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Abstract: Recently, castellated columns have been increasingly used in buildings because of their
flexibility, easy compatibility and potential savings due to less steel consumption. However, there
is a lack of research related to the subject. In view of that, this work evaluates the influence of the
opening type and size on the resistant capacity of the column, considering a nonlinear plastic analysis
by the finite element method (792 simulations). For this, columns without openings were modeled to
validate the methodology proposed. After validation, a nonlinear buckling analysis of castellated
columns was performed. In this study, different cut patterns of the beam web are evaluated, as
well as residual stresses, material and geometric imperfections, based on a statistical design. The
loads obtained by castellated columns and columns without web are compared. Also, the resistance
reduction factors associated with global buckling (χ) for castellated profiles are compared to the
values proposed by ABNR NBR 8800 (2008). Furthermore, statistically, there are no differences
between the opening types evaluated. Finally, in order to contribute to the design of castellated
columns, equations based on regression models were found to predict the load capacity of these
elements.

Keywords: castellated profiles; steel; finite element analysis; Abaqus; nonlinear analysis

1. Introduction

In steel construction, the structural elements (e.g., beams and columns) are manufac-
tured mainly in an I-shaped form. However, there has been an increase in the demand for
profiles with openings on the web, among which the castellated and cellular profiles stand
out. Castellated or cellular profiles are manufactured from a laminated profile of type I or
H. A longitudinal cut divides the profile into two parts [1]. Subsequently, these parts are
realigned and welded. Variations in the cut pattern allow for a wide variety of geometries.
According to Vieira et al. [2] the Anglo-Saxon (Figure 1a), Peiner (Figure 1b) and Litzka
(Figure 1c) types are the most used.
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Figure 1. Opening types. Adapted from Vieira et al. [2]. (a) Anglo-Saxon; (b) Peiner; (c) Litzka. 

The main advantage of castellated elements is the increase in flexural stiffness with a 
lightweight structure. In addition, the service ducts can be positioned through the web 
openings, reducing the overall height required between floors [3]. In addition, it can per-
form better when subjected to explosions and seismic shocks because these elements pre-
sent a combination of high strength and ductile response [4–6]. In contrast, due to the 
openings, castellated elements have less shear stiffness and this can affect the bending 
and/or buckling behavior [7]. As the web panel is responsible for resisting shear forces, at 
first, it is reasonable to think that this new profile would have greater resistance. However, 
due to the openings, the behavior of a solid plate (that remains connected on all four sides) 
no longer exists and consequently the shear stiffness decreases. As a result, new failure 
modes (formation of Vierendeel mechanism, lateral–torsional buckling of web post and 
tee local buckling) can occur, potentially reducing the profile’s resistance to bending 
and/or buckling. Furthermore, the structural behavior of cellular beams in bending is sig-
nificantly more complex than regular I-shaped beams [8,9].

Due to the increase in inertia, these elements are used mainly when subjected to 
bending on the major axis [10]. This allows the same amount of material to withstand 
higher internal stresses, saving material. However, cellular elements and castellated ones 
can be used when subjected to a combination of bending moment and compressive forces, 
or even cases in which only one compressive force is present [10], in addition to presenting 
a phenomenon defined as instability which can be described as a structural bending under
axial compressive load [11]. El-Sawy et al. [12] reported that the main reason for using 
castellated columns is to increase their strength to buckling on the major axis. However, 
there are still few studies on the structural behavior of castellated and cellular columns. 

The influence of shear strains on the elastic buckling behavior by flexion in the axis 
of greatest inertia of these columns has been investigated by Sweedan et al. [13] and El-
Sawy et al. [12]. The two works present similar approaches considering that they were 
carried out by the same researchers. In the articles, reduction factors are proposed for the 
critical buckling load in the axis of greatest inertia of cellular and castellated columns, and 
an equivalent bending stiffness is proposed. It was observed that the influence of shear 
decreases with increasing column length and web width, as well as decreasing opening
heights. 

Verweij [14] evaluated the overall buckling behavior of axially loaded cell profiles 
through a numerical study. When comparing the resistances obtained from finite element 
simulations with the values proposed, this method proved to be very conservative in sev-
eral cases. It was not possible to establish an adequate buckling curve but it was observed
that the buckling behavior was qualitatively similar to columns without openings. 

Subsequently, Yuan et al. [15] used an analytical analysis to estimate the critical buck-
ling load of axially loaded castellated columns, including the shear effect. The inclusion 
of shear stress significantly reduced the elements’ resistance, overestimating the critical 
load by up to 25%, even using a reduced area static moment. 

Subsequently, Sonck et al. [3] experimentally analyzed residual stress on cellular and 
castellated elements. The manufacturing process led to increased residual compressive
stress of the flanges, which caused a decrease in buckling strength capacity. The effect of 
residual stresses on global buckling resistance of castellated members is more damaging 
than it is for members without openings. 

Subsequently, Sonck and Belis [10] analyzed the buckling of castellated columns 
around the minor axis, considering different residual stress distributions. The simulation 
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The main advantage of castellated elements is the increase in flexural stiffness with
a lightweight structure. In addition, the service ducts can be positioned through the web
openings, reducing the overall height required between floors [3]. In addition, it can
perform better when subjected to explosions and seismic shocks because these elements
present a combination of high strength and ductile response [4–6]. In contrast, due to the
openings, castellated elements have less shear stiffness and this can affect the bending
and/or buckling behavior [7]. As the web panel is responsible for resisting shear forces, at
first, it is reasonable to think that this new profile would have greater resistance. However,
due to the openings, the behavior of a solid plate (that remains connected on all four sides)
no longer exists and consequently the shear stiffness decreases. As a result, new failure
modes (formation of Vierendeel mechanism, lateral–torsional buckling of web post and tee
local buckling) can occur, potentially reducing the profile’s resistance to bending and/or
buckling. Furthermore, the structural behavior of cellular beams in bending is significantly
more complex than regular I-shaped beams [8,9].

Due to the increase in inertia, these elements are used mainly when subjected to
bending on the major axis [10]. This allows the same amount of material to withstand
higher internal stresses, saving material. However, cellular elements and castellated ones
can be used when subjected to a combination of bending moment and compressive forces,
or even cases in which only one compressive force is present [10], in addition to presenting
a phenomenon defined as instability which can be described as a structural bending under
axial compressive load [11]. El-Sawy et al. [12] reported that the main reason for using
castellated columns is to increase their strength to buckling on the major axis. However,
there are still few studies on the structural behavior of castellated and cellular columns.

The influence of shear strains on the elastic buckling behavior by flexion in the axis
of greatest inertia of these columns has been investigated by Sweedan et al. [13] and El-
Sawy et al. [12]. The two works present similar approaches considering that they were
carried out by the same researchers. In the articles, reduction factors are proposed for the
critical buckling load in the axis of greatest inertia of cellular and castellated columns, and
an equivalent bending stiffness is proposed. It was observed that the influence of shear
decreases with increasing column length and web width, as well as decreasing opening
heights.

Verweij [14] evaluated the overall buckling behavior of axially loaded cell profiles
through a numerical study. When comparing the resistances obtained from finite element
simulations with the values proposed, this method proved to be very conservative in several
cases. It was not possible to establish an adequate buckling curve but it was observed that
the buckling behavior was qualitatively similar to columns without openings.

Subsequently, Yuan et al. [15] used an analytical analysis to estimate the critical
buckling load of axially loaded castellated columns, including the shear effect. The inclusion
of shear stress significantly reduced the elements’ resistance, overestimating the critical
load by up to 25%, even using a reduced area static moment.

Subsequently, Sonck et al. [3] experimentally analyzed residual stress on cellular and
castellated elements. The manufacturing process led to increased residual compressive
stress of the flanges, which caused a decrease in buckling strength capacity. The effect of
residual stresses on global buckling resistance of castellated members is more damaging
than it is for members without openings.

Subsequently, Sonck and Belis [10] analyzed the buckling of castellated columns
around the minor axis, considering different residual stress distributions. The simulation
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results showed a significant influence on the modification of the residual stress pattern,
reducing the elements’ load capacity. The buckling curves were well adjusted to Eurocode
3 [16], showing its applicability in profiles with openings.

Gu and Cheng [17] studied the critical buckling load of cellular pillars. They concen-
trated on the axis of greatest buckling inertia. It was concluded that the effect of shear
strains on the cellular element increased with increasing cross-sectional area of the T-section
above the openings and the diameter of the web opening. However, this effect decreased
with the thickness of the web and the increase in the length of the cellular element.

Panedpojaman et al. [18] proposed a method for calculating the elastic buckling frame
of pinned support alveolar columns. The study was validated by comparisons with finite
element analysis. A parametric study on the section type effect, the ratio and the spacing of
the openings, as well as the slimness were evaluated, using numerical methodology. It was
observed that the opening spacing affects the buckling load more than the opening ratio
does. Furthermore, shear effects decrease the buckling load by less than 10% for cases with
slenderness greater than 75.

Panedpojaman et al. [19] numerically evaluated the behavior of cell pillars subjected
to eccentric axial loading. This study aimed to examine the efficiency of using EN 1993-1-
1 [16] and ANSI/AISC-360-16 [20] standards to design the load capacity of cellular columns
around the axis of greatest inertia. For columns with openings, the design buckling
strengths are less conservative than with regular columns. It has been observed that design
buckling strengths of cell members tend to be overestimated for reduced slenderness less
than 1.0.

Lastly, El-Tobgy et al. [21] numerically and experimentally evaluated cellular pillars
subjected to centralized and eccentric axial compression around the axis of least inertia for
different expansion factors. It can be concluded that the effect of local buckling increases
with the increase in the expansion ratio (K), being more influential in short columns,
decreasing their resistance capacity.

This literature review showed that studies of castellated columns are limited, as are
studies of the design methods. In addition, several studies performed simplified analysis,
without considering geometric and physical imperfections and, in some cases, adopting
linear approaches for the load capacity. Thus, the present work evaluates the structural
behavior of castellated columns made of three steel profiles (W150 × 37.1, W250 × 73.0
and W360 × 122.0) subjected to axial compression using FEA. The opening types of Anglo-
Saxon, Peiner and Litzka with three different expansion factors (k—1.33, 1.50 and 1.67) and
eight slenderness ratios (λ—25, 50, 75, 100, 125, 150, 175 and 200) are assessed through 792
numerical models. In this way, this study aims to contribute to the development of design
methodologies for castellated elements.

2. Materials and Methods

In order to study the structural behavior of axially loaded castellated columns, finite el-
ement models were designed using Abaqus software [22]. Columns without openings were
modeled to validate models. This same methodology was used by other authors [3,10,18],
in which they validated their model with columns without openings and, later, inserted
the openings.

The steps for the adopted modeling and the two types of analyses performed for each
numerical model are presented in the first and second subsections, respectively. The model
validation methodology (Phase 1) and the parametric study (Phase 2) are presented below,
as well as the statistical treatment of the data.

The results obtained in the linear and nonlinear elastic buckling tests are compared
with Euler’s equation and the compressive curve proposed by the Brazilian standard ABNT
NBR 8800 [23], respectively. Based on the methodology considered for columns without
openings, a nonlinear buckling analysis of castellated columns with three opening patterns
(i.e., Anglo-Saxon, Peiner and Litzka) was performed. Its load capacity was compared
to columns without openings. The results adjustment for castellated columns with the
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curve λ0 (reduced slenderness ratio) × χ (reduction factor associated with compression),
proposed by this standard, was verified statistically. It is worth noting that the openings
were defined according to the experimental tests, since the numerical model needs to be
validated.

2.1. Modeling Calibration—Phase 1

The FEA model validation was carried out in two stages:

1. First, the numerical model developed was validated with the experiment developed
by Hu et al. [24], in which an I200 section column subjected to compression was used.
The force x displacement curve in the midspan was compared with the simulated
model.

2. Second, based on a geometric and physical nonlinear analysis, the load capacity of
the solid web column was compared with the load proposed by ABNT NBR 8800 [23],
considering safety factors.

In order to evaluate the most efficient element for the research proposal, a preliminary
study was carried out, which consisted of comparing the maximum load obtained by
the nonlinear analysis and the model processing time. This comparison is presented in
Section 3. Shell elements of type S4R were used to model structures (steel profile) in which
one dimension (i.e., the thickness) was significantly smaller than the other dimensions and
the stresses in the thickness direction were negligible. Furthermore, a sensitivity analysis
was carried out to select the mesh, opting for a maximum size of 15 mm in the whole model.
The mesh was generated automatically by Abaqus (Figure 2a).

The flanges and the web were modeled by planar shell elements, neglecting the
presence of the fillets between the flanges and the web. This modeling option was expected
to have an insignificant influence on buckling curves. The models were pinned with
support at both ends. Two rigid plates were used at each end to obtain a uniform load
distribution in the profile. The plates were connected to the column by means of a “tie”
restriction (Constrain), restricting any relative displacement between the plate and the
column (Figure 2b). In order to evaluate the buckling around the major axis, the web
translation was restricted in the Z direction (Figure 2c). In all the models, the load was
applied by means of a distributed force on the upper rigid plate in the Y direction (Figure 2d).
The boundary conditions are also illustrated (Figure 2e,f).

The elastic buckling load was obtained as the first eigenvalue from a linear buckling
analysis. In this analysis, the material was modeled as linear elastic with a modulus of
elasticity of 200 GPa and a Poisson’s ratio of 0.3. The member was assumed to be per-
fectly straight and without imperfections, using the same methodology adopted in the
literature [3,10,18]. Then, the load capacity was obtained from a geometric and mate-
rial nonlinear analysis with imperfections, by performing an arc length (i.e., Static Riks)
analysis.

The steel used was type ASTM A572 (class 50) with yield stress (fy) of 345 MPa and
ultimate stress of 490 MPa. Residual stress, which reduces the load capacity of columns
and influences the structural behavior, was added [25,26]. It has been shown that thermal
influences during the manufacturing process modify the residual stresses already present
in the profile [3]. Therefore, numerical simulations that do not consider residual stress
may lead to unsafe results. It was decided to implement the residual stresses by changing
the tension–deformation curve of steel, as proposed by some authors [27–29], as shown
in Figure 3. This methodology presents a lower computational cost compared to the
implementation of residual stresses using subroutines.

Once the implementation of residual stresses had been defined, the use of the following
values was evaluated. To define the amount to be used, a sensitivity study was carried out
based on the following values: 0%, 15%, 30% and 45% of the initial steel´s yield strength.
After analysis, it was observed that 15% of the steel´s yield strength obtained better results,
which was also observed by other authors [30].
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Figure 2. Modeling configuration: (a) mesh; (b) plate connection; (c) restriction in Z axis; (d) load
application; (e) top boundary conditions; (f) bottom boundary conditions.

Another factor to be considered in structural behavior is geometric imperfections. Ac-
cording to Madah and Amir [31], the real buckling mode to be considered in a given struc-
ture depends strongly on the initial imperfection. When performing the elastic buckling
analysis, the Abaqus software presents the deformed column configurations (eigenvectors),
with the maximum horizontal displacement equal to 1. Thus, geometric imperfections were
introduced into the computational model considering the horizontal displacement of the
first eigenvector (first buckling mode) multiplied by a factor representing imperfection, e.g.,
L/1500. Therefore, when performing the nonlinear analysis, the computational model had
an initial curvature similar to the first eigenvector, whose maximum horizontal displace-
ment was equal to the imperfection value. A comparison was made between the following
geometric imperfection values: 0.1 (millimeter), L/3000, L/2500, L/2000 and L/1500. It was
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noted that the models with imperfections of L/1500 presented the closest values to those
prescribed by ABNT NBR 8800 [23], which is consistent with previous studies [30,32–34].
Therefore, L/1500 was implemented as maximum horizontal displacement in all numerical
models.
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Figure 3. Stress × strain diagram of steel with and without imperfection, adapted from Almeida [27].

It is well known that residual stresses and geometric imperfections in the formulation
hypotheses are not considered by Euler’s hypothesis. Thus, the Brazilian standard ABNT
NBR 8800 [23] proposes the use of an empirical buckling curve defined by dimensionless
factors χ, which is the reduction factor associated with compressive strength, and λ0
defined as a reduced slenderness ratio (Equations (1) and (2)).

λ0 ≤ 1.5→ χ = 0.658λ2
0 , (1)

λ0 > 1.5→ χ =
0.877

λ2
0

, (2)

where λ0 =
√

((QA_g f_y)/N_e), Q is the reduction factor associated with local buckling,
Ag is the cross-sectional area, fy the yield stress and Ne is the elastic buckling axial force.

The developed FE models were analyzed in two steps: first, an elastic buckling analysis
(i.e., Buckle) and its value compared to the Euler equation; and second, a nonlinear plastic
analysis (i.e., Static Riks) comparing the value obtained with the buckling curve from
ABNT NBR 8800 [23]. The parameters used in Step 1 were: W150 × 37.1, W250 × 73.0 and
W360 × 122.0 profile; 25, 50, 75, 100, 125, 150, 175 and 200 value of λ; 0%, 15%, 30% and
45% of residual stress; and 0.10, L/3000, L/2500, L/2000 and L/1500 of initial imperfection.
In this stage, buckling analysis was performed in relation to the minor axis, totaling 360
models.

2.2. Comparison Study: Castellated Profiles and Full Web—Phase 2

Three types of laminate profile (mm × kg/m) produced by company Gerdau (Porto
Alegre, Brazil) were analyzed: W150 × 37.1, W250 × 73.0 and W360 × 122.0, all free from
issues of local instability. As mentioned, three types of castellated elements were evaluated:
Anglo-Saxon, Peiner and Litzka.

Due to the openings, several parameters were needed to define the dimensions of
the cross-section, as well as different expressions for calculating the properties of the
cross-section. In Figure 4, these elements are presented, as well as the main geometric
properties of the cross-section of an alveolar profile. The properties were obtained from the
cross-section of the center of the alveolus as it is the most critical section [13,14,19,26,35–38].
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(b) honeycomb section.

Where d is the total height of the original section, tw is the web thickness of the original
profile, tf is the thickness of the original profile table, bf is the width of the original profile
table and dg is the total height of the expanded section [dg = k (expansion factor) × d].

Among the castellated profile parameters, there is the expansion ratio (k), which is
defined by the ratio between the height profile and the expanded height of the original
profile. The expansion ratio can vary from 1 to 2, technically. However, several studies have
been conducted to determine the optimal expansion ratio in castellated elements, resulting
in values ranging from 1.33 to 1.67 [38–42]. In stage two, the parameters were: W150× 37.1,
W250 × 73.0 and W360 × 122.0 profile; Litzka, Peiner and Anglo-Saxon cutting pattern;
1.33, 1.50 and 1.67 of parameter k; 25, 50, 75, 100, 125, 150, 175 and 200 value of λ; 15%
of residual stress; L/1500 of initial imperfection. At this stage, buckling analysis was
performed in relation to the minor axis and major axis, resulting in 432 models.

Based on the results obtained for the profiles analyzed (W150 × 37.1; W250 × 73 and
W360 × 122) and for the castellated profiles (Litzka [LT], Peiner [PN] and Anglo-Saxon
[AS]), quadratic (Equation (3)), cubic (Equation (4)), exponential (Equation (5)), logarithmic
(Equation (6)) and geometric (Equation (7)) regression models were performed considering
an analysis of variance (ANOVA) with 5% significance. The curves generated by the
regression models were compared to the curve proposed by the Brazilian standard ABNT
NBR 8800 [23] to determine the best fit curve involving the reduction factor χ (dependent
variable) and the slenderness index λ0 (independent variable).

χ = α0 + α1·λ0 + α2·λ2
0 + ε, (3)

χ = α0 + α1·λ0 + α2·λ2
0 + α3·λ3

0 + ε, (4)

χ = α0·eα1·λ0 + ε, (5)

χ = α0 + α1·Ln(λ0) + ε, (6)

χ = α0·λ0
α1 + ε, (7)
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In Equations (3)–(7), the coefficient αi is obtained by the least square method and ε is
the random error, i.e., the product of variations in measurements that do not follow a fixed
trend but that can be analyzed statistically by their dispersion. Further, the quality of the
adjustment is determined based on the values of the coefficients of determination R2. The
ANOVA of the regression models is performed to assess whether the models and the terms
of these models are considered significant (at the 5% significance level), which implies that
variations in λ0 values imply variations in the χ values. For the accepted hypotheses (H0
and H1), a p-value (probability P) greater than or equal to 0.05 implies that the coefficients
of these models are not significant and, otherwise, significant (p-value ≤ 0.05).

Since the values of λ0 are not the same in numerical simulations based on the best fit
[χ = f (λ0)] for the type estimate and χ for each standard profile, the values of λ0 [0; 3.31]
from the curve χ × λ0 (NBR 8800, 2008) were used to estimate χ by the aforementioned
models. Once the set of λ0 values was the same for all settings, the verification of the model
that best approximates χ × λ0, proposed by the Brazilian standard (NBR 8800, 2008), was
based on the Tukey multiple comparison test (at 5% significance). In the Tukey test, A
denotes the group with the highest mean χ value, group B has a different but lower mean
value and so on. Same letters mean statistically equivalent groups.

As the numerical simulations were made considering the direction [d] of the two axes
(x and z), the expansion ratios k (1.33; 1.5; 1.67) and the slenderness ratios λ0 [0.07; 2.52]
to obtain the values of χ reduction factor, the regression model (Equation (8)) and the
dependent parameters d, k and λ0 were used to verify the significance of each of the main
factors and/or their interaction with these χ values.

χ = α0 + α1·d + α2·k + α3·λ0 + α4·d·k + α5·d·λ0 + α6·k·λ0 + α7·d·k·λ0 + ε (8)

In Equation (8), the coefficient αi is obtained by the least square method, and ε is the
random error, noting that the quality of adjustment is determined based on the values of
the coefficients of determination R2. In the simulations, it is worth mentioning that the
categorical direction variable (d) is treated as x = 0 and y = 1. Only in simulations involving
the Anglo-Saxon pattern is the expansion ratio k kept constant (invariant) and equal to 1.5,
resulting in the reduction of Equation (8) to four terms for all.

A sensitivity analysis of the coefficients in Equation (8) was evaluated based on
ANOVA, also at a 5% significance level. For hypotheses of formulations (H0 and H1), a
p-value greater than or equal to the level of significance (0.05) implies that the models are
not significant, and, otherwise, significant for a p-value less than 0.05.

3. Results

Shell-type elements are indicated for modeling structures (steel profile) in which
one dimension is significantly smaller than the other dimensions and the stresses in the
thickness direction are negligible. The elements evaluated were S4R and S8R, the types
also evaluated by Sonck [36]. S4R is a linear, quadrilateral shell element with reduced
integration and S8R is a curved, quadrilateral shell element with reduced integration.
Reduced integration elements use one less integration point in each direction than fully
integrated elements. Linear elements of reduced integration have only a single point of
integration located at the centroid of the element while the second-order element has four
points of integration, as shown in Figure 5. The dots on the lines are nodes and the interior
xs are the integration points.

A preliminary study was carried out to choose the finite element to discretize the
models. At this stage, profile W 250 × 73.0 (H) and Peiner-type opening pattern were
adopted. In this step, 16 numerical models were evaluated, resulting in a total of 64 analyses.
The description of the models is presented in Table 1.
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Table 1. Models for preliminary study of the finite element.

Models λorig. k = dg/d

1 25 1.33
2 50 1.33
3 75 1.33
4 100 1.33
5 125 1.33
6 150 1.33
7 175 1.33
8 200 1.33
9 25 1.67
10 50 1.67
11 75 1.67
12 100 1.67
13 125 1.67
14 150 1.67
15 175 1.67
16 200 1.67

Figure 6 presents the loads of each model, as well as the additional time required to
complete the numerical analysis when the S8R element is adopted. As can be seen, the
models showed similar load, with a mean difference of 0.4%. However, the additional
processing time was considerably higher in models discretized by the S8R element, with an
average value 245% higher than the time required for the analyses with the S4R element.
The mesh in both cases was adopted with a maximum size of 15 mm.
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Figure 6. Maximum loads and additional processing time.

Initially, a mesh test was performed and the proposed model was validated. As can be
seen in Figure 7, the difference in results between the 10 mm and 15 mm mesh are close, so
the 15 mm mesh was adopted throughout the model, as it has a shorter processing time.
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Furthermore, the force × displacement curve in the midspan was close to the experimental
test developed by Hu et al. [24].

Buildings 2023, 13, x FOR PEER REVIEW 10 of 21 
 

 
Figure 6. Maximum loads and additional processing time. 

Initially, a mesh test was performed and the proposed model was validated. As can 
be seen in Figure 7, the difference in results between the 10 mm and 15 mm mesh are close, 
so the 15 mm mesh was adopted throughout the model, as it has a shorter processing time. 
Furthermore, the force × displacement curve in the midspan was close to the experimental 
test developed by Hu et al. [24]. 

 
Figure 7. Comparison of the numerical and experimental [13] force × displacement curve in the mid-
span.  

Subsequently, the elastic buckling load obtained in the numerical model was com-
pared to the load proposed by Euler to validate the model. In order to implement the 
geometric imperfections in the castellated models, it was necessary to obtain the first col-
umn buckling mode, as shown in Figure 8a–c. Then, the load capacities of castellated 
members were compared, considering imperfections, residual stresses and a nonlinear 
analysis, with the values proposed by the Brazilian standard ABNT NBR 8800 [23]. Figure 
8d,e also show the results for profiles W250 × 73.0. It is noteworthy that the results of the 
other profiles demonstrated the same behavior. The magnitude illustrated in Figure 8e 
shows dimensionless values as they are relative displacements in buckling modes. 

0%

50%

100%

150%

200%

250%

300%

350%

0

500

1,000

1,500

2,000

2,500

3,000

3,500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
dd

iti
on

al
 p

ro
ce

ss
in

g 
tim

e 

Lo
ad

 [K
N

]

Models

S4R
S8R
%

Figure 7. Comparison of the numerical and experimental [13] force × displacement curve in the
mid-span.

Subsequently, the elastic buckling load obtained in the numerical model was compared
to the load proposed by Euler to validate the model. In order to implement the geometric
imperfections in the castellated models, it was necessary to obtain the first column buckling
mode, as shown in Figure 8a–c. Then, the load capacities of castellated members were
compared, considering imperfections, residual stresses and a nonlinear analysis, with
the values proposed by the Brazilian standard ABNT NBR 8800 [23]. Figure 8d,e also
show the results for profiles W250 × 73.0. It is noteworthy that the results of the other
profiles demonstrated the same behavior. The magnitude illustrated in Figure 8e shows
dimensionless values as they are relative displacements in buckling modes.

Buildings 2023, 13, x FOR PEER REVIEW 11 of 21 
 

   
(a) (b) (c) 

   
(d) (e) 

Figure 8. Elastic buckling analysis of: (a,d) undeformed; (b,e) first buckling mode with magnitude; 
(c) second buckling mode; of (a–c) W150 × 37.1 (λ = 50; Peiner); (d,e) W250 × 73.0 (λ = 50; Peiner). 

As shown in Figure 9a,b, the methodology proved to be effective both in determining 
the critical load of elastic buckling and in estimating the bearing load capacity using a 
nonlinear analysis. In addition, it can be noted that, as the column´s slenderness increases, 
collapse by elastic buckling tends to occur. 

  
(a) (b) 

Figure 9. Load × λ for minor axis of: (a) W150 × 37.1; (b) W360 × 122.0. 

In addition, Figure 10 reveals that, as the slenderness ratio increases, the horizontal 
displacements of the central section become larger with lower load increments. Due to 
these displacements, greater bending moments appear in the element, causing compres-
sion on one face and tension on the other, which makes the compressed region reach the 
yield stress more easily. Considering λ of 50, 125 and 150, and W250 × 73.0 profile, the 
maximum stress distributions were 345 MPa, 290.20 MPa and 285.80 MPa, respectively 
(Figure 11). 

0

1,000

2,000

3,000

4,000

0 25 50 75 100 125 150 175 200

Λ

λ

Non-linear Analysis
NBR 8800
Euler
Elastic Analysis

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0 50 100 150 200

N
e 

[K
N

]

λ

Non-linear Analysis
NBR 8800
Euler
Elastic Analysis

Figure 8. Elastic buckling analysis of: (a,d) undeformed; (b,e) first buckling mode with magnitude;
(c) second buckling mode; of (a–c) W150 × 37.1 (λ = 50; Peiner); (d,e) W250 × 73.0 (λ = 50; Peiner).
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As shown in Figure 9a,b, the methodology proved to be effective both in determining
the critical load of elastic buckling and in estimating the bearing load capacity using a
nonlinear analysis. In addition, it can be noted that, as the column´s slenderness increases,
collapse by elastic buckling tends to occur.
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Figure 9. Load × λ for minor axis of: (a) W150 × 37.1; (b) W360 × 122.0.

In addition, Figure 10 reveals that, as the slenderness ratio increases, the horizontal
displacements of the central section become larger with lower load increments. Due to
these displacements, greater bending moments appear in the element, causing compression
on one face and tension on the other, which makes the compressed region reach the yield
stress more easily. Considering λ of 50, 125 and 150, and W250× 73.0 profile, the maximum
stress distributions were 345 MPa, 290.20 MPa and 285.80 MPa, respectively (Figure 11).
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Figure 10. Curve load × displacement of the middle section (profile W250 × 73.0).

Subsequently, the openings were attributed to the calibrated model presented in the
previous section. This methodology was also adopted by several other authors [3,10,18].
The results are presented for the profiles—W150 × 37.0 (Figure 12a,b), W250 × 73.0
(Figure 13a,b) and W360 × 122.0 (Figure 14a,b). The models refer to buckling around
the minor axis (Iy) and the major axis (Ix), with opening patterns Litzka (LT), Peiner (PN),
AS (Anglo-Saxon), without openings (AC—Full Web) and expansion factor (k).
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Figure 12. Buckling curves for the profile W150 × 37.0 with types Litzka (LT), Peiner (PN) and
Anglo-Saxon (AS) in: (a) minor axis; (b) major axis.
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Figure 13. Buckling curves for the profile W250 × 73.0 with types Litzka (LT), Peiner (PN) and
Anglo-Saxon (AS) in: (a) minor axis; (b) major axis.
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Figure 14. Buckling curves for the profile W360 × 122.0 with types Litzka (LT), Peiner (PN) and
Anglo-Saxon (AS) in: (a) minor axis; (b) major axis.

As shown in Figures 10 and 12–14, the mechanical behavior of the columns can be
divided into two phases. In the first phase, which corresponds to inelastic buckling, the
column strength is determined by the yield strength of the steel, and the structural collapse
occurs after the formation of a plastic hinge or crushing of the column. In the second phase,
which corresponds to elastic buckling, the column strength is controlled by the geometric
(moment of inertia and area) and mechanical (Young’s modulus) parameters, and structural
collapse occurs due to excessive displacements, as shown in Figure 10. In this context, the
stress concentrations that occur at the angular points of the openings (honeycombs) of the
castellated column cause the early yielding of the steel and contribute to the development
of preferential paths that will result in the formation of plastic hinges.

As can be seen, castellated columns have lower resistance capacity subjected to axial
loads compared to solid web profiles. Stress concentrations that cause additional defor-
mations around the openings were verified, such as shear deformations, which result in
a lower load capacity around the major axis. In columns with a low slenderness index,
the differences were more visible. Profiles without openings performed better in columns
with lower slenderness, as can be seen in Figures 15–17. Compared to the same member
without openings in the web, the plastic strength of the cross-section of castellated profiles
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is reduced due to the presence of openings. Thus, the collapse of less slender structures
occurs by plastification of the section and not by lateral instability as in more slender
columns, with the steel area being a preponderant factor.
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Figure 17. Von Mises stress (MPa) in central region for load = 2118 kN, W250 × 73.0 (k = 1.33) and
Peiner with λ = 50.

It is known that the behavior of compressed columns with initial curvature differs
substantially from columns with no initial curvature. Members with initial curvature
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have their lateral displacement continuously increased until they collapse. As mentioned,
geometric imperfections were implemented based on the first elastic buckling mode of
the column. Figure 15 shows that the horizontal displacement of the model W250 × 73.0
(Peiner) increased considerably after the element reached its load capacity. Due to this
increase, the load distribution in the cross-section was modified. This behavior can be seen
in Figure 16, where the plastic deformations in the column are shown.

It is noteworthy that, although the original pillars do not present local instability,
castellated columns are not necessarily free of these effects. Instability in castellated
columns occurs due to the transfer of stress from the solid web section to the open web
section, which may cause stress concentrations. Stress analysis makes it possible to identify
the possible points of local failures. Figure 17 refers to the central region of the castellated
column. It is worth noting that, for the load presented (2118 kN), there is an instability
of the left flange. Therefore, it can be concluded that the central opening may reduce the
column resistance.

Additionally, the curves obtained through numerical models (NMs) are compared
with the curve presented by the Brazilian standard ABNT NBR 8800 [23] used for the design
of columns without openings in Figure 18. Due to the extensive data, the results of profile
W250 × 73.0, which is representative of the others, are presented.
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Table 2 presents the best regression models (χ—reduction factor estimative) for each
type and pattern profile, along with the respective values of the coefficients of determination
(R2). It should be noted that all p-values are less than 5%, revealing the significance of the
models. In addition, the determination coefficients are greater than 94%, showing a high
predictability of the models. Third-order polynomial regression models provided the best
configurations in all cases, showing an adequate quality of the obtained adjustments, since
the determination coefficients (R2) vary from 94.11% to 98.04%.

Table 3 shows the Tukey test (at 5% of significance) results in order to verify which of
the estimated models is closer to the curve χ× λ0 proposed by the Brazilian standard ABNT
NBR 8800 [23]. In other words, the estimated values for the reduction factors are lower
than the values proposed by the Brazilian standard, but they are considered statistically
equivalent (5% level of significance) with the similar letter group B.

As shown in Section 2.2, five regression models were considered to estimate the χ
factor, three polynomials (first, second and third), one exponential and one logarithmic.
In all models, their significance was verified in estimating the χ factor using ANOVA
(5% significance). In Table 2, only the models associated with the highest values of the
coefficient of determination (R2) are presented. As there are three polynomial models,
to establish the effective relevance (model significance) of the inclusion of the quadratic
term on the first-degree polynomial and also the inclusion of the third-degree term on the
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second-degree polynomial, Figure 19 shows the graphs of the relative percentage errors
of these three models for the W150 × 37.1 (LT) profile. Figure 19 also shows the graph
of the ratio between the values of the χ factor determined based on the values obtained
from numerical simulations (χnum) and the values of this property determined by the
polynomials of the first (χ1), second (χ2) and third (χ3) degrees.

Table 2. Results of regression models that estimate the values of reduction factor (χ).

Profile Opening Type Model R2 (%)

W150 × 37.1
LT χ = 1.001 − 0.0148·λ0 − 0.4140·λ0

2 + 0.1143·λ0
3 96.97

PN χ = 1.014 − 0.01568·λ0 − 0.4255·λ0
2 + 0.1184·λ0

3 98.04
AS χ = 1.016 + 0.0899·λ0 − 0.5423·λ0

2 + 0.1488·λ0
3 97.55

W250 × 73.0
LT χ = 1.038 − 0.1060·λ0 − 0.3517·λ0

2 + 0.1014·λ0
3 94.58

PN χ = 1.054 − 0.0352·λ0 − 0.4451·λ0
2 + 0.1271·λ0

3 95.40
AS χ = 1.007 + 0.0598·λ0 − 0.4819·λ0

2 + 0.1291·λ0
3 97.90

W360 × 122.0
LT χ = 1.133 − 0.1865·λ0 − 0.3440·λ0

2 + 0.1057·λ0
3 94.52

PN χ = 1.136 − 0.2638·λ0 − 0.2607·λ0
2 + 0.08389·λ0

3 94.88
AS χ = 1.182 − 0.3017·λ0 − 0.2433·λ0

2 + 0.08008·λ0
3 94.11

Table 3. Tukey test results for the values of χ reduction factor.

Profile
χ

Litzka Peiner Anglo-Saxon NBR 8800 [23]

W150 × 37.1 B B B A
W250 × 73.0 B B B A
W360 × 122.0 B B B A
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Figure 19. Validation of regression models: (a) histogram of the distribution of errors (Er) for the
polynomial regression models of the W150 × 37.1 profile—LT; (b) graph of the ratio between values
of the χ factor obtained by numerical simulation and those estimated by polynomials.

In Figure 19a, the gradual reduction of the percentage error can be observed with the
increase in the order of the polynomial. This effect can be noted by the visible difference in
the graphs of normal frequency distribution, which reinforces the results obtained from the
analysis of variance. For degree 1, 2 and 3 polynomials, the largest errors found were equal
to 67.5, 38.5 and 6.77%, respectively, and it should be noted that such errors came from the
coefficient λ0 = 2.4932. The significant result of the error reduction with the increase in the
order of the polynomial is also noticeable in Figure 19b. It is worth mentioning that 44.44%
of the values of the ratios between the χ factors were lower than 1 and 55.56% presented
higher ratios.
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Table 4 shows the multivariate regression models used to estimate the χ reduction
factor, finding the terms considered significant by ANOVA (5% significance), that are
those underlined in the Equations (see Table 4). Based on the three patterns and three
profiles, only the slenderness ratio λ0 is considered significant by ANOVA (at the 5% level
of significance), implying that other main factors and their interactions do not significantly
affect the estimate χ of the reduction factors.

Table 4. Results of multivariate regression models.

Profile Opening Type Model R2 (%)

W150 × 37.1
LT χ = 1.432 − 0.645·d − 0.230·k − 0.641·λ0 + 0.449·d·k + 0.416·d·λ0 + 0.153·k·λ0 − 0.289·d·k·λ0 96.97
PN χ = 1.504 − 0.538·d − 0.277·k − 0.704·λ0 + 0.365·d·k + 0.394·d·λ0 + 0.196·k·λ0 − 0.269·d·k·λ0 98.04
AS χ = 1.2276 - 0.1594·d − 0.5092·λ0 + 0.1037·d·λ0 97.55

W250 × 73.0
LT χ = 1.597 − 0.756·d − 0.385·k − 0.795·λ0 + 0.602·d·k + 0.580·d·λ0 + 0.286·k·λ0 − 0.445·d·k·λ0 94.58
PN χ = 1.572 − 1.012·d − 0.336·k − 0.768·λ0 + 0.749·d·k + 0.687·d·λ0 + 0.248·k·λ0 − 0.500·d·k·λ0 95.40
AS χ = 1 1.1373 - 0.0797·d − 0.4417·λ0 + 0.0525·d·λ0 97.90

W360 × 122.0
LT χ = 1.860 − 0.157·d − 0.499·k − 0.869·λ0 + 0.168·d·k + 0.184·d·λ0 + 0.303·k·λ0 − 0.166·d·k·λ0 94.52
PN χ = 1.238 + 0.485·d − 0.101·k − 0.514·λ0 − 0.244·d·k − 0.182·d·λ0 + 0.073·k·λ0 + 0.071·d·k·λ0 94.88
AS χ = 1.0955 + 0.1800·d − 0.3848·λ0 − 0.1326·d·λ0 94.11

When calculating all cross-sectional properties at the center of the web opening, the
reduction factors are statistically equivalent to the Brazilian standard ABNT NBR 8800 [23]
for solid web profiles. Due to the openings, the steel area can decrease considerably, not
being able to support compression efforts. Furthermore, the results show a noticeably
higher dispersion (i.e., values close to χ = 1). Such models were columns with lower
slenderness indices, which suggests that buckling failure is not predominant in these
models. Therefore, the collapse of such elements occurs by crushing the cross-section
due to the considerable decrease in the steel area. Therefore, the values estimated by the
presented formulations (Tables 3 and 4) to estimate χ must be limited to 1. The results
indicate that castellated columns can be designed using the curve proposed by the Brazilian
standard.

4. Discussion

Due to the results in Figure 6, the S4R element was adopted for the research models.
The analysis performed by Sonck [36] showed better results with the S8R element. This
can be explained by the difference in mesh refinement adopted in the studies, with the
maximum value being 30 mm in Sonck [36] and 15 mm in this work. Such refinement
promotes a high level of model detail, promoting satisfactory results. In addition, loads
were applied to the metal profile by plates fixed at the ends, which improves the distribution
of load and increases the possibility of model convergence. According to the Abaqus
documentation, linear elements of reduced integration can give acceptable results as long
as a reasonably fine mesh is adopted.

First, in the validation of the model shown in Figure 7, the same result was found
as in the research conducted by Massaroppi Jr et al. [43], in which the smaller meshes
ended up coinciding with a close maximum force. Then, the methodology proved to be
effective both in determining the critical load of elastic buckling and in estimating the
bearing load capacity (Figure 9). The methodology (the openings that were inserted in the
calibrated model) is similar to several other works [3,10,18]. However, the analyses carried
out in this study are more complex than similar works, addressing physical and geometric
imperfections, and nonlinear analyses.

As can be seen Figures 12–14, castellated columns have a lower resistance capacity
subjected to axial loads compared to solid web profiles. Around the web openings, stress
concentrations (see Figures 15–17) that cause additional deformations around the openings
were identified, such as shear deformations, which result in a lower load capacity around
the axis of greater inertia. Some researchers have found similar results for the critical
buckling load [12,13,15,17].
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Moreover, it was found for smaller columns that the higher the expansion factor (k),
the lower the column load capacity. As the thickness increases, the difference between the
curves decreases, which suggests that the influence of openings also decreases results. Such
findings can be explained by the greater influence of shear strains on less slender columns,
which was also observed by some authors [17,44].

Furthermore, the curves obtained through numerical models were compared with
the curve presented by NBR 8800 [23] (Figure 18). The third-order polynomial regression
models provide the best settings in all cases, showing an adequate quality of the adjustments
obtained, since the coefficients of determination (R2) are up to 98.04%. Its applicability
to castellated columns was verified for most lengths. Since larger openings induce more
local failures around the opening, cases with such opening geometries tend to provide the
least conservative buckling resistance, as these local instabilities are not considered by this
coefficient. The design buckling strengths of castellated members tend to be overestimated
for reduced slenderness less than 0.75. For values greater than 0.75, it is noted that the
reduction factor (χ) in castellated elements is higher than the value recommended by the
norm, making the dimensioning safer, since the resistance adopted in the dimensioning
would be lower than the actual resistance of the element. These conclusions are similar to
those of other authors [10,17,19]. It is worth mentioning that all safety coefficients were
considered.

The results in this study indicate that castellated columns can be designed using the
curve proposed by the Brazilian standard. Furthermore, by calculating all cross-section
properties in the web opening center, the reduction factors are statically equivalent to
the Brazilian standard ABNT NBR 8800 [23] for full web shapes. Some numerical models
presented χ > 1. Due to the openings, the steel area can decrease considerably, not being able
to withstand compression stress. In addition, Figure 18 showed results with a noticeably
greater dispersion (i.e., values close to χ = 1). Such models were columns with lower
slenderness ratios, which suggests that buckling collapse is not prevalent in these models.
Therefore, the collapse of such elements occurs by crushing of the cross-section due to the
considerable decrease in the steel area. Thus, the values estimated by the formulations
presented (Tables 2 and 4) to estimate χ should be limited to 1.

5. Conclusions

This study contributes to the development of design methodologies for castellated
elements. More than 800 numerical models were evaluated, where two analyses were
performed (one linear and one nonlinear, geometric and physical), resulting in more than
1600 analyses. As the number of raised profiles and models is relatively limited, the results
of these simulations must be considered as preliminary results. In the meantime, the
information obtained contributes significantly to future studies on castellated columns. In
this research, the following partial conclusions can be found:

• Castellated pillars have decreased load capacity compared to solid core elements.
• Openings have a greater influence on the load capacity of less slender columns due to

shear deformations. As slenderness increases, the carrying capacity of castellated and
full-core pillars approaches.

• Columns with a higher expansion factor have a lower load capacity.
• There was no significant difference between the different opening patterns.
• From a statistical analysis, it is concluded that the expressions to estimate the reduction

factor developed in this study present lower values, but equivalent to those proposed
by the Brazilian standard ABNT NBR 8800 [23]. This shows the possibility of using
the curve proposed by the Brazilian standard in the design of castellated columns.

• Finally, the load capacity of the castellated pillars included in this study can be esti-
mated.
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