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Abstract

:

The quality of residential buildings in old urban areas of Beijing is known to be inconsistent, prompting numerous urban renewal projects in the city. This research investigates how building space impacts energy usage and daylighting in courtyard areas of old urban regions in northern China. It also proposes a quick evaluation method for building performance in courtyard spaces, utilizing multi-objective optimization and machine learning classification prediction as a theoretical framework. A study was conducted to gather and organize building space parameters and their corresponding performances using a genetic algorithm. The dataset was then pre-processed and trained using the LightGBM algorithm. The model validation results revealed a recall of 0.9 and an F1-score of 0.8. These scores indicate that the design scheme’s performance level can be accurately identified in practical use. The goal of this study is to propose a set of rapid assessment methods for building performance levels in courtyard spaces. These methods can significantly improve the feedback efficiency between design decision and performance assessment, reduce the time wasted in building performance simulation during the architectural design process, and avoid unreasonable renovation and addition in urban renewal. Furthermore, the research method has universality and can be applied to courtyard-shaped buildings in other regions.
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1. Introduction


With the rapid development of cities, China is now facing an environmental energy crisis, and the construction field is an essential part of achieving the double carbon goal.



Facing these challenges, simulating, and predicting building performance through digital technology becomes especially important. Building performance simulation software, Ladybug and Honeybee, have been widely used in building performance assessment, and the algorithms for multi-objective optimization of building performance are relatively mature. However, the traditional multi-objective optimization methods for building performance often have long computation times and require repeated adjustment of each physical building parameter.



With the popularity of machine learning, many studies have used machine learning or deep learning to predict building performance. Domestic and international research on machine learning in the building field covers various aspects such as wind environment, thermal environment, energy consumption, sunlight, pollutants, etc. Most of them train prediction models by inputting large amounts of data, and then use an error evaluation index to assess the accuracy of each prediction model. For example, Qiushi. H. et al. [1] used convolutional neural network (CNN) and artificial neural network (ANN) algorithms to build a set of prediction models that can predict the daylighting performance of buildings based on general floorplans. Alawadi, Sadi et al. [2] introduced four ANN-based machine learning methods that were used to model HVAC (heating, ventilation, and air conditioning) systems to predict indoor temperatures in public research buildings. All the above studies were conducted by inputting a large amount of existing building performance data for machine learning model training, which were often obtained through performance testing by government departments or extensive real-world research. In contrast, Hanan. Yan. et al. [3] obtained a building performance dataset of 6000 design scenarios for an office complex by iterative multi-objective optimization based on a genetic algorithm and used this dataset to train a machine learning model. Multi-objective optimization can balance different building performance objectives and iterate toward optimality. This study combines the advantages of the previous studies and proposes a method for the rapid prediction of building performance, combining machine learning and multi-objective optimization with a genetic algorithm which can facilitate architects to make rapid decisions on design solutions in the renovation of residential buildings and urban renewal in old cities.




2. Research Background and Methodology


2.1. The Current Situation of Residential Houses in the Old City of Beijing


According to prior research, 8.08 million square meters of traditional courtyards in Beijing were demolished between the 1950s and 1990s due to a lack of repair and protection. Most of the existing courtyard buildings have been repaired, remodeled, or renovated, but still maintain the traditional architectural form [4].



After field research, it was found that the quality of the existing courtyards is mixed, and the existing courtyard buildings generally suffer from structural aging and deterioration. In addition, some courtyard buildings have been affected by natural disasters, human damage, or overuse. Traditional Beijing courtyards are mainly wooden structures, and most of the original wooden designs are aging, damp, cracked, and decayed, and the walls and masonry are badly worn. The roofs of the individual buildings also have loose tiles, falling soil, and water leakage. The continuous poor-quality additions and renovations have caused a certain degree of impact on the traditional style and building performance.



In this study, an outdoor year-round radiation simulation was conducted for the courtyard of No. 23 Qijing Hutong in the Fayuansi neighborhood, as an example. No. 23 is affected by poor quality additions, and the courtyard space is small, making it difficult for daylighting and natural ventilation to penetrate the interior of the rooms. This results in poor building performance and comfort of use, as shown in Figure 1 and Figure 2. This study proposes a new method to quickly evaluate the performance of buildings in the courtyard area of the historical city. This method aims to minimize the negative impact of substandard renovation and renewal on the city, while also considering low carbon emissions.




2.2. Overview of Research Methods


The main objectives of this study are: (1) to make a machine learning-based model that can efficiently predict the building performance of northern China urban courtyard houses, that focuses on the impact of courtyard spaces on building energy consumption and daylighting, and (2) to propose a set of rapid assessment methods for building performance in courtyard spaces with universal applicability using multi-objective optimization and machine learning classification prediction as theoretical guidance. The research process can be divided into three phases, as shown in Figure 3.



The main goal of the first phase is to build a parametric model for a building performance simulation. A parametric model of the courtyard space was developed based on the climatic conditions of the Beijing area. A building performance simulation of the typical courtyard space model was conducted to evaluate the building performance of the courtyard space by three aspects: annual energy consumption, natural daylighting, and outdoor thermal comfort. Finally, a parametric model for multi-objective optimization was generated.



The main goal of the second phase is to aggregate and organize the dataset containing the parameters of the building solutions based on a genetic algorithm. Different building design solutions were generated and integrated using a multi-objective genetic algorithm optimization. The solution sets generated after the multi-objective optimization iterations include Pareto frontier and non-frontier solutions. Manual classification and the definition of different performance levels based on building performance were integrated to serve as raw data for the third phase.



The main goal of the third phase is to construct and validate the accuracy of a machine learning model for predicting the architectural performance of courtyard spaces. Pre-processing and dataset segmentation were performed on the dataset of the second phase. To make predictions, the machine learning algorithm was used to analyze the data in the training set. These predictions were then verified by comparing the results with a separate test set. To assess the accuracy of the prediction model, we used a confusion matrix to compare its predicted values with the actual values in the dataset [5]. With this machine learning model, it is possible to quickly evaluate the performance of courtyard houses influenced by spatial design. It can also provide a fast prediction of how design solutions will impact energy consumption, daylighting, and outdoor thermal comfort during the pre-design phase of building renewal.





3. Research Process


The research subject is in the Fayuansi neighborhood of Xicheng District, Beijing, in Qijing Hutong. Beijing has a warm-temperate, semi-humid, and semi-arid monsoon climate, with solar radiation averaging 112–136 kcal/cm2 throughout the year [6], as shown in Figure 4 and Figure 5.



For this study, a courtyard house in need of renovation and renewal, specifically No. 23 Qijing Hutong, was chosen as the reference object. The retrofitting addition to Courtyard 23 of Qijing Hutong has impacted its building performance, daylighting, and thermal comfort. In order to perform the simulation, a digital twin of Courtyard 23 was built in Rhino [5], a 3D software, and the weather data used for this simulation was retrieved from Energy Plus [4].



3.1. Performance Simulation


	(1)

	
Optimize target selection







The focus of this study is to improve the building energy consumption, lighting performance, and thermal comfort of the space. To evaluate performance, we chose Total Loads Intensity (TLI), Daylight Factor (DF), and Universal Thermal Climate Index (UTCI) as performance evaluation indexes.



The Total Loads Intensity (TLI) is a useful measure for assessing a building’s energy efficiency over the course of a year [7]. It is determined by dividing the total energy consumed by the building in a year by the area of the building. A lower TLI indicates better energy efficiency and lower carbon emissions. This metric is commonly used to evaluate a building’s energy performance and can also be used to compare different buildings and provide guidance for architects.



The Daylight Factor (DF) is a metric that measures the amount of natural light present inside a building [8]. It is determined by calculating the ratio of indoor and outdoor sunlight intensity. While it might not be as comprehensive as the other lighting metrics, such as useful daylight illuminance (UDI) and daylight autonomy (DA), its ease of calculation has made it a prevalent tool in building lighting design [9]. The DF is a useful metric for architects to evaluate the quality of a building’s interior lighting. It can aid in comparing and optimizing lighting conditions during the design process. The DF is also linked to various design parameters, such as building orientation and window size, providing a foundation for multi-objective optimization [8].



The thermal environment of the courtyard space is calculated using the Universal Thermal Climate Index (UTCI), which is an index that is used to describe the human body’s perception of ambient temperature and humidity. It is a more comprehensive and accurate measure of human comfort than the traditional temperature index and responds to the human body’s ability to adapt to the environment [10]. The universal thermal climate index can assess the comfort level of the external environment of building construction and the impact of the environment on the building. The universal thermal climate index can respond to changes in the outdoor thermal environment of a building due to changes in courtyard space and building form. In this study, only the thermal environment of the outdoor courtyard space is used as the optimization object. The reason is that the DF can reflect the indoor light and heat environment to some extent in the multi-objective optimization process.



	(2)

	
Parameter adjustment







With the collaboration of the Rhino and Ladybug Tools suite, the digital model has the capability to simulate a building’s performance based on its local climate and site environment. Ladybug was responsible for importing climate files that contain Beijing’s climate characteristics, while HB-Radiance was used to evaluate the building’s performance related to daylighting.



The parameters set for the energy consumption simulation were as follows: period of simulation was year-round, the building construction was a wood frame (2010: ClimateZone4: WoodFramed), the building type was residential, and the activity, occupancy, lighting, electrical equipment, heating, and cooling were set according to national and local standards.



The parameters set for the daylighting simulation and outdoor thermal environment simulation were as follows: the period of the simulation was year-round, the detector grid size was 1.0, and the height of the detection surface from the ground was 0.75 m. The parameters were input to the HB Daylight Factor and HB UTCI Comfort Map operators.



	(3)

	
Parametric model construction







A genetic algorithm [11] is a computational model of biological evolution that simulates the natural selection and genetic mechanism of Darwinian biological evolution [10]. It is a method to search for optimal solutions by mathematically simulating the natural evolutionary process. Pareto Optimality Theory means making at least one goal better without making either goal worse.



To generate and integrate more data on design solutions for the applicability and accuracy of machine learning models, this study used a multi-objective genetic algorithm optimization iteration to obtain a dataset containing spatial design variables and optimized target values and derive Pareto frontier and non-frontier solutions. Before enhancing the design solution sample, it was important to establish a practical set of values for the parameters that dictate the building space. These parameters were determined based on the research data of the Fayuansi neighborhood, which is presented in Table 1 and Figure 6. The parametric model battery is depicted in Figure 7, while the model utilized for performance simulation is displayed in Figure 8.




3.2. Multi-Objective Genetic Algorithm Optimization


3.2.1. Multi-Objective Optimization


For this study, Wallacei [12] was selected as the multi-objective optimization tool. It utilizes a genetic algorithm and Pareto frontier theory to run evolutionary simulation iterations in Grasshopper. This helps designers understand their evolutionary selection process by providing highly detailed analysis tools and an integrated selection approach. Throughout the evolutionary simulation, merit-seeking is emphasized at all stages.



The total loads intensity (TLI), daylight factor (DF), and universal thermal climate index (UTCI) were entered into the objectives port as optimization objectives, where the smaller the total annual energy intensity, the better. DF and UTCI were optimized by taking the average value. Although there may be a slight deviation in the evaluation results, they have little impact on the optimization results. The variables controlling the building parameters in Table 1 were then inputted into the genes port. The number of generations was 40, the subset per generation was 80, and the population size was 3200. The genetic algorithm parameters were set as shown in Table 2.



Figure 8 displays the solution set for multi-objective optimization in a scatter plot on WallaceiX’s coordinate system. The TLI, DF, and UTCI correspond to the x, y, and z axes, respectively. Figure 9 displays the analysis of the optimization process for achieving the minimum TLI, maximum DF, and maximum UTCI. The red signifies the first generation, while the blue depicts the final generation [8].



The normal distribution graph, fitness value distribution graph, and mean trend graph of the three objectives are shown in Table 3. The red line represents the initial generation of the optimization process, while the blue line represents the last generation. As can be seen from the normal distribution plots of the three target values, the blue lines gradually stabilize in comparison with the previous generations, indicating that the optimization process for all three target values is meaningful.



The analysis of the results shows that the evolutionary direction tends to be stable, and that they all converge to the optimal trend. Among the 397 Pareto frontier solutions, the target range for the DF was 2.8% to 7.5%, the target range for the TLI was 273 kWh/m2 to 503 kWh/m2, and the mean value of the UTCI was between 7.3 °C and 9.8 °C.




3.2.2. Building Performance Level Classification


When evaluating building performance, three indicators are considered: TLI, DF, and UTCI. It is important to note that a lower TLI indicates better building energy performance. DF is a measure of how well a building utilizes natural light, and it can give insight into indoor lighting conditions and overall living comfort. UTCI can indicate the thermal comfort of the courtyard area, considering factors such as lighting, ventilation, and human perception.



The datasets have been divided into five categories (A to E) based on energy consumption and comfort levels, as indicated in Table 4. The solutions that fall under A and B levels have exceptional building performance, with a TLI lower than 570 kWh/m2, a DF between 3% and 9%, and a UTCI between 8 °C and 9 °C on the Pareto frontier solution.



This indicates that they can be used in the design or renovation projects while still providing good living conditions. The level A solutions were from the 20th to the 40th generations, while the level B solutions were from the 1st to the 19th generations. The solutions that do not meet the above criteria were classified as grade C, which represents an average building performance and good living conditions.



Buildings that meet the target conditions for TLI, DF, and UTCI were considered as level D in the non-Pareto frontier solution. However, level D indicates poor performance, and those solutions require optimization and correction. The buildings that fail to fulfill the three target conditions were classified as level E, which is the worst building performance level. Living in such buildings can be uncomfortable, and the building solution requires extensive optimization.



After collating the dataset, the data were exported from Grasshopper [7] to an Excel sheet via the TT Toolbox tool to facilitate subsequent machine learning training.





3.3. Machine Learning Classification Prediction


3.3.1. Data Pre-Processing


This study used the algorithms from scikit-learn [13]. Scikit-learn is the most widely used machine learning library in Python, built based on data science packages such as numpy and matplotlib, covering almost all aspects of machine learning, such as sample data, data preprocessing, model validation, classification, and regression. This study is classification prediction and will use the LightGBM classification algorithm as shown in Figure 10.



	(1)

	
Data collection and collation







When using WallaceiX, it is common to encounter outliers, duplicates, or extremes in the dataset [8]. Since machine learning assumes that all data is meaningful, it is important to eliminate any data that could interfere with the process. To do this, the datasets were classified and labeled from A to E in Table 4, with each label corresponding to a number from 1 to 5. The resulting dataset was then exported to Excel and imported into scikit-learn.



	(2)

	
Data standardization







Data normalization is a fundamental requirement for performing machine learning in scikit-learn. If there is a significant difference in the size of the features within a dataset, it can hinder the objective function’s ability to learn from the data accurately. To address this issue, we employed the z-score normalization method in our study. This technique processed the data to fit the standard normal distribution, where the mean is 0, and the standard deviation is 1. By normalizing the data, we were able to reduce the impact of outliers on machine learning, enhance accuracy, and speed up the algorithm’s convergence rate. These benefits are demonstrated in Figure 11 and Figure 12.



	(3)

	
Factor correlation analysis







According to the factor correlation analysis in Figure 13, it can be concluded that the window-to-wall ratio has the most significant influence on the DF, with a correlation of 0.92. The window retrofit design can directly optimize the building’s indoor light environment. However, it should be noted that the correlation between the TLI and the window-to-wall ratio is also vital. It is necessary to balance the indoor light environment and building energy consumption in the window design process. Either extremely large or extremely small window-wall ratios can increase the building energy consumption. From the analysis, it can be seen that the window-to-wall ratio has a low correlation with the UTCI of the courtyard space, and the window design has little effect on the thermal comfort of the courtyard space.



The courtyard’s width and length also significantly impact the DF, with the courtyard’s width weighing more, because the overall width of the courtyard can affect the lighting effect of the building at the south-facing windows. For courtyard spaces, the courtyard size is more relevant than the orientation of the overall structure because all the buildings surrounding the courtyard space have openings facing the courtyard. The courtyard size has a greater impact on the DF than on the TLI, which indicates that the building courtyard size predominantly affects the indoor light environment and the building energy consumption.



The factor correlation analysis of the UTCI shows that the overall dimensions of the courtyard have little influence on the outdoor thermal environment of the courtyard space. The primary impact on the outdoor thermal environment is the depth of the building along the north-south and east-west directions, the depth of the rooms along the east-west directions having a greater impact on the building. When the building room is too deep along the east-west direction, the sun radiation to the courtyard is too low, because part of the beam sunlight cast into the courtyard is blocked by the building. When the room is too shallow, it exposes too much of the courtyard space to the cold winter environment, resulting in lower thermal comfort.




3.3.2. Model Training


The goal of building the machine learning model in this study is to efficiently predict and provide feedback on the building performance level of courtyard spaces using the parameters of existing design solutions. LightGBM [14], a supervised learning algorithm, is a distributed, gradient boosting tree framework based on the decision tree algorithm, which uses a leaf-by-leaf growth strategy to continuously iterate training to obtain the optimal model. LightGBM mainly involves classification, regression, sorting, and others. This study uses a classification prediction model, which is used to classify the input data into different categories, i.e., to determine which known sample type a new sample belongs to based on the characteristics of the known samples. This model usually performs the classification by the learning patterns from the known data. In multiclassification problems, the classification prediction models can classify the input data into different categories [15].



	(1)

	
Data segmentation







The dataset was partitioned into a training set, used to train the machine learning model, and a test set, used to validate the model. 70% of the data was randomly selected as the training set, and the remaining 30% was used as the test set.



	(2)

	
Hyperparameter setting







The setting of hyperparameters can improve the prediction accuracy and convergence speed of the LightGBM model to better adapt to scenarios. The parameters set are shown in Table 5.



	(3)

	
Training process







Figure 14 shows the training process of the machine learning model, which shows the relationship between the training sample values and the model performance. The learning curve shows that the LightGBM performance tends to be stable if the training data provided exceeds 1200 samples.




3.3.3. Model Performance Evaluation


In machine learning, a confusion matrix [16] is a specific matrix used to present a visualization of an algorithm’s performance. Each column represents the predicted value, and each row represents the actual category. It is mainly used to compare the classification results with the actual measured values, and the accuracy of the classification results can be displayed inside a confusion matrix that combines the predicted and observed results into True Positive, False Negative, False Positive, and True Negative categories. Figure 15 shows the confusion matrix of the classification model for this study.



Classification performance can be evaluated by four key metrics: accuracy, precision, recall, and the F1-score [17]. Accuracy is usually used to evaluate the precision of results, precision is usually used to evaluate the quality of results, and recall is used to evaluate the completeness of results. Precision and recall are conflicting metrics, and the F1-score is a weighted average of precision and recall. The precision of the machine learning training model is 0.902, the accuracy is 0.862, the recall is 0.902, and the F1-score is 0.877.



After the model training was completed, the trained model was saved as shown in Figure 16. To predict the model’s accuracy, the saved classification prediction model was imported to make predictions for eight random cases, and the differences between the predicted and actual performance levels were compared. The building performance evaluation criteria are shown in Table 4. The comparison results are shown in Table 6.The actual levels were evaluated according to the building performance simulation, as shown in Table 7.



As shown in Table 6, samples 1, 4, and 5 were classified as level A which has the best building performance, considering energy consumption, daylighting, and outdoor thermal comfort. The overall prediction of the algorithm is accurate, but the prediction for sample 5 was different from the expected result, where the level A sample was mistakenly classified as a level B sample. The reason behind this is that the training set did not have sufficient data samples that can be classified into level A or level B. In addition, the sensitivity of the algorithm to the depth and the width of the courtyard was relatively low. The second reason is that the TLI in sample 5 was higher than that of samples 1 and 4. The outdoor thermal comfort in sample 4 performed poorly compared with the other samples. If more samples were provided in the multi-objective optimization phase, and more Pareto optimal solutions were generated, a higher prediction accuracy should have been seen. For the samples that the model cannot predict well, in this case, sample 5, increasing the number of training samples can improve the prediction accuracy, because the model can better capture those samples’ features and patterns of variation.



Sample 7 was classified as level C, indicating good building performance. The energy consumption, daylighting, and outdoor thermal comfort were at an average level. The sample size for level C in the training set was relatively large, resulting in a high prediction accuracy.



Samples 2, 3, and 6 were classified as level D, which indicates poor building performance. Sample 6 shows that the schematic design was problematic due to the large window-to-wall ratio, which results in a high DF and high energy consumption throughout the year. The number of samples of level D accounted for a large proportion of the training set, and the prediction results for this type of sample were relatively more accurate.



Sample 8 was classified as level E, which represents the worst building performance, meaning this sample needs to be thoroughly modified and optimized. The simulated result of sample 8 shows that although the outdoor thermal comfort and energy consumption meet the standards, the window-to-wall ratio was too small, resulting in poor performance of daylighting, such as a low DF value and unevenly distributed illuminance. Level E accounts for the largest proportion in the training set, so the prediction accuracy for this type is the highest.



In conclusion, the machine learning model is highly accurate in predicting and evaluating building performance of courtyard buildings. However, when the dataset was not big enough for certain classification types, the prediction accuracy was relatively low, which indicates that further improvements are needed, such as better model training and a more intensive data collection process.






4. Results


This study focused on energy consumption and daylighting in the courtyard buildings in northern China, and developed a machine learning model that can accurately predict the performance of urban courtyard buildings using building examples in Beijing historical district. Also, this research presents a collection of efficient evaluation methods for appraising the performance of courtyard buildings. These techniques were developed based on the principles of multi-objective optimization and machine learning classification, and they will have broad applicability.



The research method can be applied to urban renewal, urban planning, and urban planning policy making. Given the uneven state of urban renewal, the machine learning model in this research method can facilitate architects to make quick decisions on design solutions in those renewal projects within the historical districts, avoiding unreasonable renovation and additions, and maximizing the achievement of low-carbon urban renewal.



Based on the investigation of the current condition of courtyard buildings in the Fayuansi neighborhood, this study established a parametric model for performance simulation. Using genetic algorithms for multi-objective optimization, 3200 datasets containing spatial parameters and target performance were generated and processed. The datasets were then manually divided into a grading system and used to train the machine learning models to evaluate and predict the changes in energy consumption, daylighting, and outdoor thermal comfort resulting from the variations in the courtyard space parameters. According to the model verification results, the recall rate was 0.9, and the F1-score was 0.8, indicating that the actual performance levels of design proposals can be correctly predicted.



The innovation of this study is the application of machine learning techniques, which significantly reduces the simulation time compared to the traditional simulation method of using building performance simulation software. Such a method is also capable of making a rapid evaluation of all buildings of the same type in the entire neighborhood. The research method is also universally and widely applicable. The machine learning model in this study is based on the example of the Beijing area, and theoretically, this method can be applied to courtyard buildings around the world. However, it should be noted that the training set for the machine learning model should be regenerated based on the form of the local courtyard buildings and the local weather data. Once the local machine learning model is built, it can be used in the building performance assessment of courtyard buildings within the region.



In order to make the prediction results of the machine learning model more accurate and easier to operate, the prediction objectives of the model are simplified in this study, as the building performance optimization objectives only consider DF, TLI, and UTCI, making the entire study more focused. This study provides a theoretical foundation and research methodology for subsequent research development. More performance objectives can be incorporated into the machine learning model, such as natural ventilation, photovoltaic equipment, and so on. As more building performance objectives are introduced, it becomes possible to expand research objectives to encompass the entire life cycle of a building. This study focuses solely on the impact of the design variables listed in Table 1 on building performance. Future research could explore the adaptation of machine learning models to buildings with varying shapes and sizes, or the utilization of advanced techniques in machine learning and deep learning to achieve more precise and efficient prediction methods.
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Figure 1. Photo of the 23rd courtyard. 
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Figure 2. Analysis of sunlight radiation in No. 23, Qijing Hutong. 
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Figure 3. Research Methodology Flow. 
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Figure 4. Relative Humidity-Hourly BEIJING/PEKING January 1:00—31 December 24:00. 
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Figure 5. Global Horizontal Radiation-Hourly BEIJING/PEKING January 1:00–31 December 24:00. 
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Figure 6. Schematic diagram of building space parameter variables. 
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Figure 7. Honeybee parameterized model. 
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Figure 8. Scatter plot of optimization results. 
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Figure 9. Iterative process diagram. 
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Figure 10. LightGBM Classification Prediction Model Construction Process. 
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Figure 11. Data before standardization. 
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Figure 12. Normalized data. 
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Figure 13. Factor correlation analysis. 
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Figure 14. Learning curve. 
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Figure 15. Confusion Matrix. 
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Figure 16. Classification Prediction Model. 
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Table 1. Range of values for building parameter variables.
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	Architectural Parameters
	Acronym
	Unit
	Range





	The length of the inner courtyard
	LIC
	meters
	4.0~12.0



	The width of the inner courtyard
	WIC
	meters
	4.0~12.0



	Room Depth A—North and South House
	RD-A
	meters
	3.0~8.0



	Room Depth B—East-West House
	RD-B
	meters
	3.0~8.0



	Building height
	BH
	meters
	3.0~4.5



	Window-to-wall ratio
	WWR
	Ratio
	0.1~0.9



	Orientation of courtyard space
	OCS
	degree
	−15~15
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Table 2. Genetic algorithm parameters.
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	Algorithm Parameters
	Numerical Value
	Unit





	Crossover Probability
	0.9
	rate



	Mutation Probability
	1/r
	rate



	Crossover Distribution Index (CDI)
	20
	number



	Mutation Distribution Index (MDI)
	20
	number



	Random Seed
	1
	number
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Table 3. Multi-objective optimization results analysis.
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	Normal Distribution Chart
	Fitness Value Distribution Chart
	Mean Trend Graph





	Maximum DF
	[image: Buildings 13 01850 i001]
	[image: Buildings 13 01850 i002]
	[image: Buildings 13 01850 i003]



	Minimum TLI
	[image: Buildings 13 01850 i004]
	[image: Buildings 13 01850 i005]
	[image: Buildings 13 01850 i006]



	Maximum UTCI
	[image: Buildings 13 01850 i007]
	[image: Buildings 13 01850 i008]
	[image: Buildings 13 01850 i009]
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Table 4. Building performance classification grading system.






Table 4. Building performance classification grading system.





	Level
	Meet the Conditions
	Program Evaluation





	A
	Pareto solution 20th to 40th generation

TLI < 500 kWh/m2

DF: 3–9%

UTCI: 8 °C–9 °C
	Best building performance, considering energy consumption, light, overall thermal comfort, and excellent living conditions.



	B
	Pareto solution 1st to 19th generation

TLI < 500 kWh/m2

DF: 3–9%

UTCI: 8 °C–9 °C
	Excellent building performance, year-round energy consumption, daylighting, and courtyard space thermal comfort are among the better levels and comfortable living conditions.



	C
	Pareto solution

TLI > 500 kWh/m2

DF < 3%, >9%

UTCI < 8 °C, >9 °C
	Good building performance with average year-round energy consumption, daylighting, and thermal comfort in courtyard spaces.



	D
	Non-Pareto solution

TLI < 500 kWh/m2

DF: 3–9%

UTCI: 8 °C–9 °C
	Poorer building performance, daylighting, year-round energy consumption, and courtyard space thermal comfort, of which one of the conditions was met.



	E
	Non-Pareto solution

TLI > 500 kWh/m2

DF < 3%, >9%

UTCI < 8 °C, >9 °C
	Worst building performance, design solutions that did not meet either condition and are not recommended for implementation.







Note: The DF and UTCI are average values.
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Table 5. Super parameter setting.
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	Hyperparameters
	Explanation
	Numerical Value





	n_estimators
	The number of trees in a decision tree
	200



	num_leaves
	Number of leaves on each tree
	No restrictions



	max_depth
	In a decision tree, the depth of the tree
	10



	learning_rate
	Learning Rate
	0.05
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Table 6. Random case-level prediction.
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	LIC *

(m)
	WIC *

(m)
	OCS *

(Degree)
	RD-A *

(m)
	RD-B *

(m)
	WWR *

(Ratio)
	BH *

(m)
	Actual

Grade
	Projections

Grade





	[image: Buildings 13 01850 i010]
	10.5
	5
	14
	3
	3.3
	0.71
	4
	A
	A



	[image: Buildings 13 01850 i011]
	4.3
	9.8
	−7
	3.5
	4
	0.85
	3.9
	B
	B



	[image: Buildings 13 01850 i012]
	4.3
	9.8
	−7
	3
	4.5
	0.85
	3.9
	D
	D



	[image: Buildings 13 01850 i013]
	7.2
	7.1
	−13
	3.5
	4.2
	0.7
	3.8
	A
	A



	[image: Buildings 13 01850 i014]
	4
	4.2
	−7
	3
	3
	0.75
	3.9
	A
	B



	[image: Buildings 13 01850 i015]
	11.8
	10.9
	4
	3.4
	3.1
	0.8
	4.5
	D
	D



	[image: Buildings 13 01850 i016]
	11.6
	11.5
	3
	4
	4.1
	0.79
	4.3
	C
	C



	[image: Buildings 13 01850 i017]
	5.2
	4.2
	3
	3
	6
	0.25
	3.5
	E
	E







* Note: See Table 1. for full details of acronym.
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Table 7. Random Case Building Performance Simulation.
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	DF
	UTCI
	Annual Energy Consumption





	01
	[image: Buildings 13 01850 i018]

8.757925
	[image: Buildings 13 01850 i019]

8.62
	[image: Buildings 13 01850 i020]

490.747546



	02
	[image: Buildings 13 01850 i021]

6.964729
	[image: Buildings 13 01850 i022]

7.81
	[image: Buildings 13 01850 i023]

437.604607



	03
	[image: Buildings 13 01850 i024]

7.336489
	[image: Buildings 13 01850 i025]

8.52
	[image: Buildings 13 01850 i026]

456.992617



	04
	[image: Buildings 13 01850 i027]

7.737107
	[image: Buildings 13 01850 i028]

7.68
	[image: Buildings 13 01850 i029]

417.4882



	05
	[image: Buildings 13 01850 i030]

7.640545
	[image: Buildings 13 01850 i031]

9.3
	[image: Buildings 13 01850 i032]

491.926498



	06
	[image: Buildings 13 01850 i033]

12.211328
	[image: Buildings 13 01850 i034]

9.01
	[image: Buildings 13 01850 i035]

528.093835



	07
	[image: Buildings 13 01850 i036]

9.333964
	[image: Buildings 13 01850 i037]

9.42
	[image: Buildings 13 01850 i038]

445.841812



	08
	[image: Buildings 13 01850 i039]

1.615759
	[image: Buildings 13 01850 i040]

8.72
	[image: Buildings 13 01850 i041]

357.249975







Note: The lighting factor and thermal climate index are mean values.



















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg





media/file4.png
kwh/m2
1729.82<
1556.84
1383.85
1210.87
1037.89
864.91
691.93
518.95
345.96
172.98
<0,00
Radiation Analysis

BELMNG_PEKING_CHN_2000
1 JAN 1:00 - 31 DEC 24:00






media/file52.png





media/file43.png





media/file18.png
Last Ind.

Increasing Fitness

4 — — — First Ind.
0.776 -562.72 7148
Maximise Daylight Minimise Total Load Maximise
Factor Intensity (kWh/m2) uTCl





media/file21.jpg
o wene odm  owmes Vmews Sy Guwn RGAMMENY i s
B Tem Whew e w mm
g W o w® 0 T R T e





media/file44.png





media/file26.png
Length of Courtyard
Width of Courtyard
Orientation
Depth-North South House
Depth-East West House
Window to Wall Ratio
Building height

Daylight Facter Total Annual Energy Consumption

0.29 0.11
0.26

0.33 —0.016

—0.56 —0.83

—0.56 —0.78

e 0

—0.027 0.29

UTCI
—0.11
—0.58
—0.38
0.28
0.35
—0.96
—0.15





media/file61.png





media/file35.png
Last Gen

i

SR

s

u3iS

Individual





media/file7.jpg





media/file53.png
Service Hot Water
Electric Equipment

6048260

ANEE>>V_V Aysuayu| ABisu3]





media/file28.png
rate

Learning Curve

—&— Training Score
—&— Cross-Validation Score

number

200 400 600 800 1000 1200 1400 1600 1800
Training Examples





media/file10.png
12 AM Wh/m2
950.00<

855.00

760.00
665.00
570.00

2 P 475.00

380.00

285.00
6 AM
190.00
95.00

12 AM <0.00





media/file45.png





media/file11.jpg





media/file6.png
1 Parametric model construction

Climatic condition data ‘ | Courtyard spatial parameters |

'

Natural lighting

Annual energy intensity

Parametric model construction
Outdoor thermal comfort ‘

i |
; !

| Performance simulation ‘

!

| Parameterized model with adjustable parameters |‘7

r
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

ic algorithm multi-objective optimization

NO

| The result is nondominant |

l YES

|

|

|

|

|

|

|

|

|

! | |
|
I ‘ Pareto Optimality ‘ | Non-Pareto Optimality
|
|
|
|
|
|
|
|
|
|

‘ Manually define building performance

| Data sorting and summarizing

3 Machine learning prediction model

‘ Machine learning model building |

v

| Data preprocessing ‘

A 4

| Data segmentation ‘

A

| Model tuning ‘

A

A

| Model training ‘

| Model prediction |

A 4

| Model verification |






media/file36.png
8 .'
0
! ! v ! 8
o
0 I .... o 4 o0 .. ... 0 % .
2 . o* e O.. 4 " ol X :
g I o || 1% 1] o 3 off o011 .
; i Ll .. .}13. i L. 'ﬂ:.o' I
8'#'.."“*'.‘.‘.“.! 1‘.'.-— b R ":o ? ..*"*ru. il
000 ® ° ¢ i i
I 1 o......:‘o i ehl .. ...'. ur .“,.u .‘"..0' O‘o.
s o 0% .'. 0 .
00 .0 Lo i
il LA ° ’ U
[ ] 0 i
0 * ;
]
0 . .
Generation 20






media/file15.jpg
- s
Maimse Dayigh Factr

Y-
Miimi Toral Lo sty (AR

2.
Maimise UTE1





media/file62.png
Equipment
Lighting
Cooling
Heating

.I:I

artrie
electric
| |
1

i B =
’ - - .Service Hot Water
e

BB ER

888888888

444444444

(zwymi) Ansusyul ABisuz





nav.xhtml


  buildings-13-01850


  
    		
      buildings-13-01850
    


  




  





media/file71.png
Service Hot Water
Electric Equipment

[e0] 6048260

ANEE.eﬂ_V Aysuayu| ABiaug





media/file67.png





media/file54.png





media/file41.png
Last Gen
First Gen

Individual





media/file2.png





media/file37.png
-1.35

-003

-1.45e-003

-1.57e-003

s e
-2.06e-003 -2.31e-003 -2.62e-003 -302e-003 -3.57e-003

Fitness Value

- ___.t":._.‘
1700003 187003

-4.37e-003

-5.63e-003

=
5

Last Gen

First Gen





media/file23.jpg
et

D

oy e wnswe o TeAE o e
e P R

ow  ommn  omn omess e ssen e owes som soven sz vvoams

oo omms  osen omess e sse e owes som soven sz vvos





media/file24.png
Width of

Depth-North

Depth-East

Window to

é:::mg Courtyard OMeMatoN oo ih House  WestHouse  Wall Ratio Bul:g::'gt Daﬂamcurm s Ag:::sm e el

0 0.468048 1948686  1.548097 -0.613677 -0.283391 0918004  0.343856  1.586328 0.412409 -1.297276 -1.691494

1 0.034529 1646797  1.287857 -0.732374 -0.482715 0918004  0.343856  1.521716 0691230 -1.219087 -1.691494

2 0724129 1848056  1.287857 -0.613677 -1.014247 0918004  0.343856  1.509028 1275646 -1.118029 -1.691494

3 -0.398990 1546167  -0.273584 -0.435632 -1.080689 0918004  0.343856  1.494293 1191859 -1.088080 -1.691494

4 0468048 1948686  1.548097 -0.613677 -0.216949 0918004 0343856  1.448083 0.353388 -1.301550 -1.691494
4383  -0073850  -0.634141  -0.794065 1.522865 1643413 1832229  0.343856  -1.590990 1517623 1556222 1.102775
4384  -0073850  -0.634141  -0.794065 1.522865 1643413 1832229 0343856  -1.590990 1517623 1556222 1.102775
4385  -0073850  -0.634141  -0.794065 1.522865 1643413 1832229  0.343856  -1.590990 1517623 1556222 1.102775
4386 -0073850  -0.634141  -0.794065 1.522865 1643413 -1.832229  0.343856  -1.590990 1517623 1556222 1.102775
4387  -0073850  -0.634141  -0.794065 1.522865 1643413 1832229  0.343856  -1.590990 1517623 1556222 1.102775





media/file29.jpg
]
F-1
8
o
e
&

2 3 4
Predicted label






media/file1.jpg





media/file72.png





media/file12.png





media/file9.jpg
T





media/file42.png
o
o
.
0 ) )
_3 [ 55 » _‘_ 0 ° °
g b ° ! h.‘ P — 0 ° o ° %
% 0‘.. vt |522fh % 2 .
o..o » olle ] L4 o |IT I e%—e-l il °
g o "‘ 1] : 8"“., ;'.. o1 o.. “ .;'.o-"““ o :. ?
o o %o [ | .‘ ... @ L1 ) % 0 e 1o
0o I ALY Dl T e | R D ITReLI 0 | (28
‘. .‘ O.:.: o fle "..' o ..'. ¢ Py " I 0 ® c ~:
."c o o' N, i jik]dee O..%. :.."o. w? ..
o ) . o °
s o °* o "
. o
o
) ’ . ,
( Generation 320






media/file69.png





media/file55.png





media/file68.png
Service Hot Water
Electric Equipment

o 048260

ANEEEV_V Ausuayu| ABiaug





media/file56.png
ce Hot Water
ric Equipment

= =i = = =

Elec

MS 048260

(

NEE>>£ Aysuaju| ABiou]





media/file38.png
Last Gen

on
o
1
@
~
b

on
1

o
o
S
P
o~
N
o

9N|eA ss=auUll4

o on
= [=1
f==) =]
P P
= ==
~ L
ﬁd._ -J.-

3 3 3
ﬂU ﬂnU ﬂU
U U B
e e e
(¥ = f==
o o~ =

N
WN# 3

-

o
o
ek

N
——

sEme

o on
(=1 o
< (=1
@ P
~

) o«
s

' 1

~
[=3]
e

\

First Gen

-1.78e-003





media/file73.png





media/file17.jpg
T

0776 -562.72 748

Masinise Daylight Minimise Total Losd
Factor nensity (&h/me) U





media/file60.png





media/file30.png
©
0
S
o
=
-

2 3 4
Predicted label






media/file65.png
ce Hot Water
ric Equipment

o
e 22
_— e = = s
O £ o0 ®
5858 §
w w O O I

04 8260
© -—

NEEEV_V b_wcwE_ ABiau3

—_—





media/file57.png





media/file48.png





media/file39.png
b
-2.72e-003 0..
o
-2.61e-003 o
.9,
-2.51e-003 11 L e o
v nh._‘ > %1%,
-241e-003 3 By & - .
4 e 1.0+ 0 ® ° °
> PH S Wi P2t ele .o
-2.32e-003 c ..'.\ ° :0 : lolel? :t:._.* L
o b 1 @ [ ]
-2.24e-003 § W R IIC 3 AR P
& ¢ .o.' .'. J ., .
) °
2.16e-003 . ... .:.: .
-2.09e-003 : ‘
°
-2.03e-003
-1.96e-003
0

Generation






media/file27.jpg
rate

095

090

085

Score
e
2
8

075

070

065

200 400 600

Learning Curve

800
Training Examples

—e— Training Score
—e— Cross-Validation Score

1000 1200 1400 1600 1800

number





media/file3.jpg





media/file74.png
Service Hot Water
Electric Equipment

Y TN N N A
Ot ON©OT®ONOO
OWITTO®® N~

ZW/YANY) Alisuaiu| ABiaug

—






media/file22.png
Length of Width of Ciliiiaiion Depth-North Depth-East Window to Building Datlight  Total Annual Energy UTCl Label

Courtyard Courtyard South House  West House Wall Ratio height Facter Consumption
0 5.6 12.0 10 3.6 42 0.20 45 9.182424 469.140937 8.486201 1
1 5.2 11 8 34 39 0.90 45 9.012499 489.097369 8.493866 1
2 45 1.7 8 3.6 3.1 0.20 45 8.979131 530.926613 8.503773 1
3 48 10.8 -4 39 3.0 0.90 45 8.940379 524.929608 8.506709 1
4 5.6 12.0 10 3.6 43 0.20 45 8.818849 464.916538 8.485782 1
4383 5.1 43 -8 72 71 0.25 45 0.826328 331.000017 8.765937 5]
4384 51 43 -8 72 71 0.25 45 0.826328 331.000017 8.765937 5
4385 51 43 -8 12 1 0.25 45 0.826328 331.000017 8.765937 5]
4386 51 43 -8 2 74y 0.25 45 0.826328 331.000017 8.765937 5
4387 5.1 43 -8 72 71 0.25 45 0.826328 331.000017 8.765937 5





media/file19.jpg
Duacollcton Daa prerocesng Dua modelng
—— [ | g el ——
‘collcts the original data setgrades. Dota standardizationgrades e

e po






media/file66.png





media/file58.png





media/file40.png
Last Gen

First Gen

0122 0121 012 0118 0117 0116 0115 0114 0113 0112 0112 0111  0.11
Fitness Value





media/file32.png
%htime

model = lgh. LGBMClassifier()

model. fit(X_train, v_train)
v_test_pred = model. predict(X_test)

accuracy = accuracy_score(y_test, v_test_pred)

precision = precision_score(y_test, v_test pred, average= weighted’)
recall = recall score(y_test, v _test pred, average= weighted')

fl = fl1 score(y_test, v_test pred, average= weighted')

print (" accuracy: ' +str(round(accuracy, 3)))
print ( precision: ' +str(round(precision, 3)))
print (" recall: ’+str(round(recall, 3)))
print (" f1: " +str(round(f1, 3)))

accuracy: 0.902
precision: 0. 862

recall: 0.902

f1: 0.877

CPU times: total: 2.95 s
Wall time: 195 ms





media/file14.png





media/file49.png





media/file46.png





media/file59.png
Service Hot Water
Electric Equipment

Lighting

826048260

(zwyupny) Aiisusyu) ABisug





media/file16.png
N

Maximise Daylight Factor

X - Axis

Y - Axis

Minimise Total Load Intensity (kWh/m)

Z - Axis

Maximise UTCI






media/file20.png
Data collection

A multi-objective optimization algorithm
collects the original data setgrades

Data preprocessing

Data cleaning
Diata standardizationgrades

Data modeling

Dhata
parttioning

"| Tramning set Iw

al odd
—’| Test set R

LightGBM






media/file63.png





media/file50.png





media/file5.jpg





media/file70.png





media/file47.png





media/file31.jpg
*tine

nodel = 1gb. LGBNClassifier ()

nodel. fit(X_train, y_train)
v_test_pred = model. predict (¥_test)

accuracy = accuracy_score(y_test, y_test_pred)
precision = precision_score(y_test, y_test_pred, average='weighted')
recall = recall_score(y_test, y_test_pred, average= weighted')

f1 = f1_score(y_test, y_test_pred, average= weighted')

print( accuracy: ' +str(round (accuracy, 3)))
print(’ precision: ' +str(round(precision, 3)))
print (' recall: ' +str(round(recall, 3)))
print( £1: *+str (round(f1, 3)))

accuracy: 0.902
precision: 0.862
recall: 0.902
£1: 0.
CPU times: total: 2.95 5
Wall time: 195 ms






media/file25.jpg
Length of Courtyand
Width of Courtyard
Orentation
Depi-North South House
Depth-Eas Wt Howse
Window o Wall Rato
Building height

Daylight Facter
02

056

“Total Annual Encrgy Consumpton
o1l
02
“ooi6
0%

uret
“on
058
038

035
0%
015





media/file0.png





media/file8.png
12 AM | § I ﬂ I I I %
! 100.00<
H 7 | I ' l 1 h 1l | { 90.20
6 PM ‘ I | TN [ ' ‘ | I‘ | 1 80.40
| I I ' ‘ ‘ l ! 70.60
r ] | il ‘ 60.80
12 e ‘ I | | F J f ’I I | [ 11| 51.00
i \ | ' L‘ ' 41.20
6amM [ ‘ i . | N i : 31.40
\I ‘ | l | l [ " | 21.60
| \ 11| “ , |

AR N i M A4 W

12 AM <2.00





media/file51.png





media/file64.png





media/file34.png
-0.

0.186
Fltness Value

0.0726

55

()]

Last Gen

First Gen





