
mi ai

2 hmi +
hmi
12

]
+ β2

ni
vxi ·

Hi+2Dxiyi
Dxi

· 1
α2

mi ai
2 hmi +

vxi hmi
2ai

2

}
Hni = 0

(mi = 0, 1, 2, · · ·)

(12)

The deflection of the upper and lower plates could be expressed by formula [27]:

wi(xi, yi) =
∞

∑
mi=0

∞

∑
ni=0

λmini wimini cos
miπxi

ai
cos

niπyi
bi
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where

wimini =
4

aibi

∫ bi

0

∫ ai

0
wi(xi, yi) cos

miπxi
ai

cos
niπyi

bi
dxidyi

wimini = wmini + 2
[

µ2miyi bi
2α2

mi

(
hni

β4
ni bi

4 −
hni
90

)
− hni

β2
ni bi

2 +
hni
6

]
Cmi

+2
[

µ2miyi bi
2α2

mi

(
hni

β4
ni bi

4 +
7hni
720

)
− hni

β2
ni bi

2 −
hni
12

]
(−1)ni+1Dmi

+2
[

µ2mixi ai
2β2

ni

(
hmi

α4
mi ai

4 −
hmi
90

)
− hmi

α2
mi ai

2 +
hmi
6

]
Gni

+2
[

µ2mixi ai
2β2

ni

(
hmi

α4
mi ai

4 +
7hmi
720

)
− hmi

α2
mi ai

2 −
hmi
12

]
(−1)mi+1Hni

(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)

Expanding the deflections of the lower plate into the double cosine series at the
contacting position with the upper plate:

w2(x1, y1) =
∞

∑
m1=0

∞

∑
n1=0

λm1n1W2m1n1 cos
m1πx1

a1
cos

n1πy1

b1

w2m1n1 = 4
a1b1

∫ b1
0

∫ a1
0 W2(x2, y2) cos m1πx1

a1
cos n1πy1

b1
dx1dy1

= 4
a1b1

∫ b1
0

∫ a1
0

∞
∑

m2=0

∞
∑

n2=0
λm2n2W2m2n2 cos m2πx2

a2
cos n2πy2

b2
cos m1πx1

a1
cos n1πy1

b1
dx1dy1

= 4
a1b1

∞
∑

m2=0

∞
∑

n2=0
λm2n2W2m2n2

∫ b1
0

∫ a1
0 cos m2πx2

a2
cos n2πy2

b2
cos m1πx1

a1
cos n1πy1

b1
dx1dy1

(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)

Substituting x2 = x1 + x0 and y2 = y1 + y0 into the expression of w2m1n1 , we obtain:∫ b1
0

∫ a1
0 cos m2πx2

a2
cos n2πy2

b2
cos m1πx1

a1
cos n1πy1

b1
dx1dy1

=
∫ b1

0

∫ a1
0 cos m2π(x1+x0)

a2
cos n2π(y1+y0)

b2
cos m1πx1

a1
cos n1πy1

b1
dx1dy1

=
{

1
2 cos m2πx0

a2

a2a1
π(m2a1+m1a2)

sin πa1(m2a1+m1a2)
a2a1

+ 1
2 cos m2πx0

a2

a2a1
π(m2a1−m1a2)

sin πc(m2a1−m1a2)
a2a1

− 1
2 sin m2πx0

a2

a2a1
π(m2a1+m1a2)

[
1− cos πc(m2a1+m1a2)

a2a1

]
− 1

2 sin m2πx0
a2

a2a1
π(m2a1−m1a2)

[
1− cos πa1(m2a1−m1a2)

a2a1

]}
·
{

1
2 cos n2πy0

b2

b2b1
π(n2b1+n1b2)

sin πb1(n2b1+n1b2)
b2b1

+ 1
2 cos n2πy0

b2

b2b1
π(n2b1−n1b2)

sin πb1(n2b1−n1b2)
b2b1

− 1
2 sin n2πy0

b2

b2b1
π(n2b1+n1b2)

[
1− cos πd(n2b1+n1b2)

b2b1

]
− 1

2 sin n2πy0
b2

b2b2
π(n2b1−n1b2)

[
1− cos πb1(n2b1−n1b2)

b2b1

]}
= D

(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)

The expression of w2m1n1 can be rewritten as:

W2m1n1 =
4

a1b1

∞

∑
m2=0

∞

∑
n2=0

λm2n2W2m2n2 D

Taking into account that the deflections of the upper and lower plates at the contact
position are the same, the deformation equation of compatibility is expressed as:
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wm1n1 + 2
[

µ2m1y1 b1
2α2

m1

(
hn1

β4
n1 b1

4 −
hn1
90

)
− hn1

β2
n1 b1

2 +
hn1
6

]
Cm1

+2
[

µ2m1y1 b1
2α2

m1

(
hn1

β4
n1 b1

4 +
7hn1
720

)
− hn1

β2
n1 b1

2 −
hn1
12

]
(−1)n1+1Dm1

+2
[

µ2m1x1 a1
2β2

n1

(
hm1

α4
m1 a1

4 −
hm1
90

)
− hm1

α2
m1 a1

2 +
hm1

6

]
Gn1

+2
[

µ2m1x1 a1
2β2

n1

(
hm1

α4
m1 a1

4 +
7hm1
720

)
− hm1

α2
m1 a1

2 −
hm1
12

]
(−1)m1+1Hn1

= 4
a1b1

∞
∑

m2=0

∞
∑

n2=0
λm2n2 wm2n2 D + 4

a1b1

∞
∑

m2=0

∞
∑

n2=0
λm2n2 D · 2

[
µ2m2y2 b2

2α2
m2

(
hn2

β4
n2 b2

4 −
hn2
90

)
− hn2

β2
n2 b2

2 +
hn2
6

]
Cm2

+ 4
a1b1

∞
∑

m2=0

∞
∑

n2=0
λm2n2 D · 2

[
µ2m2y2 b2

2α2
m2

(
hn2

β4
n2 b2

4 +
7hn2
720

)
− hn2

β2
n2 b2

2 −
hn2
12

]
(−1)n2+1Dm2

+ 4
a1b1

∞
∑

m2=0

∞
∑

n2=0
λm2n2 D · 2

[
µ2m2x2 a2

2β2
n2

(
hm2

α4
m2 a2

4 −
hm2
90

)
− hm2

α2
m2 a2

2 +
hm2

6

]
Gn2

+ 4
a1b1

∞
∑

m2=0

∞
∑

n2=0
λm2n2 D · 2

[
µ2m2x2 a2

2β2
n2

(
hm2

α4
m2 a2

4 +
7hm2
720

)
− hm2

α2
m2 a2

2 −
hm2
12

]
(−1)m2+1Hn2

(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)

(13)

The double Fourier transformation of the ground reaction force is expressed as:

Q(ξ, η) = − 1
2π

∞

∑
m2=0

∞

∑
n2=0

λm2n2 Qm2n2

[
eiξa(−1)m2 − 1

][
(−1)n2 eiηb − 1

]
ξη
[
1− (m2π

aξ )
2
][

1− ( n2π
bη )

2
] (14)

Expanding w
∣∣z2=0 into the double cosine series form:

w
∣∣z2=0 =

∞

∑
m2=0

∞

∑
n2=0

λm2n2 wz2 m2n2 cos
m2πx2

a2
cos

n2πy2

b2
(15)

in which:

wz2m2n2 =
4

a2b2

∫ a2

0

∫ b2

0
w
∣∣z2=0 cos

m2πx2

a2
cos

n2πy2

b2
dx2dy2 (16)

wz2m2n2 =
1

2π2a2b2

(λ + 2µ)

(λ + µ)µ

∞

∑
p=0

∞

∑
q=0

Qpqλpqηpqm2n2 (17)

where

ηpqm2n2 =
∫ ∞

−∞

∫ ∞

−∞

1
q1

[(−1)peiξa − 1][(−1)qeiηb − 1][(−1)m2 e−iξa − 1][(−1)n2 e−iηb − 1]

ξ2η2
[
1− (m2π

aξ )
2
][

1− ( n2π
bη )

2
][

1− ( pπ
aξ )

2
][

1− ( qπ
bη )

2
] dξdη

Equation (4) could be rewritten in a double cosine series form, and considering that
the plate and surface of the elastic foundation have the same vertical displacement, thus
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the coefficients of the corresponding items are also the same. The deformation equation of
compatibility is given as:

1
2π2a2b2

(λ+2µ)
(λ+µ)µ

∞
∑

p=0

∞
∑

q=0
Qpqλpqηpqm2n2 λm2n2

= wm2n2 + 2
[

µ2m2y2 b2
2α2

m2

(
hn2

β4
n2 b4 −

hn2
90

)
− hn2

β2
n2 b2

2 +
hn2
6

]
Cm2

+2
[

µ2m2y2 b2
2α2

m2

(
hn2

β4
n2 b2

4 +
7hn2
720

)
− hn2

β2
n2 b2

2 −
hn2
12

]
(−1)n2+1Dm2

+2
[

µ2m2x2 a2
2β2

n2

(
hm2

α4
m2 a2

4 −
hm2
90

)
− hm2

α2
m2 a2

2 +
hm2

6

]
Gn2

+2
[

µ2m2x2 a2
2β2

n2

(
hm2

α4
m2 a2

4 +
7hm2
720

)
− hm2

α2
m2 a2

2 −
hm2
12

]
(−1)m2+1Hn2

(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)

(18)

Therefore, the undetermined coefficients wm1n1 , Fm1n1 , Cm1 , Dm1 , Gn1 , Hn1 , wm2n2 ,
Qm2n2 , Cm2 , Dm2 , Gn2 , and Hn2 could be obtained by twelve equations (Equations (7)–(18)),
in which N1, N2, M1, and M2 are the maximum values of n1, n2, m1, and m2, respectively.
Thus, the number of the governing equation is 2(M1 + 1)(N1 + 1) + 2(M1 + 1) + 2(N1 + 1) +
2(M2 + 1)(N2 + 1) + 2(M2 + 1) + 2(N2 + 1), which can be used to solve the same number of
undetermined coefficients. In order to ensure the correctness of the calculation results, the
maximum values of M1, M2, N1, and N2 are taken to 20. Substituting the solved coefficients
into Equation (1a,b), the deflection of the plate can be obtained, and further, the internal
force and the foundation reaction can also be calculated.

2.1.3. Example

Case 1: We consider a stepped rectangular plate resting on the surface of an elastic
half-space foundation. The dimensions of the upper and lower plates are 4.0 m × 0.2 m
(side length × thickness) and 4 m × 0 m (side length × thickness), respectively, and the
uniform load q(x1, y1) on the plate is 0.98 MPa. In this case, the stepped rectangular plate
degenerates into a rectangular plate. The performance parameters of the plate and the
foundation are given in Table 1.

Table 1. Performance parameters.

Poisson Ratio Elastic Modulus (MPa)

Plate 0.167 34,300
Foundation 0.4 343

The subgrade reaction, bending moment, and deflection of the plate could be obtained
by the solution, as shown in Figure 2.

Table 2 shows that the calculated results are consistent with the results in [28]. This
comparison proves the effectiveness of the theory proposed in this paper.

Table 2. Comparison of calculation results of thin plate.

In This Paper [28]

Maximum deflection (m) 0.0107 0.0107
Maximum bending moment (kN·m) 35.558 35.558
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Figure 2. Calculation results using thin plate theory: (a) Subgrade reaction; (b) Bending moment of
the plate (My); (c) Bending moment of the plate (Mx); (d) Deflection of the plate.

Case 2: We consider a stepped rectangular plate resting on the surface of an elastic
half-space foundation. The dimensions of the upper and lower plates are 4.0 m × 0.2 m
(side length × thickness) and 4 m × 0.2 m (side length × thickness), respectively, and
the concentrated loading on the plate is F = 100 kN. The performance parameters of the
stepped plate and the foundation are given in Table 3.

Table 3. Performance parameters of the stepped rectangular plate.

Component Name Poisson Ratio Elastic Modulus (MPa)

Upper plate 0.167 26,000
Lower plate 0.167 26,000
Foundation 0.4 343

Figure 3 shows the comparison of the analytical solution and the simulation results,
in which the model is created by ABAQUS software. For the deflection at the center of
the lower plate, the result of the finite element model is smaller than that of the analytical
solution when it is close to the edge of the plate, while when it is close to the center of the
plate, the situation is just the opposite (Figure 3a). For the bending moment of the lower
plate at x = 0.5 m and y = 0.5 m, the curve increases slowly at the edge of the plate, and as it
approaches the center of the plate, the curve increases first and then decreases (Figure 3b,c).
It can be concluded that the results of finite element model well support the present results
using the thin plate theory.



Buildings 2023, 13, 1671 13 of 22

Buildings 2023, 13, x FOR PEER REVIEW 15 of 26 
 

plate, the situation is just the opposite (Figure 3a). For the bending moment of the lower 
plate at x = 0.5 m and y = 0.5 m, the curve increases slowly at the edge of the plate, and as 
it approaches the center of the plate, the curve increases first and then decreases (Figure 
3b,c). It can be concluded that the results of finite element model well support the present 
results using the thin plate theory. 

   
(a) (b) (c) 

 
 

  

 
Figure 3. Verification of finite element software: (a) Deflection at the center of the lower plate; (b) 
Bending moment of the lower plate at x = 0.25 m (Mx); (c) Bending moment of the lower plate at y = 
0.25 m (Mx). 

Table 3. Performance parameters of the stepped rectangular plate. 

Component Name Poisson Ratio Elastic Modulus (MPa) 
Upper plate 0.167 26,000 
Lower plate 0.167 26,000 
Foundation 0.4 343 

2.2. Both Upper and Lower Parts of the Plate Are Moderately Thick Plates 
2.2.1. Basic Equations and Boundary Conditions 

The governing differential equations of the moderately thick plate are determined by 
formulas [27]: 

1 1 1

1

2 2 2
1

11 66 12 66 11 112 2
1 1 11 1

Φ Φ Φ
( ) Φ 0

∂ ∂ ∂ ∂
+ + + + − =

∂ ∂ ∂∂ ∂
x x y

x

w
D D D D C C

x y xx y
  

1 1 1

1

2 2 2
1

22 66 12 66 22 222 2
1 1 11 1

Φ Φ Φ
( ) Φ 0

∂ ∂ ∂ ∂
+ + + + − =

∂ ∂ ∂∂ ∂
y y x

y

w
D D D D C C

x y yy x
 

Figure 3. Verification of finite element software: (a) Deflection at the center of the lower plate;
(b) Bending moment of the lower plate at x = 0.25 m (Mx); (c) Bending moment of the lower plate at
y = 0.25 m (Mx).

2.2. Both Upper and Lower Parts of the Plate Are Moderately Thick Plates
2.2.1. Basic Equations and Boundary Conditions

The governing differential equations of the moderately thick plate are determined by
formulas [27]:

D11
∂2Φx1

∂x1
2 + D66

∂2Φx1

∂y1
2 + (D12 + D66)

∂2Φy1

∂x1∂y1
+ C11

∂w1

∂x1
− C11Φx1 = 0

D22
∂2Φy1

∂y1
2 + D66

∂2Φy1

∂x1
2 + (D12 + D66)

∂2Φx1

∂x1∂y1
+ C22

∂w1

∂y1
− C22Φy1 = 0

C11
∂2w1

∂x1
2 + C22

∂2w1

∂y1
2 − C11

∂Φx1

∂x1
− C22

∂Φy1

∂y1
+ q− F = 0

D11
∂2Φx2

∂x22 + D66
∂2Φx2

∂y22 + (D12 + D66)
∂2Φy2

∂x2∂y2
+ C11

∂w2

∂x2
− C11Φx2 = 0

D22
∂2Φy2

∂y22 + D66
∂2Φy2

∂x22 + (D12 + D66)
∂2Φx2

∂x2∂y2
+ C22

∂w2

∂y2
− C22Φy2 = 0

C11
∂2w2

∂x22 + C22
∂2w2

∂y22 − C11
∂Φx2

∂x2
− C22

∂Φy2

∂y2
+ F−Q = 0

where Φxi , Φyi , wi, F, Q are unknown coefficients.
Boundary restrictions are given as:

Mxi = Mxiyi = Qxi = 0(xi = 0, xi = a)

Myi = Mxiyi = Qyi = 0(yi = 0, yi = b)

2.2.2. Coordination Equation and Analytical Solution

Expanding Φxi , Φyi , wi, F, Q, q into a Fourier series

Φxi = ∑
mi

∑
ni

ϕmini sin αmi xi cos βni yi

Φyi = ∑
mi

∑
ni

ψmini cos αmi xi sin βni yi

wi = ∑
mi

∑
ni

wmini cos αmi xi cos βni yi
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F = ∑
m2

∑
n2

Fm2n2 cos αm2 x2 cos βn2 y2

Q = ∑
mi

∑
ni

Qmini cos αmi xi cos βni yi

q = ∑
m1

∑
n1

qm1n1 cos αm1 x1 cos βn1 y1

in which Φmini , ψmini , wmini , Fm2n2 , qm1n1 and Qmini are unknown coefficients.
Taking into account the continuous differentiability of the formula on the boundary of

the plate, we can write:

∂wi(0, yi)

∂xi
= − ai

4 ∑
ni

ani cos βni yi;
∂wi(xi, 0)

∂yi
= − bi

4 ∑
ni

bmi cos αmi xi

Φxi (0, yi) = −
ai
4 ∑

ni

cni cos βni yi;Φyi (xi, 0) = − bi
4 ∑

ni

dmi cos αmi xi

∂wi(ai, yi)

∂xi
= − ai

4 ∑
ni

eni cos βni yi;
∂wi(xi, bi)

∂yi
= − bi

4 ∑
ni

fmi cos αmi xi

Φxi (ai, yi) = −
ai
4 ∑

ni

gni cos βni yi;Φyi (xi, bi) = −
bi
4 ∑

ni

hmi cos αmi xi

where ani , bmi , cni , dmi , eni , fmi , gni , and hmi are unknown coefficients. According to
boundary conditions, we obtain the expressions:

ani = cni , eni = gni , bmi = dmi , fmi = hmi

(1) Derived from Mxi = 0 on the edge xi = 0, we obtain the expression:

∑
mi

[ εmi

2
D11(eni cos miπ − ani )− αmi ϕmini D11 +

εmi

2
( fmi cos miπ − bmi )D12 − βni ψmini D12

]
= 0

(2) Derived from Mxi = 0 on the edge xi = ai, we obtain the expression:

∑
mi

[ εmi

2
D11(eni cos miπ − ani )− αmi ϕmini D11 +

εmi

2
( fmi cos miπ − bmi )D12 − βni ψmini D12

]
cos αmi ai = 0

(3) Derived from Myi = 0 on the edge yi = 0, we obtain the expression:

∑
ni

[ εmi

2
D12(eni cos miπ − ani )− αmi ϕmini D12 +

εmi

2
( fmi cos miπ − bmi )D22 − βni ψmini D22

]
= 0

(4) Derived from Myi = 0 on the edge yi = bi, we obtain the expression:

∑
ni

[ εmi

2
D12(eni cos miπ − ani )− αmi ϕmini D12 +

εmi

2
( fmi cos miπ − bmi )D22 − βni ψmini D22

]
cos βni bi = 0

Substituting the unfolded Fourier form of Φxi , Φyi , and w into the governing differen-
tial equations, the expressions can be written as:

αm1 εm1
2 D11an1 +

αm1 εn1
2 D12bm1 −

αm1 εm1
2 D11 cos m1πen1 −

αm1 εn1
2 D12 cos n1π fm1

+
(

D11α2
m1

+ D66β2
n1
+ C11

)
ϕm1n1 + (D12 + D66)αm1 βn1 ψm1n1 + αm1 C11wm1n1 = 0

βn1 εm1
2 D12an1 +

βn1 εn1
2 D22bm1 −

(
βn1 εm1

2 D12 cos m1π
)

en1 −
(

βn1 εn1
2 D22 cos n1π

)
fm1

+αm1 βn1(D12 + D66)ϕm1n1 +
(

β2
n1

D22 + α2
m1

D66 + C22
)
ψm1n1 + βn1 C22wm1n1 = 0
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αm1 C11 ϕm1n1 + βn1 C22ψm1n1 +
(
α2

m1
C11 + β2

n1
C22
)
wm1n1 + Fm1n1 = qm1n1

αm2 εm2
2 D11an2 +

αm2 εn2
2 D12bm2 −

αm2 εm2
2 D11 cos m2πen2 −

αm2 εn2
2 D12 cos n2π fm2

+
(

D11α2
m2

+ D66β2
n2
+ C11

)
ϕm2n2 + (D12 + D66)αm2 βn2 ψm2n2 + αm2 C11wm2n2 = 0

βn2 εm2
2 D12an2 +

βn2 εn2
2 D22bm2 −

(
βn2 εm2

2 D12 cos m2π
)

en2 −
(

βn2 εn2
2 D22 cos n2π

)
fm2

+αm2 βn2(D12 + D66)ϕm2n2 +
(

β2
n2

D22 + α2
m2

D66 + C22
)
ψm2n2 + βn2 C22wm2n2 = 0

αm2 C11 ϕm2n2 + βn2 C22ψm2n2 +
(
α2

m2
C11 + β2

n2
C22
)
wm2n2 + Qm2n2 = Fm2n2

Considering the same displacement of the upper and lower plates at the contacting
position, thus, the deflection equations of the upper and lower plates could be expanded
into a double cosine series as:

wi(xi, yi) =
∞
∑

mi=0

∞
∑

ni=0
λmini wimini cos miπxi

ai
cos niπyi

bi

wimini =
4

aibi

∫ bi
0

∫ ai
0 wi(xi, yi) cos miπxi

ai
cos niπyi

bi
dxidyi

w2m1n1 = 4
a1b1

∫ b1
0

∫ a1
0 W2(x2, y2) cos m1πx1

a1
cos n1πy1

b1
dx1dy1

= 4
a1b1

∫ b1
0

∫ a1
0

∞
∑

m2=0

∞
∑

n2=0
λm2n2 w2m2n2 cos m1πx1

a1
cos n1πy1

b1
cos m2πx2

a2
cos n2πy2

b2
dx1dy1

= 4
a1b1

∞
∑

m2=0

∞
∑

n2=0
λm2n2 w2m2n2

∫ b1
0

∫ a1
0 cos m1πx1

a1
cos n1πy1

b1
cos m2πx2

a2
cos n2πy2

b2
dx1dy1

= 4
a1b1

∞
∑

m2=0

∞
∑

n2=0
λm2n2 w2m2n2

∫ b1
0

∫ a1
0 cos m1πx1

a1
cos n1πy1

b1
cos m2π(x1+x0)

a2
cos n2π(y1+y0)

b2
dx1dy1

= 4
a2b2

∞
∑

m2=0

∞
∑

n2=0
λm2n2 wm2n2 D

(mi = 0, 1, 2, · · ·; ni = 0, 1, 2, · · ·)

The deformation coordination equation between the upper and the lower plates is
expressed as:

w1m1n1 =
4

a1b1

∞

∑
m2=0

∞

∑
n2=0

λm2n2 w2m2n2 D

The deformation coordination equation between the lower plate and the foundation is
given as:

1
2π2a2b2

(λ + 2µ)

(λ + µ)µ

∞

∑
p=0

∞

∑
q=0

Qpqλpqηpqm2n2 λm2n2 = wm2n2

Using the same method in Section 2.1, the undetermined coefficients ani , bm1 , en1 ,
fm1 , ϕmini , ψmini , wmini , Fmini , and Qm2n2 could be simultaneously solved. Substituting the
solved coefficients into related formulas, the subgrade reaction, deflection, and internal
force of the plate could be obtained.

2.2.3. Example

Case 3: Recalculating case 1 in Section 2.1.3. According to the theory mentioned in this
section, the results are given in Figure 4. Through the comparison of Figures 2 and 4, it can
be seen that the subgrade reaction, deflection, and internal force of the plate are basically
the same.
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Meanwhile, the analytical solution in this paper is consistent with the results in [28],
as shown in Table 4. This comparison proves the effectiveness of the theory proposed in
this paper.

Table 4. Comparison of calculation results of thick plate.

In This Paper Thin Plate Theory [28]

Maximum deflection (m) 0.0107 0.0107 0.0107
Maximum bending

moment (kN·m) 35.551 35.558 35.558

Case 4: The recalculated results of case 2 in Section 2.1.3 also indicate that the influence
of plate theory on the internal force and deflection of the plate is relatively small. Due to
the limited length of this article, the specific curve is no longer listed.

When the stepped rectangular plate is simultaneously analyzed using both moderately
thick plate theory and thin plate theory, the same method (as shown in Sections 2.1 and 2.2)
could be used to obtain the internal force and deflection of the stepped rectangular plate.

3. Discussion
3.1. Effect of Elastic Modulus on the Deflection of Plate

The dimensions, Poisson ratios, and elastic modulus of the rectangular stepped plate
and foundation are given in Table 5. The vertical uniform load value is 0.98 MPa. The
deflection curve of the center line of the plate is shown in Figure 5, in which the number of
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the curves 1, 2, 3, and 4 indicate that the elastic modulus of the upper plate is 34,300 MPa,
343,000 MPa, 686,000 MPa, and 1,029,000 MPa, respectively.

Table 5. Dimensions and properties of plates with different elastic modulus.

Component
Name Side Length (m) Thickness (m) Poisson Ratio Elastic Modulus

(MPa)

Upper plate 2.0 0.1 0.167 Variable
Lower plate 4.0 0.3 0.167 34,300
Foundation - - 0.4 343
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Through the analysis of Figure 5, it can be seen that the variation trend of the deflection
curve of the lower plate is the same as that of Figure 3a. The deflection value of the lower
plate is largest when the elastic modulus of the upper and lower plates is the same. The
deflection along the center line of the plate decreases with the increase of the elastic modulus
of the upper plate, while the deflection at the edge of the plate is just the opposite.

3.2. Influence of Plate Theory on Calculation Results of Plate Deflection

The dimensions, Poisson ratios, and elastic modulus of the rectangular stepped plate
and foundation are given in Table 6. The vertical uniform load value is 0.98 MPa, and the
thickness of the lower plate is 0.2 m, 0.3 m, 0.4 m, 0.5 m, 0.6 m, 0.7 m, 0.8 m, 0.9 m, and
1.0 m, respectively. The deflection of the center of the lower plate is given in Table 7, in
which w1 and w2 are the deflection values calculated by thin plate theory and moderately
thick plate theory, respectively.

Table 6. Dimensions and properties of plates with different thickness.

Component
Name Side Length (m) Thickness (m) Poisson Ratio Elastic Modulus

(MPa)

Upper plate 2.0 0.2 0.167 34,300
Lower plate 2.0 Variable 0.167 34,300
Foundation - - 0.4 343

Through the calculation results in Table 7, it can be obtained that when the thickness
of the upper plate is constant, the maximum deflection of the lower plate decreases with
the increase in the thickness. Meanwhile, the comparison of w1 and w2 shows that the plate
theory has little influence on the analytical solution of the maximum deflection of the plate.
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Table 7. Deflection at the center of the lower plate.

Thickness of Lower Plate (m) w1 (m) w2 (m)

0.2 0.0053 0.0052
0.3 0.0042 0.0041
0.4 0.0035 0.0034
0.5 0.0030 0.0030
0.6 0.0027 0.0027
0.7 0.0025 0.0025
0.8 0.0024 0.0024
0.9 0.0023 0.0023
1.0 0.0022 0.0023

3.3. Influence of Side Length of Upper and Lower Plates on Calculation Results of Plate Deflection

The dimensions of the stepped rectangular plates are given in Table 8. The vertical
uniform load value is 0.98 MPa. Calculation results can be seen in Figure 6, in which
1, 2, 3, and 4 indicate the side lengths of the upper plate are 3.0 m, 2.0 m, 1.0 m, and
0.5 m, respectively.

Table 8. Dimensions and properties of plates with different side length.

Component
Name Side Length (m) Thickness (m) Poisson Ratio Elastic Modulus

(MPa)

Upper plate Variable 0.2 0.167 34,300
Lower plate 4.0 0.3 0.167 34,300
Foundation - - 0.4 343
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It can be seen from Figure 6 that the deflection of the center of the plate increases as
the size of the upper plate increases. It can also be found that when the coordinates of x are
between 0–1 or 3–4, the deflection growth rate is relatively fast, while the growth rate of
deflection is slow when 2 < x < 4, indicating that the existence of the upper plate increases
the stiffness of the lower plate.

4. Conclusions

This paper presents a new solving method to obtain the bending moment and deflec-
tion of the stepped rectangular plate using traditional thin plate theory and moderately
thick plate theory. The stepped rectangular plate is divided into an upper plate and lower
plate, and the analytical solution could be obtained through the differential equation and
boundary conditions of the plate-foundation system. Several conclusions can be drawn
as follows.

(1) The analytical solution is basically the same as those in the existing literature and the
simulation results using ABAQUS software, indicating that the traditional plate theory
could be used to analyze the bending property of stepped rectangular plate. The
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analysis results also demonstrate that the analytical solution of the stepped rectangular
plate is not related to the plate theory adopted.

(2) The increase in the elastic modulus of the upper plate can effectively reduce the
deflection at the center of the plate and slightly increase the deflection at the edge of
the plate, showing that the increase in the elastic modulus of the upper plate could
effectively improve the stiffness of the stepped rectangular plate.

(3) The thickness and maximum deflection of the plate are negatively related when
the thin plate theory or moderately thick plate theory is used for analysis, and the
analytical solution obtained by using these two types of plate theory is basically
the same.

(4) The greater the difference in the side length of the upper and lower plates, the greater
the deflection of the stepped rectangular plate. The increase in the deflection at the
edge of the plate is not as significant as that at the center of the plate.

Due to the limitations of time, level, and vision, the research on the topics of this paper
is not yet complete. In the future, more in-depth research can be conducted regarding the
following aspects:

(1) The interaction between the plate and the elastic half-space foundation is discussed
in this paper, but the characteristics of the stepped rectangular plate resting on a
two-parameter foundation should be analyzed in the future.

(2) The bending performance of the plate resting on an elastic half-space foundation
under static load is analyzed in this paper, while the dynamic characteristics of the
plate should be studied in future research.

(3) The characteristics of the stepped rectangular plate embedded in the foundation
should be studied in follow-up research.
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Appendix A

The deflection of the plate could be expressed using a double cosine series

w = Φ(x, y) + Φ1(x, y) + Φ2(x, y) (A1)

in which Φ(x, y) is the double cosine series, Φ1(x, y) and Φ2(x, y) are the cosine series of x
and y, respectively.

Φ(x, y) =
∞
∑

m=0

∞
∑

n=0
wmn cos mπx

a cos nπx
b

Φ1(x, y) =
∞
∑

m=0
(A1my4 + B1my3 + C1my2 + D1my) cos mπx

a

Φ2(x, y) =
∞
∑

n=0
(A2nx4 + B2nx3 + C2nx2 + D1nx) cos nπy

b

where A1m~D1m and A2n~D2n are undetermined parameters.
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The shear force and rotating angle along the four sides of the plate are expressed by
the cosine series.

Fsy(x, 0) =
∞

∑
m=0

1
b

Am cos
mπx

a
, Fsy(x, b) =

∞

∑
m=0

1
b

Bm cos
mπx

a
(A2)

θy(x, 0) =
∞

∑
m=0

1
b

Cm cos
mπx

a
, θy(x, b) =

∞

∑
m=0

1
b

Dm cos
mπx

a
(A3)

Fsx(0, y) =
∞

∑
n=0

1
a

En cos
nπy

b
, Fsx(a, y) =

∞

∑
n=0

1
a

Fn cos
nπy

b
(A4)

θx(0, y) =
∞

∑
n=0

1
a

Gn cos
nπy

b
, θx(a, y) =

∞

∑
n=0

1
a

Hn cos
nπy

b
(A5)

in which Am~Dm and En~Hn are undetermined parameters.
The total shear force could be written as

∂3w
∂3y

+ µ2my
∂3w

∂y∂2x
=

Fsy

Dy
,

∂3w
∂3x

+ µ2mx
∂3w

∂x∂2y
=

Fsx

Dx
(A6)

where µ2my =
Hy+2Dxiyi

Dyi
, µ2mx =

Hx+2Dxiyi
Dxi

, Dx and Dy are the bending stiffness of x-axial
and y-axial direction, respectively.

With account of Equations (A1)–(A6), A1m~D2m and A1n~D2n could be represented by
Am~Dm and En~Hn. Equation (A1) could be rewritten as:

wi =
∞
∑

m=0

∞
∑

n=0
wmn cos mπx

a cos nπy
b +

∞
∑

m=0

{[
µ2my

m2π2b2

a2 · (Dm−Cm)
24b2 + Am−Bm

24b2Dy

]
y4 +

+
(

µ2my · m2π2b2

a2 · Cm
6b −

Am
6bDy

)
y3 −

[
(3+µ2my ·b2·m2π2b2

a2 )Cm

6b2 −
(6−µ2my ·b2·m2π2b2

a2 )Dm

12b2

− 2Am+Bm
12bDy

]
y2 + Cm

b y
}

cos mπx
a +

∞
∑

n=0

{[
µ2mx

m2π2a2

b2 · (Hn−Gn)
24a2 + En−Fn

24a2Dx

]
x4 +

+
(

µ2mx · m2π2a2

b2 · Gn
6a −

En
6aDx

)
x3 −

[
(3+µ2mx ·a2·m2π2a2

b2 )Gn

6a2 −
(6−µ2mx ·a2·m2π2a2

b2 )Hn

12a2

− 2En+Fn
12aDx

]
x2 + Gn

a x
}

cos nπx
b

(A7)

If the four sides of the plate are free and considering that the stepped plate is divided
into lower and upper plates, it can be known that Am = Bm = En = Fn = 0. Therefore,
Equation (A7) can be expressed as:

wi =
∞
∑

mi=0

∞
∑

ni=0
wmini cos miπxi

ai
cos niπyi

bi
+

∞
∑

mi=0

{[
µ2miyi

mi
2π2bi

2

ai
2 · 4biyi

3−4bi
2yi

2−yi
4

24bi
4

+ 2biyi−yi
2

2bi
2

]
Cmi +

[
µ2miyi

mi
2π2bi

2

ai
2 · yi

4−2bi
2yi

2

24bi
4 + yi

2

2bi
2

]
Dmi

}
cos miπxi

ai

+
∞
∑

ni=0

{[
µ2mixi

ni
2π2ai

2

bi
2 · 4aixi

3−4ai
2xi

2−xi
4

24ai
4 + 2aixi−xi

2

2ai
2

]
Gni +

[
µ2mixi

ni
2π2ai

2

bi
2

· xi
4−2ai

2xi
2

24ai
4 + xi

2

2ai
2

]
Hni

}
cos niπyi

bi
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