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Abstract: The main purpose of this article is to discuss the use of the Lyapunov exponents to evaluate
the integrity of structures. The use of such coefficients is examined in an analysis that considers the
geometric and physical nonlinearities, aiming to ensure the applicability of the method in robust
simulations. The material nonlinearity is modeled using the multilinear isotropic elastoplastic model
together with a recently developed damage model. The nonlinear equilibrium equations solution
is obtained using the positional finite element method. The Newmark time-marching procedure
is implemented to evaluate the Lyapunov coefficients and a nonlinear predictor technique that
needs a single data series is employed. A numerical example of a frame structure is presented to
illustrate the methodology applicability. Its results show that the Lyapunov exponents can be used as
indicative parameters of structural integrity, since its analysis was able to detect the occurrence of the
destabilization of the structure with the dynamic jump and the presence of material failures. The
non-linear predictor proved to be an efficient technique for obtaining the Lyapunov exponents, with
a low computational cost. The methodology presented to monitor structural integrity was shown to
be a promising alternative.

Keywords: Lyapunov exponents; damage; structural health; nonlinear analysis; dynamics of structures

1. Introduction

Regarding recent trends in the structural health monitoring of buildings based on
advanced computational and experimental techniques, works related to structural damage
identification stand out. Recently, Wang, Kajita and Yang [1] proposed a Bayesian RC-frame
Finite Element Model Updating (FEMU) and damage state estimation approach using the
nonlinear acceleration time history based on nested sampling. Another important research
issue is the failure of joints, which can lead to structural collapse. Buka-Vaivade, Kurtenoks
and Serdjuks [2] proposed a novel method for the quality assessment of structural joints
using coaxial correlation in 6D space. At the conclusion, the authors point to the importance
of monitoring joint stiffness during operation to prevent such failures.

An approach that is rapidly gaining importance and adherence in the field of structural
integrity studies is machine learning. To investigate the sensitivity of the overall mechani-
cal performance of steel–concrete composite beam bridges (SCCBB) to different types of
damage, Guo et al. [3] proposed a method based on the extremely randomized trees (ET) al-
gorithm in machine learning. Dyer et al. [4] presented a comparative study of two machine
learning models designed to assess the remaining useful life (RUL) of offshore platforms, a
gradient boosted regression tree and a feedforward artificial neural network, with results
that highlight the key factors associated with the platform RUL. Sarmadi [5] used the vibra-
tion data of two full-scale bridges to perform a comparison of various machine learning
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methods (aiming to help engineers to choose the most appropriate technique), while also
proposing automated approaches to hyperparameter optimization and variability level
prediction. Pishro et al. [6] applied artificial neural networks to predict and to evaluate the
structural responses of externally bonded fiber-reinforced polymer-strengthened reinforced
concrete T-beams under combined torsion and shear, with great consistency between the
experimental and numerical results. Pishro et al. [7] used a genetic algorithm and a physics-
informed neural network to solve the inverse problem of the parallel micro element system
on the local bond stress–slip relationship at the steel bar–ultra-high-performance concrete
interface subjected to monotonic loading.

Lyapunov exponents are widely used to verify whether a given dynamical system
presents instabilities and, particularly, deterministic chaotic behavior. For usual problems,
the responses obtained through physical models, in general, are presented in a discrete
way, modeled from approximation method solutions.

Over time, several methods for determining Lyapunov coefficients have been devel-
oped and published in the scientific literature. Wolf et al. [8] presented, in an unprecedented
way, a method to estimate the Lyapunov exponents from experimental time series, capable
of working even in the presence of external noise. Sano and Sawada [9] proposed a new
method, which also can be used in experimentally obtained irregular signals, to determine a
set of several Lyapunov exponents (including positive, zero, and even negative ones), from
the observed time series of a single variable. Briggs [10] presented an improved method,
which remained close to the ideas of Wolf [8] and Sano and Sawada [9], but with the novelty
of using a least-squares polynomial fitting in experimental data with the presence of noise,
which generated better results. Abarbanel et al. [11] generalized the notion of the Lyapunov
spectrum, so that one can address the local variations in the growth rate of the instabilities
across the attractor, with the idea that the local characteristics of a perturbation are more
important in determining the predictability of a given state of the system. Dingwell [12]
and Sprott [13] are good references that present these and other methods and strategies for
obtaining Lyapunov coefficients from time series.

The increase in the number of methods for obtaining Lyapunov coefficients, as well
as the increasing efficiency of such methods, has made their use more common and gen-
eral. Its application is found in studies in astrophysics [14] and climate systems [15],
among other areas that use the tools of dynamical systems. Recently, Fernandes [16] and
Barbosa et al. [17] have made use of Lyapunov exponents for studies of lattice structures
susceptible to chaotic behavior.

In recent years, several works have made use of tools from the field of dynamic
systems, such as Lyapunov exponents and Poincaré maps, to monitor the integrity of
structures such as bridges, viaducts, and mechanical elements, among others [1–3,8–17].
In general, such methods only identify the existence of damage, but are not capable of
pointing out the magnitude or position of such degradation [18]. It is important to point out
that in these works, the use of the word damage only means an anomaly in the structural
behavior, including all types of non-linearities and instabilities.

Casciati and Casciati [19] presented the possibility of using Lyapunov exponents for
structural monitoring by observing the variation in such parameters from an intact struc-
ture to a degraded structure, since before the occurrence of damage, the exponents were
invariant. Jin, Jalinoos, and Livingston [20] applied the Chaos Theory, using Lyapunov’s
exponents, to analyze a real bridge, using experimental data and the results of a finite
element model of the structure, having as a novelty the use of acceleration data instead
of displacement data. The authors developed a geometric dynamics analytical process to
reveal the relationship between the nonlinear invariants extracted from accelerations and
displacements, thus enabling the direct use of the acceleration data to obtain the Lyapunov
exponents. This is an interesting result, as it allows the direct use of experimental data
collected from monitoring bridges with accelerometers in methods that use Lyapunov
exponents to assess structural integrity, as is the purpose of the method presented in this
work. However, Zhou, Chen and Yin [21] point out that the number of samples and the
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duration of the analysis time are factors that influence the obtainment of the maximum
Lyapunov exponents and, therefore, the integrity analysis of a structure. Rai and Kim [22]
propose a new approach for estimating the service life of rolling element bearings using
the Lyapunov maximum exponent together with a probabilistic map of self-organization
and the Gini-Simpson index; this method proved to be capable of predicting the growth of
bearing damage.

In the present study, the use of the Lyapunov exponents to evaluate the integrity
of structures was achieved by examining a structural analysis that considers geometric
and physical nonlinearities, aiming to ensure the applicability of the method in robust
simulations. The algorithm used in the analysis was implemented by the authors, with the
material nonlinearity modeled using the multilinear isotropic elastoplastic model together
with a recently developed damage model, called FLHB [23]. The nonlinear equilibrium
equations solution was obtained using the positional finite element method. In this article,
a numerical example of a frame structure was presented to illustrate the methodology
applicability, even though the methodology could be applied to displacement/acceleration
data resulting from any other type of analysis or experimental test.

2. Materials and Methods
2.1. Lyapunov Exponents

The idea of Lyapunov exponents is to monitor the evolution of trajectories that start
close together and verify whether the difference between these trajectories increases expo-
nentially (indicating divergence) or decreases exponentially (indicating convergence). If
there is an exponential increase in the difference between the trajectories, then it is said
that the deterministic system has loss of predictability [16] and, therefore, indicates chaotic
behavior. Mathematically, the idea is described in the form∣∣∣|∆x(t)|

∣∣∣≈∣∣∣|∆x0(t)|
∣∣∣eλt (1)

where x is related to trajectory positions and λ is the Lyapunov exponent which can be
obtained using

λ = lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣∣( f n)′(xi)

∣∣∣ (2)

with f n being the function that describes the system with n iterations. If λ < 0, it indicates
a stable dynamic system; if λ = 0, it indicates periodicity and if λ > 0 it indicates chaotic
behavior [13].

The f n functions described above are continuous functions and, because they are
described by a differential equation, they hardly have known solutions. Thus, for the
Lyapunov exponents to be useful, their application in time series is necessary. Hilborn [24]
describes the algorithm presented by Wolf et al. [8] where the previous equation is written
in the form

λ =
1
n

ln
∣∣∣∣dn

d0

∣∣∣∣ (3)

where d0 is the difference between the initial points of two trajectories and dn is the
difference between these same points after n iterations. According to Strogatz [25], it is
advisable to study several points of the same trajectory and, at the end of the analysis, an
average exponent is obtained. This way of obtaining Lyapunov exponents requires that at
least two data series be analyzed, with different initial conditions.

Sprott [13] presents an algorithm in which only one series of data is necessary, since
the method consists of predicting the subsequent behavior of the system. Such an algorithm
is named a non-linear predictor. Let X be a vector given by

X = [X1, X2, X3, . . . , XN ] (4)
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Take k values of X closest to a reference value Xi that is monitored; then, new points
of the mentioned vector are taken, namely Xi+1, Xi+2, . . . , XN . Based on these points,
predictions are made. According to Fernandes [16], the predicted series is compared with
the original and allows the evaluation of the divergence between the trajectories. In this
sense, the maximum Lyapunov exponent is defined as

λPNL =
1
k

j=1

∑
k

ε
pred
j (5)

with ε
pred
j being the relative error between the reference point and the predicted point.

This method does not allow the obtainment of negative exponents. The full algorithm is
described in Fernandes [16].

2.2. Multilinear Isotropic Hardening

To describe the physical nonlinearity of the structures in this article, a multilinear
isotropic hardening model based on Souza Neto et al. [26] was used, together with a recent
ductile damage model called FLHB, described by Felipe [27].

The isotropic hardening model assumes that the elastic limit is expanded without the
translation of the elastic surface in the stress space. It is also assumed that such limits are
equal in absolute values in tension and compression, which is reasonable for the behavior of
metals. Thus, the idea of an elastic limit presupposes an equation that describes it, given by

Φ
(∼

σ, A
)
=
∣∣∣∼σ∣∣∣− ζ(α) ≤ 0 (6)

where
∼
σ is the effective stress and A the thermodynamic force associated with hardening.

Furthermore, ζ(α) represents any flow law as a function of the variable (α) that measures
the evolution of plasticity. The flow law of the model is given by

.
ε

p
= γsign

(∼
σ
)

(7)

with γ being the plastic multiplier and sign(∗) the function that returns +1, if the argument
is greater than or equal to zero, or −1 otherwise. Thus, γ ≥ 0.

The complementarity conditions are given by

γ ≥ 0, Φ ≤ 0 and γΦ = 0 (8)

and the consistency condition is given by

γ ≥ 0,
.

Φ ≤ 0 and γ
.

Φ (9)

They must be satisfied and lead to the conclusion of whether there is plastic flow
(γ > 0 and Φ = 0) or not. For the case where the hardening is linear, the plastic multiplier
is obtained directly, and is given by

γ =
sign

(∼
σ
)

E
.
ε

E + K
(10)

with E being the longitudinal modulus of elasticity (Young modulus) and K the plastic
modulus. For the present case, a multilinear model was adopted based on what was
proposed by Souza Neto et al. [26] and, therefore, γ was obtained through the solution
method of non-linear systems, such as Newton–Raphson, which solves the equation

Φ̂(γ) = sign
(∼

σ
)

E
.
ε− Eγ− ∂ζ

∂α

∣∣∣∣
γ

= 0 (11)
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2.3. Ductile Damage Model FLHB

The damage of materials is the progressive physical process by which they break, and
so-called damage mechanics is the study of the mechanisms involved in this deterioration
when materials are subjected to loading [28]. Physically, one can describe the degradation
of the mechanical properties of materials as processes in which the presence and evolution
of micro defects, such as micro cavities and micro cracks, occur [29]. This degradation can
eventually lead to failure, i.e., to the complete loss of the material’s load-bearing ability [30].

The development of damage mechanics, as well as its systematization and computa-
tional implementation make a valuable alternative for the determination of the complete
behavior of materials (up to failure) possible. In this sense, damage mechanics is an
important tool for predicting failures by design engineers.

The essential consideration of the damage variable is the surface density of cracks and
cavities [31]. To define the representative variable of damage, one can start as Kachanov [32]
did in his pioneering work on damage mechanics, in which a scalar (D) is associated with
the relation between the initial cross-sectional area (virgin, in the absence of damage) of a

bar (A0) and the intact area that persists even in the presence of damage (
∼
A):

D =

(
A0 −

∼
A
)

/A0 (12)

One notices that D = 0→ intact material; 1 < D < 0→ damaged material; and
D = 1→ completely broken material; so, D varies between 0 and 1. Being the fundamental
parameter to map the softening, the variable D is of paramount importance, and various
models have been created to define it. At the mesoscale, the damage can manifest itself in a
variety of ways, depending on the material, load, and temperature [28].

Here, the ductile model (FLHB) represents the degradation process rate as a second-
degree polynomial function of the hydrostatic component of the plastic strain. The model,
defined by Equation (13), assumes that the damage evolution law is equal to the rate of
material porosity.

D(ξ) = ap
1

(
ξ − ε

p
d

)2
+ ap

2

(
ξ − ε

p
d

)
+ ap

3 (13)

In the Equation (13), ξ is the plastic extension and the variables ap
1 , ap

2 and ap
3 are

material constants, obtained via the interpolation of experimental data. The variable ε
p
d

is the initial damage threshold, and since ductile damage occurs when strain hardening
achieves the limit value [28], ε

p
d is assumed as the value of the hydrostatic component of

the ultimate plastic strain.
From the hypothesis of deformation equivalence [33], one can reach the one-dimensional

constitutive equation that considers the damage:

σ = (1− D)Eεe = (1− D)E(ε− εp) (14)

Felipe and Beck [34] assert that an important feature of the FLHB model is that the
damage variable in Equation (13) converges to the critical damage value hypothesized by
Lemaitre [28]. Equation (15) defines the critical damage due to the relationship between
the ultimate stress (σu) and the failure stress (σr):

Dc = 1− σr/σu (15)

The only important change made here is the use of the Biot stress tensor and nonlinear
engineering strain instead of the Kirchhoff stress tensor and logarithmic strain used in [23].

2.4. Time Marching Procedure and Geometrical Nonlinear Formulation

The positional finite element method formulation applied to the dynamic problems
presented here is based on the works of Oliveira and Greco [35] and Fernandes et al. [36].
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The finite element kinematics, described in terms of absolute coordinates (X1, Y1, X2, Y2)
and the dimensionless parameter ξ (varying from 0 to 1), is presented in Figure 1.
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The energy equilibrium of a mechanical system occurs if the input and output of
energy are at balance. If there is some kind of dissipation, the total energy of the system
changes over time. Thus, the functional of the total potential energy (Π) can be determined
using the principle of virtual work, as follows:

Π = U + KC + KD −W (16)

where U represents the total strain energy (including plasticity and damage effects), KC
represents kinetic energy, KD represents the physical damping term and W represents the
potential energy of the external applied forces. These terms are expressed by

U =
∫

V
udV =

∫
V

∫
ε

σdεdV (17)

KC =
∫

V

ρ

2

.
X

2
dV (18)

KD =
∫

V
cmρX

.
XdV −

∫
V

∫
Xk

cmρ
X

..
X
.

X
dXkdV (19)

W =
DoF

∑
q=1

PqXq (20)

In the set of Equations (17)–(20), V is the element volume, cm is a damping coefficient
proportional to mass, ρ is the element specific mass and Pq is the force applied at a specific
q degree of freedom (DoF). The stress tensor is represented by σ and the strain tensor is
represented by ε. The mass matrix of the elements is considered discrete and the mass
terms due to rotation are neglected.

Applying variational principles, it is possible to obtain the equilibrium configuration
corresponding to the minimum functional energy as follows:

δΠ = 0 (21)

For variations regarding the q degrees of freedom, one has

δΠ =
∂Π
∂Xq

δXq = 0 (22)
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For variations regarding the q degrees of freedom (q = 1, 2, . . . , ngl), one has

δΠ =
∂Π
∂Xq

δXq =

(
∂U
∂Xq

+
∂KC
∂Xq

+
∂KD
∂Xq

− ∂W
∂Xq

)
δXq = 0 (23)

The Newton–Raphson iterative method, associated with the Newmark time marching
procedure, is considered here, adopting the structure discretized by the nodal positions.

Equation (23) can be written in a compact form, as follows:

δ
∂Π
∂Xq

= gq(X) = 0 (24)

where gq(X) represents the vector of residues, gq,r (X) represents the Hessian matrix and
∆Xr represents the nodal position correction vector.

gq(X) = U,q + KC,q + KD,q +−Pq (25)

gq,r(X) = U,qr (26)

Thus, the discretized movement equation for an actual time instant (t + ∆t) is ex-
pressed by

∂Π
∂X

∣∣∣∣
t+∆t

=
∂U
∂X

∣∣∣∣
t+∆t
− Ft+∆t + M

..
Xt+∆t + C

.
Xt+∆t = 0 (27)

The Newmark time marching time integration is based here on elements’ absolute
nodal positions, as follows:

Xt+∆t = Xt + ∆t
.

Xt + ∆t2
[(

1
2
− β

)
..
Xt

]
+ β

..
Xt+∆t (28)

.
Xt+∆t =

.
Xt + ∆t(1− γ)

..
Xt + γ∆t

..
Xt+∆t (29)

where γ and β are constants depending on the acceleration approximation used (here
considered as γ = 0.5 and β = 0.25).

After the initial accelerations (
..
X0) are evaluated, Equations (28) and (29) are replaced

in Equation (27) given the following nonlinear dynamic equilibrium equation:

∂Π
∂X

∣∣∣∣
t+∆t

=
∂U
∂X

∣∣∣∣
t+∆t
− Ft+∆t +

M
β∆t2 Xt+∆t−MDt +CEt +

γC
β∆t

Xt+∆t− γ∆tCQt = 0 (30)

where vectors Dt and Et represent the contributions of the variables considered in the
previous time instant t.

Dt =
Xt

β∆t2 +

.
Xt

β∆t
+

(
1

2β
− 1
)

..
Xt (31)

Et =
.

Xt + ∆t(1− γ)
..
Xt (32)

The Hessian matrix for dynamic problem is given by

gq,r(X)
∂2Π
∂X2

∣∣∣∣
t+∆t

= ∇g
(

X0
)
=

∂2U
∂X2

∣∣∣∣
t+∆t

+
M

β∆t2 +
γC
β∆t

(33)

2.5. Flowchart of the Structure Integrity Analysis

Figure 2 shows a flowchart with the steps taken during the integrity analysis of the
frame structures, for example (1) in the preprocessing step, one defines the geometry, ma-
terial model, boundary conditions, applied forces, time integration method and dynamic
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parameters; (2) the processing represents the solution of nonlinear dynamic equilibrium
equations using the positional finite element method; (3) the post-processing of the struc-
tural analysis is the data processing for the visualization and analysis of results, for example,
graph plotting, table creation, illustrations of equilibrium trajectory and deformed con-
figuration, among others; (4) step 4 is when one sets the time series ranges for analysis,
considering specific intervals of interest and the appropriate size to obtain accurate results;
(5) the Lyapunov exponent calculation is performed by inserting time series of the nodal
position into the nonlinear predictor algorithm; and (6) in the results analysis, one compares
the maximum Lyapunov exponent from each selected range of the time series and investi-
gates if the observation of the Lyapunov exponent is a reliable way of identifying structural
degradation (instability, material damage, snap-through phenomena occurrence, etc.).
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In the present study, steps 1, 2 and 3 consider the use of an original script of the
positional finite element method implemented by the authors. However, once the method
of assessing structural integrity is validated, one can use any finite element method com-
mercial software. Another possibility is the use of experimental data; so, step 3 would use
information acquired experimentally, recalling that as explained in the introduction, it is
possible to use acceleration data instead of displacement data without a loss of accuracy.

3. Results

The numerical application consists of a framed structure with an upper section similar
to a von Mises truss, as is shown in Figure 3. The modulus of elasticity is 200 GP (steel), the
cross-sectional area of the bars is equal to 1.76× 10−3 m2 and the moment of inertia of the
bars is equal to 1.04× 10−6 m4 for the column and equal to 2.59× 10−7 m4 for the other
bars. The specific mass is equal to 7850 kg/m3 and the damping factor considered is equal
to 0.05. The parameters of the ductile damage model are ap

1 = 0.0, ap
2 = 65.041, ap

3 = 0.0,
ε

p
d = 0.004625 and Dc = 0.33. Regarding time integration, time increments of 0.0005s and

γ = 0.5 and β = 0.25 were adopted in the Newmark integration. The loading phases are
presented in Figure 3b.
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The chosen example is conceptual by nature, serving the purpose of illustrating
the verification sequence and evaluating the applicability of the proposed methodology.
Despite this, the developed algorithm can receive the design parameters of real structures
as its input.

Three models were initially made with different meshes, considering four, six and
eight elements per bar. The frequencies for the respective loops are shown in Table 1. In
dynamic problems, excessive mesh refinement may not physically produce the best results,
since high-order frequencies may spuriously influence the response. In general terms, the
responses of all meshes were close, except in cases with inelasticity, in which six-element
mesh achieved the expected responses from the physical point of view and over a longer
analysis time. The other meshes studied failed in regard to this last consideration.

Table 1. Fundamental frequency considering different finite element meshes.

Finite Elements per Bar
Fundamental Frequency

Positional FEM SAP2000

4 2.37550 2.364
6 2.01316 2.382
8 2.01861 2.389

In Figure 4, the responses of each material model with the mentioned meshes are
presented. It can be observed that there is a convergence of responses between meshes
with six and four elements for the elastic response (Figure 4a) and the plastic response
(Figure 4b). In the damage model (Figure 4c), the four-element and the six-element meshes
present a longer-lasting response, but the responses slightly differ. Thus, the mesh with
the longest period is the mesh with six elements, since in the plastic model the mesh with
four elements presents a response only up to 2.46 s. There is also a discrepancy between
the response presented by SAP2000 in the elastic model in relation to the responses of the
present formulation. This difference can be explained, in theory, by the difference in the
finite elements used by the SAP2000 and by the positional method. The data presented
below were obtained considering the six-element mesh.
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damage model.

Figure 5 presents a comparison between responses for the six-element mesh of all
material models. It can be noticed that there is an occurrence of snap-through in all models,
but in the inelastic model the jump is more intense, taking node A up to approximately
1.6 m, while in the elastic model it approaches 1.8 m. In both models it occurs between 1.0
and 1.5 s. After the jump, oscillations of decreasing amplitude are observed in the elastic
model, which cease around 3.0 s. This damping is observed practically instantaneously in
the inelastic model after snap-through.
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Around the time instant of 5.0 s, another leap occurs, which is due to the characteristic
of the dynamic applied force. After this new jump, node A, in the elastic model, presents
oscillations that tend to 4.0 m at the end of the analysis. The plastic model does not
provide results until the end, since the base of the column undergoes plastification and
the structure collapses at 5.29 s. Structure failure in the ductile damage model is much
more premature, occurring at 2.48 s of analysis. Due to the constitutive curve used in the
example and the geometric characteristics of the structure, no substantial differences can be
noticed between the responses of the inelastic models, except for the premature break in
the damage model. It should be noted that the first plastification takes 0.59 s for analysis,
while the first degradation takes 1.19 s.

Considering the acceleration responses, presented in Figure 6, a slightly more accentu-
ated tendency for the accelerations to decrease can be seen in the damage model in relation
to the plastic model. It is interesting to note how the acceleration presents jumps; in the
plastic and damage model, they are in the order of 800 m/s2, eight times greater than
the elastic model. Near the second jump, an increase in acceleration is again observed,
reaching 900 m/s2 in the plastic model, again higher than the elastic model, which presents
a maximum acceleration of 600 m/s2.
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To obtain the largest Lyapunov exponent, three sets of time series were adopted, with
the first set between 0 s and 1.3 s, the second, from 1.3 s to 5.0 s, and the third, from 5.0 s to
the end of the analysis. Notably, the ductile damage model only provided results for the
first and second spans.

Figure 7 shows the convergence of the highest Lyapunov exponent, where N is the
number of points close to the analysis point for the first analysis set. Note the convergence
of λ for the elastic model in the order of 0.01. The inelastic models, however, present λ
tending to 0.001.

For the second set of data, from 1.3 s to 5 s, there is a certain stabilization of the
structure at the new position after the snap presented in Figure 8, as λ is detected for all the
models, which tends to 5× 10−5.
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Finally, in the last part of the analysis, only the elastic and plastic models provide
results, justifying the absence of the damage model in Figure 9. For the elastic model,
λ tends to 5× 10−4, indicating the stabilization that occurs in the elastic model despite
the jump. The plastic model, however, tends towards a high Lyapunov exponent of 0.002,
justified by the sudden break in the jump.
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4. Discussion

The responses of the inelastic models used in this article were theoretically consistent,
both presenting energy dissipation characterized by a decrease in oscillation. The loss of
stiffness was also observed, due to ruptures before the end of the analysis time, as well as
more flexible responses when compared to the elastic model. Failure in cross-sections with
low levels of oscillation or increased stress in the structure highlights the structural response
of the damage model, characterized by a strong decrease in material stiffness. Thus, such
models are useful for describing the behavior of structures under strong non-linearities
that may occur in real situations such as buildings, bridges, transmission towers, industrial
structures or structures in general in a situation of progressive collapse.

In addition to the presented numerical results, phase figures related to the position
and velocity of the top central node are presented in Figure 10. The analyses of the results
of the elastic model, elastoplastic model and ductile damage model are also presented. The
initial vertical position is the same for three analyses, i.e., 3.6 m (with null velocity). It is
clearly possible to note two point attractors in the elastic response (the first one at the left
and the second one at the right). Two dynamic snap-throughs are noted (initial position to
the left attractor and left attractor to the right attractor). For elastoplastic response, only
the left attractor is noted, but two snap-throughs are observed. For the ductile damage
model, only one attractor and one snap-through are noted. Inelastic models present smaller
oscillation amplitudes and more stable trajectories on phase figures. For the modeling of
realistic building structures, inelastic effects analyses are advisable. These effects can mask
instability identification.

Phase figures related to the position and acceleration of the top central node are
presented in Figure 11. Again, analyses results of the elastic model, elastoplastic model and
ductile damage model are presented. But, contrary to the velocity phase figure, trajectories,
snap-through and attractors are not so evident. Only for the ductile damage model it is
possible to note instabilities when central node position reaches the position close to 2.5 m.
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The use of Lyapunov exponents in monitoring the integrity of the analyzed structure
has been proven to be promising, since it was able to detect the occurrence of the desta-



Buildings 2023, 13, 1802 15 of 17

bilization of the structure with the dynamic jump and the presence of material failures
by means of a comparison between the responses of undamaged/stabilized and dam-
aged/unstabilized structures. However, as pointed out by the technical literature on the
subject [18], it is not possible to differentiate the phenomena just by observing the maxi-
mum Lyapunov exponent, leaving this level of detail to other essays/analyses. The use
of only one time series is a characteristic to be highlighted in the technique for obtaining
the Lyapunov exponent via the non-linear predictor, decreasing the computational cost
and analysis time. Thus, a limitation that must be pointed out is the absence of negative
exponents, making it difficult to immediately detect any structural failure, thus requiring
an additional step of analysis since comparison with other response excerpts is necessary.

The chosen numerical example has different levels of damage in all elements (global),
as well local damage next to the column base. Moreover, due to initial/boundary conditions,
there occurs a dynamic snap-through depending on the considered constitutive model
(elastic, elastoplastic or elastoplastic with damage).

Possible Directions for Future Studies

The presented methodology to assess structural integrity using the Lyapunov expo-
nents is compatible with any damage model. The FLHB ductile-damage model used here
has some restrictions in its applicability to concrete structures. It can be used only in
situations that involve pure tensile or pure compressive loading, for instance. Thus, the
next step of the research is to include a damage model capable of simulating the responses
in brittle materials in a more general manner. One of the first options for concrete modeling
is to use the concrete damaged plasticity (CDP) model [37]. The CDP is a modification of
the Drucker–Prager model and considers the degradation of the elastic stiffness induced by
plastic deformation, both for tensile stresses and for compressive stresses.

A promising application of the presented methodology is its use with experimental
data instead of the data acquired, simulating a numerical example. Now that the method-
ology has shown itself capable of verifying the structural integrity, the practical use with
experimental data is an interesting application, remembering that, as explained in the
introduction, one can use data collected from accelerometers installed in real structures.
As an example, Toloue et al. [38] used accelerometers to assess the damage of aluminum
spatial frames. The authors used the damage load vectors (DLV) method in association
with the application of the Markov matrix to the noisy accelerometer data, enabling the
exclusive inclusion of the most useful signals.

Another possible work to be conducted is the comparison of the presented method,
which uses the Lyapunov coefficients, with other methods of structural integrity verification.
A comparison of Lyapunov exponent analysis with the evolution of damage indexes, as
developed by Park and Ang [39] and applied by Karayannis and Goliath [40] for studying
the structural performance parameters of concrete structures strengthened with carbon
fiber reinforced, is a good example.

Finally, reliability and robustness analyses of the methodology should be performed in
future studies, i.e., to assess the sensitivity to changes in input parameters, such as material
properties and loading conditions.

5. Conclusions

This article presents a methodology, based on the use of Lyapunov exponents, to assess
stability and structural integrity. A frame structure was used as numerical example to
illustrate the applicability of the methodology. The structural analysis performed integrated
the positional finite element method to address geometric nonlinearity, and the isotropic
elastoplastic model together with the recently developed FLHB damage model were used
to evaluate material nonlinearities. The equilibrium trajectories obtained with and without
the consideration of material nonlinearities were examined, and the relevant differences
revealed through a qualitative and quantitative analysis demonstrated the importance of
using robust simulations that consider the nonlinearities.
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An important feature of the methodology is the non-linear predictor that needs a
single data series, which proved to be an efficient technique for obtaining the Lyapunov
exponents. This consists of an important result because it facilitates the applicability of the
presented methodology due to its lower computational cost.

The results obtained through the application of the proposed methodology showed
that it is possible to identify the loss of structural stiffness, even if it is related only to
stability or if it involves physical nonlinearity phenomena such as plastification and dam-
age. It can also be concluded that the Lyapunov exponents can be used as indicative
parameters of structural integrity, as their analysis was able to detect the occurrence of the
destabilization of the structure with the dynamic jump and the presence of material failures.
Overall, the methodology presented here to monitor structural integrity was shown to be a
promising alternative.
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