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Abstract: Noncompliance with safety rules is a major cause of unsatisfactory performance in con-
struction safety worldwide. Although some research efforts have focused on using computer vision
(CV) methods for safety rule inspection, these methods are still in their early stages and cannot be
effectively applied on construction job sites. Therefore, it is necessary to present a feasible prototype
and conduct a detailed analysis of safety rules to ensure compliance at the job site. This study
aims to extend the validation of safety rule analysis through four case scenarios. The proposed
structured classification of safety rules includes categorizing them based on project phases and work
stages. The construction phase-related rules are divided into four groups: (1) before work, (2) with
intervals, (3) during work, and (4) after work. To validate the proposed framework, this research
developed prototypes for each group’s scenarios using deep learning algorithms, a storage database
to record compliance with safety rules, and an Android application for edge computing, which is
required in the “before work” and “after work” groups. The findings of this study could contribute
to the development of a compact CV-based safety monitoring system to enhance the current safety
management process in the construction industry.

Keywords: construction safety rule; vision intelligence-based monitoring; work-stage-based safety
monitoring; deep learning

1. Introduction

The construction industry takes up approximately 7% of the global workforce; how-
ever, it accounts for approximately 30–40% of the total fatalities occurring worldwide [1].
Despite the significant growth in globalization and the development of cutting-edge tech-
nologies, construction sites remain hazardous worksites, with many accidents and fatalities
still plaguing this industry [2]. On average, approximately one fatality is reported every
nine minutes in the construction industry [3]. According to the estimate calculated by the
Centre for Construction Research and Training, a 75% probability of an accident leading to
disability of a construction worker is expected within their 45-year career [4]. Aside from
the humanitarian implications, these incidents result in significant financial losses that
could be avoided with special safety precautions [5]. The annual cost of these enormous
accidents exceeds USD 48 billion in the United States [6]. Moreover, these injuries and fatal-
ities could result in more excellent experience modification rates, resulting in lower profit
margins and increasing operating costs [7]. Correspondingly, such costs have jeopardized
the endurance, sustainability, and competitiveness of construction businesses. Based on
these statistics, occupational safety and health (OSH) in the construction industry remains
a critical concern that must be urgently addressed.

Numerous safety management techniques have been proposed to overcome these
adverse outcomes. For instance, safety policy procedures have been globally founded
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to improve the construction safety management (CSM) process [8], aiming to foster the
adoption of best construction safety practices at job sites. These guidelines could minimize
the alarming statistics by fostering the best construction safety practices at job sites. Fail-
ure to comply with safety rules or ignoring best practices can substantially increase the
probability of workplace accidents. Conversely, the likelihood of accidents reduces when
best industrial practices and safety rules are appropriately implemented and managed.
Adherence to safety rules and the implementation of industry best practices significantly
reduce the likelihood of workplace accidents [9]. However, acquiring a broad range of
safety information, identifying relevant rules in a safety database, and manually enforcing
them is time-consuming [5].

Moreover, traditional safety management approaches may face challenges in address-
ing the dynamic and intricate nature of construction sites. Construction projects progress
through various stages and work phases, each demanding specific safety considerations.
Conventional safety monitoring methods often struggle to keep pace with the constantly
changing work environment, leading to potential safety gaps and increased accident risks.
As a result, the need for an intelligent and adaptive safety monitoring system becomes evident.

To address these challenges and further enhance construction safety practices, recent
advancements in computer vision (CV) technology have captured significant attention.
Furthermore, CV has also gotten substantial attention due to its advanced developments in
specific aspects, such as enhancements in high-definition cameras, access to high-speed
Internet, and advancements in augmented storage. Consequently, CV-based systems are
ubiquitous for monitoring project progress [10], productivity analysis [11], and safety
monitoring [12]. Nevertheless, while CV technology has demonstrated promising results
in project monitoring, its potential for safety rule monitoring, especially in life-threatening
circumstances, has not yet been fully realized. Safety protocols at construction job sites
involve specific considerations for different work stages and phases, making it crucial
to develop a comprehensive framework that allows CV to be harnessed effectively for
work-stage-based rule compliance monitoring. This paper aims to bridge this gap and
proposes a pioneering framework for work-stage-based safety rule compliance using
CV technology. By categorizing and extracting relevant safety rules from Occupational
Safety and Health Administration (OSHA) guidelines, tailored to different construction
stages and work phases, our framework offers a systematic approach to automated safety
monitoring. Through real-life scenarios and prototypes, we validate the efficacy of our
framework in improving construction safety practices and minimizing workplace accidents.
By amalgamating the power of CV with construction safety management, this research
strives to establish a proactive and efficient safety monitoring system that fosters a safer
working environment for construction workers and stakeholders alike.

The remainder of this paper is structured as follows. Section 2 gives a comprehen-
sive review of existing safety management techniques in the construction industry. It
further explores the significance of safety management and its global impact on improv-
ing construction safety management (CSM) processes. Section 3 provides the theoretical
foundation and methodology behind the proposed work-stage-based safety rule compli-
ance framework leveraging computer vision (CV) technology. It describes how to identify
and organize pertinent safety regulations from OSHA regulations that are appropriate
for various work stages and construction phases. Section 4 is about dataset generation.
Sections 5–8 discuss the design and implementation of the CV-based safety monitoring
system for each construction stage and present real-life scenarios to validate the frame-
work’s efficacy. Section 9 presents a discussion of the major findings of this research work.
Finally, Section 10 concludes the paper by summarizing the contributions, highlighting
practical implications, and outlining potential future research directions to further enhance
construction safety using CV technology.
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2. Recent Advancements in Construction Safety Monitoring
2.1. Current Safety Monitoring in Construction

Construction safety is becoming increasingly important as more emphasis is placed
on developing extra infrastructure, such as complex buildings and large projects [13].
Consequently, its unique nature poses difficulties in terms of safety monitoring and oc-
cupational health. Because of its inefficiency in dealings with these risky environments,
the construction sector does not have an outstanding global reputation. Driven by this
over the last decade, scientists have concentrated on improving safety management by
utilizing emerging technologies. Many scholars worldwide have developed different safety
planning techniques, such as extracting domain-specific safety guidelines and rules from
the safety database and combining these with building information modeling (BIM) [9,14].
Accordingly, numerous researchers have used BIM for risk recognition in the 3D environ-
ment during different construction stages. However, this approach still requires manual
inputs from the field [15]. The current conventional method for addressing safety con-
cerns is the traditional top-to-bottom control strategy, which is commonly employed for
safety monitoring during the construction execution stage at job sites. In this study, the
top-to-bottom approach is defined as a safety monitoring process in which safety methods
are enforced exclusively from top-level managers downward. Conversely, the bottom-up
approach is defined as safety management in which the bottom managers also participate
and report the information from the bottom to the top. The traditional top-to-bottom job
site observation during construction relies on the physical presence of a safety manager
to identify hazards or violations of safety rules [16,17]. Observation of the construction
job site is generally performed on a weekly or biweekly basis, depending on the size and
complexity, with random visits lasting for 1 to 3 h [18]. The staff visually investigates the
equipment, tools, and work area [19] to report the hazards to be eliminated. The success
of these observations for safety rule compliance is determined by the expertise and com-
petence of the concerned person [20]. Existing safety observation methods are manual,
costly, and time-consuming [21]. Researchers have recently sought to develop advanced
approaches such as CV and Internet of Things (IoT)-based automated security management
as a solution to these challenges, reducing the challenges associated with manual safety
inspection. [8,22–24].

2.2. Technology Advancements in Construction Safety

Technology has been playing an increasingly pivotal role in enhancing job site safety
with construction task automation [25,26]. Development and technological advancements
have inspired each area of the construction sector, including safety management. Informa-
tion and communication technologies (ICT) have been widely used in CSM over the past
decade [27]. Skibniewski reviewed the use of ICT for CSM over the past decade [28]. One
particular area where technology has shown promise is in the application of visualization
technology for construction safety training. By harnessing the power of visualization tools,
construction professionals can gain a better understanding of potential risks and take proac-
tive measures to mitigate them [7], These tools facilitate the education of workers regarding
safety protocols, assist in safety monitoring [29,30], and aid in job hazard analysis [31].

Moreover, the IoT has attracted significant interest due to its potential deployment
and applications in CSM [32]. The IoT allows for the deployment of sensors and connected
devices on construction sites, generating real-time data on environmental conditions,
equipment performance, and worker behavior. This data can be analyzed to detect safety
issues in a proactive manner, enhance real-time hazard identification, and optimize safety
protocols [33–35].

Similarly, CV technologies have witnessed rapid advancement and have found in-
creasing applications in CSM. The abundance of digital image data from real construction
sites has paved the way for more accurate and efficient CV-based object detection meth-
ods. These technologies can analyze images and video footage to identify potential safety
hazards, monitor worker behavior, and ensure compliance with safety protocols [36]. Addi-
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tionally, CV technology can automate the process of job hazard analysis by automatically
detecting and categorizing potential hazards based on visual data [12]. The following
section further elaborates on the recent advancements and roles of CV-based technologies
in CSM.

2.3. Roles of CV-Based Technologies in Construction

This section summarizes previous studies on the detection and real-world localization
of construction entities in digital images extracted from construction sites. The pros and
cons of the various approaches are also explored. CV is a field of science that deals
with how computers understand high-level information from frames of images [5,16,23].
Advancements in machine learning have enabled computers to better interpret visual
data, leading to significant progress in CV [37]. However, traditional machine learning
algorithms still face limitations in analyzing raw data, necessitating the development of
feature descriptions using expert knowledge and engineering experience [38].

Convolutional neural network (CNN)-based models have proven successful and
effective in extracting object information, as demonstrated by their application to Microsoft
Common Objects in Context and PASCAL Visual Object Classes (VOC) 2007 datasets [37].
By integrating deep learning methods with collected images and employing CV, it becomes
possible to automatically acquire and utilize data for training that may include features not
originally designed by human engineers.

In contrast to artificial neural networks, deep learning models consist of multiple
processing layers based on neural networks that learn from data at various levels of
abstraction [38]. CNN is the most widely used deep learning approach, comprising three
types of neural layers: (a) convolutional, (b) pooling, and (c) fully connected. CNN-based
deep learning algorithms have found extensive applications in various CV tasks, such as
classification, object recognition, object segmentation, and posture analysis. This research
study summarizes previous efforts made to adopt deep learning-related technologies as
they provide the foundation for CV applications in construction, particularly in recognizing
unsafe behavior.

2.4. Image Classification

Image classification is utilized to recognize objects in images by labeling them and
determining the probability for a specific visual object class (VOC). In the construction
domain, CV commonly employs a combination of hand-crafted features and deep learning
algorithms [12]. Various descriptors, such as histogram of optical flow (HOF), scale-
invariant feature transform (SIFT), and histogram of oriented gradients (HOG), are popular
choices for extracting features from images of construction job sites [39]. However, the
dynamic nature of construction sites can impact feature extraction and reduce object
detection accuracies due to factors like intra-class variation, complex backgrounds, and
changes in viewpoint and scale.

In terms of performance, AlexNet CNN outperformed the scale-invariant feature
transform technique with an accuracy of 26.2% and achieved a top-five error rate of
15.3% [37]. As a result, CNN has gained recognition as a prominent classification model
in CV, especially with improved detection accuracy obtained through additional training
sets from ImageNet. Simonyan and Zisserman [40] introduced the Visual Geometry Group
(VGG-16) model, comprising 16 convolutional layers, multiple max-pooling layers, and
three fully connected layers. Their model achieved a top-five error rate of 7.3%.

2.4.1. Object Detection

Object detection is a significant part of CV because it identifies the semantic properties
of an object and its positions in images. In the field of computer science, Krizhevsky et al.
set the foundation for the creation of CNN-based object detection [41]. Object detection
is divided into [37] (1) the generation of a set of candidate regions that contain objects,
such as with selective search, Deep Mask, RPN, and Edge Boxes, and (2) the use of a CNN
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to classify obtained regions into different foregrounds or backgrounds. You only look
once (YOLO) version 1–8 [42] and single-shot multi-box detector (SSD) are object detection
algorithms that are renowned for their speed of detection at the expense of accuracy [37].
Recent studies on CV-based construction site monitoring have concentrated on limited
inspection approaches that use CV to recognize basic objects (if the absence or existence
of that object generates hazards). Significant efforts were put to detect PPEs for safety
rules compliance at construction sites. For instance, three models based on the YOLO
architecture were presented by Nath et al. [43] to detect helmets and safety harnesses.
Fang et al. [44] proposed extended Faster R-CNN techniques to recognize non-hardhat
users in surveillance videos. Shanti et al. [45] proposed a YOLOv4-based technique to
detect safety harnesses, lifelines, and helmets. Similarly, refs. [23,24,46–49] also applied
computer vision techniques for PPEs and person detection to comply with OSHA/KOSHA
general safety rules.

Various researchers also proposed computer vision-based monitoring systems to de-
tect excavation activities for safety rules compliance at construction sites. For example,
Alateeq et al. trained YOLOv5 to detect the PPEs and heavy equipment for monitoring ex-
cavation activity at construction sites [50] Similarly, Arabi et al. [51] proposed a MobileNet-
based monitoring system for construction vehicle monitoring. Wang et al. [52] proposed an
R-CNN-based technique to predict the hazards among construction workers and equip-
ment. For worker behavior analysis, Anjum et al. proposed an SSD-based technique to
detect workers, PPE, and A-type ladders and estimate the worker’s height while working
at a ladder for compliance with the Korea Occupational Safety and Health Administra-
tion (KOSHA) rules, which alert the manager if the workers height is greater than safe
height [53]. Instead of falling from a height, researchers also worked on other accidents,
such as struck-by and electrocution accidents. Shin et al. [54] trained the YOLOv3 model
to detect workers and trucks and calculated the collision proximity to avoid struck-by
accidents. Li et al. [55] detected person, PPEs, and electric work equipment, and calculated
the safe distance between person/worker and electric equipment.

2.4.2. Object Segmentation

Segmentation is a popular technique used to localize the objects and boundaries of
objects. Semantic segmentation is used to detect objects and line curves in images and
categorize each pixel into a fixed set of categories without distinguishing between object
instances [56]. On the other hand, instance segmentation takes the task a step further
by not only detecting objects but also differentiating between individual instances of the
same object class [57]. The development of CNN models, which can make pixel-level
predictions with a pre-trained network on large-scale datasets, has simplified the task of
semantic segmentation. In contrast to image classification and object recognition, semantic
segmentation necessitates 2D spatially distributed output masks. Fang et al. used the
Mask R-CNN-based approach for detection and mask generation in humans and beams
to identify unsafe actions of a person traversing the structural member [23]. Khan et al.
developed a correlation-based unsafe behavior detection system pertaining to the mobile
scaffold using segmentation through Mask R-CNN [12]. Xiao et al. employed the instance
segmentation technique by training Mask R-CNN and tracking the workers at the job
site by Kalman filter [58]. Kang et al. proposed a one-stage detector with ResNet-101 as
the backbone, a feature pyramid network as the neck, and ProtoNet to predict the five
prototype masks to improve the monitoring of outdoor work at construction sites under
different weather conditions [59].

Bang et al. [60] proposed an instance segmentation-based proactive proximity-monitoring
method using predictions from UAV-acquired video frames to prevent struck-by accidents
at construction sites. The method achieves accurate object recognition, predicts future object
locations, and generates proactive safety information. Evaluation results demonstrate high
precision in object recognition, effective future frame prediction, and reliable proximity
estimation. Wang et al. [61] proposed a Mask R-CNN-based technique for rebar image
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detection in construction quality inspection. A mask annotation methodology based on
BIM and rendering software was proposed to create synthetic datasets, enhancing model
performance. Mathur et al. [62] used computer vision and deep learning to detect and seg-
ment safety gear and employees in workplace images. The ResNet-101 Mask R-CNN model
outperforms ResNet-50, achieving high accuracy in class segmentation. Chen et al. [63]
presented a hybrid visual information analysis framework for improving construction site
safety management. It combined instance segmentation and pose estimation models to ex-
tract on-site entities’ information. Using geometric relationship and time series analysis, it
successfully identifies hazards, particularly achieving high precision and recall in detecting
handrail-related compliance.

2.4.3. Pose Estimation

Human pose estimation aims to infer the location of human joints from photos (e.g.,
sequences and depth) or skeletal data provided by motion capture technology. Many factors
must be considered during pose estimation, such as illumination, viewpoint, and the current
contextual backdrop, which may contain noise; thus, the task is arduous [37]. Soltani et al.
proposed a framework to enhance productivity and safety using a pose estimation and
location data fusion system for excavators using stereo vision in the construction job
site [64]. Similarly, Liu et al. [21] examined a computationally effective tracking approach
from a 3D human skeleton extracted from stereo videos to observe the situation awareness
of individuals to prevent accidents in construction. Assadzadeh et al. used YOLOv5 to
detect the excavator and HRNet to perform a 2D pose estimation within the predicted
bounding box [65]. Wen et al. utilized a modified Keypoint R-CNN algorithm to extract the
2D pose of an excavator from video frames [66]. They then converted the 2D pose to a 3D
pose using kinematics constraints. The 3D pose was reprojected back to a 2D pose using a
known camera matrix, and the reprojection error was calculated as the difference between
the reprojected 2D pose and the estimated 2D pose. This methodology allowed for accurate
excavator pose analysis and has implications for excavator monitoring and control.

Tian et al. [67] proposed a framework based on real-time 3D pose estimation to design dy-
namic hazardous proximity zones for excavators. The study introduced excavator-specific 3D
pose estimation algorithms trained on diverse datasets and utilized post-processing and co-
ordinate transformation to calculate real-time motion statuses and predict trajectories. This
research contributed to improving excavator–worker collision prevention and advancing
dynamic and specific safety management in construction sites. Zhao et al. [68] introduced
computer vision and deep learning technologies to propose the YOLOv5-FastPose model
for accurate pose estimation of construction machines. Their model combined YOLOv5m
for improved object detection and integrated the FastPose network into the single-machine
pose estimation module (SMPE) of AlphaPose. Moreover, their research contributed to
enhancing pose estimation performance and adapting human pose estimation models for
construction machines.

2.5. CV Techniques and Construction Safety Rules

Following the methodology adopted by Seo et al. [18], and considering the nature
of perceptual information, CV-based techniques can be categorized as (a) scene-based,
(b) location-based, and (c) action-based risk identification. Scene-based risk identification
evaluates risks in a static scene; the required information includes the status of unsafe
objects in the scene, the absence of safety equipment, and workers outside the danger
zone. Table 1 shows the categorization of risk detection approaches using CV technologies.
The three derived approaches from previous efforts are listed with examples, such as a
safety vest or helmet for object detection [23], a limited access zone for object tracking [52],
and awkward posture recognition [21]. However, the categorical synchronization of the
scene-based, location-based, and action-based risk identification with respect to image
data-capturing devices has not been presented. As discussed earlier, cognitive and percep-
tual capabilities play a critical role in risk identification, including unsafe conditions and
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acts [69]. For instance, the person who observes risks first needs to understand the scene
based on their perceptual capabilities, such as scene recognition or object identification.
Subsequently, the observed perceptual information is evaluated with rules and guidelines
set by best practices or past experiences to detect unsafe acts and conditions. However,
CV techniques that aim to accomplish visual tasks are constrained to extract perceptual
information because they lack the evaluation abilities required for the classification of
unsafe acts [18]. Hence, CV-based techniques for construction safety monitoring need
to consider perceptual information; however, expert knowledge (e.g., safety rules) and
perceptual information can enrich the risk recognition process.

Table 1. Categorization of risk detection approaches for CV techniques.

Risk Detection
Approaches Description of Potential CV Techniques Examples

Scene-based Identify unsafe acts in static scenes at job sites using
object detection Safety vest, helmet, shoes, etc. [23,43].

Location-based Detection of unsafe conditions based on movements and
locations of entities through object tracking

Congested areas, hazardous materials, and
zones of limited access [52,70]

Action-based Identify violations of safety and health rules related to
motions using action recognition.

Improper working at an unsafe speed or
shortcuts, improper movements of heavy
machines, and awkward postures during
task completion [21,71].

2.6. Literature Review Inference

The research on specific safety rule compliance has been limited. CV-based techniques
for risk identification need to consider perceptual information, and expert knowledge
comparison with perceptual information is required to evaluate and determine the risk.
In this domain, there have been enormous improvements in the interpretation of natural
language to make it machines friendly, such as binary language [72]. However, owing to
inherent complexities in safety rules, determining and implementing appropriate content is
still challenging [73]. Therefore, a comprehensive classification of safety rules is mandatory
to develop compact CV-based safety management systems [5].

Previous studies provide evidence of the scene-, location-, and action-based risk identi-
fication approaches; however, in-depth research is required to understand the relationships
between CV-based risk detection with image data capturing devices. Additionally, manag-
ing the tremendous number of risks in a huge construction site needs image logistic devices
with multiple modes. The cited challenges necessitate an organized classification of safety
rules, which could be a base for CV-based safety monitoring systems in construction.

3. Classification of Safety Regulations for CV Systems
3.1. Grounded Theory Methodology

In order to elucidate CV-based safety monitoring in construction, this research im-
plements an inductive approach for OSHA construction regulations analysis. This study
follows the procedures in [74] a five-step process designed from ground theory methodol-
ogy analysis to analyze previous findings. The process involves five steps: research domain
definition, selection of source, screening, criteria, and outcomes. Based on the previous
facts, ground theory methodology explores people’s experiences and establishes a theory
of how that process works. The theory is derived solely from the obtained data rather than
from other sources (e.g., textbooks or opinions of researchers).

Consequently, construction safety rules were used in a five-step process to produce
a theory for an efficient CV-based strategy to improve construction safety monitoring:
(1) analysis scope, (2) selecting sources of safety rule investigation, (3) screening, (4) cri-
terion, and (5) coding structure of construction safety rules. The details of this five-step
categoric process can be seen in [75]. A definitive sample of 3538 regulations has been
rigorously examined to determine the applicability of safety rules pertaining to each project



Buildings 2023, 13, 2093 8 of 36

phase. Group 1, which focuses on ‘safety rules essential to the procurement process,’
includes regulations that specify safety requirements for tools and materials. Group 2,
‘safety rules involved in the preconstruction phase’, consists of regulations that pertain to
design requirements. Group 3, ‘safety rules related to the building phase’, encompasses
regulations that must be implemented during the construction phase. The safety standards
involved in the construction phase were chosen for additional examination as the scope of
the study determined that the development of CV-based systems pertained to construction
safety monitoring.

3.2. Work-Stage-Based Safety Rules Classification

This structured classification prompts tactical considerations for implementing CV
technologies to help the transition of conventional construction safety to the digital era.
Table 2 illustrates the classification of safety rules based on the project phases. Group 1,
named ‘procurement’, encompasses safety rules related to product specifications. Based
on the analysis of 3538 safety standards, 11.10 percent were found to be associated with
the procurement phase. The safety rules grouped under Group 2 are associated with job
site construction and account for 52.65 percent. Group 3 contains safety regulations that
are involved in the design stage and account for 0.31 percent. This lower percentage in
the preconstruction stage could be attributed to the long-held perception that the contrac-
tor is solely responsible for safety [9,14,76]. Moreover, 15.34 percent of the safety rules
were linked to Group 4: general and management. Examples of these rules include the
cancellation of permits (1926.1205(e)(3)), providing authorized entrants (1926.1204(e)(4)),
medical attendance, examination, and regulations (1926.803(b)). Similarly, 30.12 percent of
the rules were related to terminologies/definitions, such as ‘operation and maintenance’ in
‘1926.305(d)(1)’, ‘hand-fed ripsaws’ in ‘1926.304(i)’, ‘communications’ in ‘1926.800(f)’, and
‘landing and placing loads’ in ‘1926.757(e)’.

Table 2. Safety rule classification pertaining to the project phase.

Construction
Safety Rules Group Types Quantity of Rules Shares

OSHA-1926

1 Procurement 302 8.53%
2 Construction 1863 52.65%
3 Preconstruction 11 0.31%
4 General and Management 543 15.34%
5 Terminologies and definitions 819 23.14%

Total construction safety rules as raw data 3535 100%

The safety standards pertaining to the execution phase of construction were specified
for further assessment since the focus of this study is limited to the development of
computer vision (CV)-based systems for construction safety monitoring. The classification
of safety standards into four groups based on work stages was identified through open
codes, axial codes, and selective codes: (1) before work, (2) with intervals, (3) during work,
and (4) after work. These groups were characterized as follows: ‘before work’ refers to
a set of rules that should be checked before work begins, ‘with interval’ refers to a set
that must be checked on a regular basis, ‘during work’ refers to a set of rules that must be
followed at all times, and ‘after work’ refers to rules that need to be monitored after the
work is done. The additional consideration for dividing the rules into these groups was that
temporary facilities (e.g., mobile scaffolds, scaffold systems, and ladders) were categorized
under temporary work, while permanent structures such as concrete or steelwork were
considered permanent work. The details of the condition criteria and the relationship of the
conditions for work-stage-based safety monitoring can be found in the previous article [75].

Table 3 describes the technology implementation and work-stage-based classification
to improve compatibility with digital data-capturing devices. Following are the four classes
for work-stage-based classification using selective code relationships: (1) a share of 32.95%
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was observed in the ‘before work’ class, (2) the ‘during work’ class acquired 41.59 percent
of the share, (3) the ‘with interval’ class annexed 8.05%, and (4) the ‘after work’ gained
13.09%. However, management-related classes were observed as 4.2% of the rules.

Table 3. Analysis of Group 3.

Category Work-Stage-Based Classification Share

Implementation of CV
technology for

work-stage-based safety
monitoring

Before work 32.95%
During work 41.59%
With interval 8.05%
After work 13.09%

Management related 4.2%

Total OSHA safety rules 100%

The proposed image data-capturing model for work-stage-based safety rule catego-
rization assists the decision-makers in the safety-planning phase. In this study, image
data-capturing devices included fixed devices, tools that could be moved with human
effort, and machine-based portable devices. An action camera, a mobile camera, and a
drone could be used to identify the safety requirements categorized under the ‘before work’
category. Action cameras, robot dogs, and drones can all identify rules in the ‘with interval’
category. Moreover, the ‘during work’ group could be determined using closed-circuit
televisions and 360◦ cameras. Similarly, the “after work” category necessitates the use of a
mobile camera and an action camera.

4. Dataset Description

A total of four datasets, named scaffold checking dataset, construction waste dataset,
mobile scaffolding dataset, and rebar dataset, were generated and utilized to train and
validate the CV-based systems for safety compliance checking before work, during work,
with intervals, and after work, respectively. Image augmentation techniques, including
rotation, crop, shear, hue, saturation, brightness, exposure, and blur, were applied to the
training set of Dataset A, Dataset B, and Dataset D to prevent overfitting and the dataset
was pre-processed and labeled using the Roboflow platform. However, Dataset C was used
from the previous research [12], and the augmentation techniques used for that dataset are
mentioned in Section 4.3. The details of these datasets are as follows:

4.1. Dataset A

A diverse image dataset of 4567 raw images showcasing various scaffolding scenes was
created for training a computer vision-based detection model. The images were obtained
from three sources: Google, YouTube, and recorded videos from a scaffolding training
institute. A total of 962 images were selected for the experiment, and 4060 annotations
were labeled across four classes: missing planks, guardrail missing, person, and wrong
installation. The dataset was split into a 70:15:15 ratio for training, validation, and test-
ing, respectively. After the stated augmentation process, the resulting training set had
2016 images. See Figure 1 for detailed information on class instances.
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4.2. Dataset B

A diverse collection of 1003 images and videos from construction sites and various
Internet sources was gathered to train deep learning algorithms for object detection in
construction waste scenarios. The dataset included categories like brick waste, concrete
waste, steel waste, timber waste, and mixed waste, totaling 549 images after filtering
for quality. The images were divided into training (70%), validation (15%), and testing
(15%) sets. The dataset was labeled with five specified labels. This approach addresses
the limitations of existing image datasets in the computer vision community and aims to
improve object detection in construction waste scenarios. Figure 2 shows the construction
waste dataset.
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4.3. Dataset C

A large amount of labeled digital data is required to train a deep learning-based
classifier. Therefore, the dataset used in the previous study was employed to validate
this group of studies [12]. A total of 938 images were used as the starting point for
the experimentation. These 938 images in the database were divided into training and
validation sets in a 75:25 ratio, with 75% of the images used to train the model and validate
the model during training and 25% used to test the model’s precision and accuracy. During
each training iteration, data augmentation techniques were applied using five strategies
to optimize the performance of the trained network and prevent overfitting. The training
images obtained with the VGG annotator were augmented with Gaussian blur, affine
transformations, and contrast normalization to reduce the storage space required for the
training set. Three classes were defined to recognize unsafe behavior: (1) ‘scaffold’ for
mobile scaffolding without outriggers, (2) ‘safescaffold’ for mobile scaffolding equipped
with outriggers, and (3) ‘person’ for a worker.

4.4. Dataset D

The authors addressed the lack of a construction steel rebar dataset by creating one
based on OSHA safety rules. They used various keywords to collect 849 raw images from
Google and YouTube, resulting in a final dataset of 683 images. The dataset was split into
training, validation, and testing sets in a 70:15:15 ratio and labeled with two classes: steel
with cap and steel without cap using the Roboflow platform. A total of 11,636 annotations
were labeled, averaging 17 per image. After augmentation, the training dataset increased
to 1440 images, while validation and testing datasets remained the same. Figure 3 shows
the health check visualization of the dataset.
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5. CV-Based System for Safety Compliance Checking before Work

This section presents the motivation for selecting particular examples to validate the
proposed concept of a CV-based system for implementing safety rules during each work
stage. The object detection and classification model’s design, architecture, and deployment
for every four cases are provided. The trained model evaluated on test images with predic-
tion, using the CNN and integrated into the Android Studio to make a smartphone-based
Android application, was required for work-stage-based safety rules monitoring.

5.1. Motivation for Selecting Scaffolds Checking for Visible Defects as an Example

In 2018, the Department of Labor in the US recorded 5250 worker deaths, with falls
from heights being the main cause of death. [77]. According to OSHA, over 65 percent
of workers work on scaffold systems on a regular basis [78]. Despite many efforts to
implement scaffold safety in job sites, scaffolding safety standards remain the third most
violated legislation [79]. According to research, scaffolding-related falls are a substantial
potential concern on the job site, accounting for a significant number of accidents each
year [80]. Therefore, preventing these accidents could significantly reduce the number of
fatalities resulting from falls from heights. To prevent accidents and ensure the quality of
the scaffold system, the best practices for checking visible defects in scaffolds are mentioned
in the OSHA regulations, as follows:

1926.451(f)(3) Scaffolds and scaffold components shall be inspected for visible defects
by competent personnel before each work shift and after any occurrence that could influence
the structural integrity of the scaffold.
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5.2. Scaffold Monitoring in Construction

Typically, the construction sector has been using safety refresher courses to educate
workers on how to safely manage scaffolds [81]. OSHA provides thorough requirements
and recommendations for designing, dismantling, and inspecting scaffolds [19]. Many
researchers have devoted their interest to developing innovative methodologies for im-
proving scaffold system monitoring on job sites. For instance, Sakhakarmi et al. proposed a
machine learning (ML) system that uses strain data from columns of scaffolding to predict
safety conditions [82]. To recreate and recognize scaffolds from point cloud data, a three-
dimensional feature descriptor was developed to define linear straight-shaped objects [83].
Similarly, Jung et al. used image-processing techniques to create a failure detection method
for small-scale scaffolds [84]. While many researchers have explored the structural failure
of temporary facilities using IoT technologies, there is still a lack of monitoring for safety
rule violations that involve the detection of visible defects in temporary structures before
work commences. Thus, this study selected the mentioned case to validate the proposed
concept of ensuring safety rules compliance before the start of work.

5.3. System Development
5.3.1. Model Development

YOLO revolutionized real-time object detection by proposing a single-shot approach,
offering both speed and accuracy in detecting objects in images and videos [85]. Its
subsequent versions, YOLOv2 [86], YOLOv3 [87], and YOLOv4 [88], further improved
performance and extended the model’s capabilities. Notably, YOLOv5 has achieved real-
time object detection at 30 FPS with superior accuracy [89]. This single-shot approach
enables faster inference on computationally constrained devices, making it suitable for
various real-world applications. With its excellent performance, YOLO v5 continues to
push the boundaries of object detection techniques, further advancing the field of computer
vision. In this case study, the YOLO v5 (You Only Look Once version 5) architecture is
utilized for training the detection model to detect the defects in the scaffold system.

5.3.2. Workflow Design and Model Deployment

Following the dataset preparation process stated in Section 4, this section presents the
training of a visible defect detection model using YOLOv5. The model was exported to
TensorFlow Lite (TFLite) to detect the mentioned classes. Figure 4 illustrates the design
flow for checking safety rules before work commencement. The developed system relied on
various open-source frameworks and was built in a cloud-based environment, specifically
Google Collaboratory (Colab), and Android Studio. The Colab platform allowed for
designing, executing, and validating the system on the same cloud platform. All necessary
dependencies and libraries, including the PyTorch and TensorFlow libraries, were cloned
and installed in Colab. YOLOv5 required the image data in the yolo (.txt) format, along
with a label map consisting of numbers mapped to labels. The training dataset, generated
in Roboflow, was exported to Colab. For better training, the training epochs were set to 300,
the batch size remained at the default value of 32, and the default dynamic learning was set.
After the training of each epoch, the model was validated using the validation set. Multiple
models were generated during training, and the best model based on the validation set was
chosen for deployment.

The best model is also evaluated on the test dataset, and Figure 5 showcases some
examples of the model’s inferences. The mAP of 69.1%, precision of 98.8%, and recall
of 60.9% were computed on the validation set. Furthermore, on the testing dataset, the
mAP was found to be 61.1%, precision was 92.4%, and recall was 54.9%. Subsequently,
the downloaded best model is converted into the TFLite format using the TensorFlow Lite
converter, which is recommended by Google. This conversion is achieved through the
Python API provided by TensorFlow Lite, using the command-line tool [90].



Buildings 2023, 13, 2093 14 of 36
Buildings 2023, 13, x FOR PEER REVIEW  14  of  38 
 

 

Figure 4. Flowchart of CV-based scaffolding system checking  for visible defects before  the com-

mencement of work. 

The best model is also evaluated on the test dataset, and Figure 5 showcases some 

examples of the model’s inferences. The mAP of 69.1%, precision of 98.8%, and recall of 

60.9% were computed on the validation set. Furthermore, on the testing dataset, the mAP 

was  found  to be  61.1%, precision was 92.4%, and  recall was 54.9%. Subsequently,  the 

downloaded best model  is converted  into  the TFLite  format using  the TensorFlow Lite 

converter, which  is  recommended by Google. This conversion  is achieved  through  the 

Python API provided by TensorFlow Lite, using the command-line tool [90]. 

Figure 4. Flowchart of CV-based scaffolding system checking for visible defects before the commence-
ment of work.

Buildings 2023, 13, x FOR PEER REVIEW  15  of  38 
 

 

Figure 5. Examples of the best model trained on YOLOv5. 

Rather than focusing on training models, the TFLite framework aims to facilitate the 

deployment of models on embedded devices with limited computational power. To suc-

cessfully deploy the TFLite model on such devices,  the metadata of the trained model  is 

crucial. The TensorFlow Lite metadata includes essential information about the model, such 

as license terms, input details (pre-processing), such as normalization, and output details 

(post-processing), such as label mapping. Normalization is a common data pre-processing 

technique used to scale values to a common range without distorting the variations in the 

original value ranges. In this case, the normalization parameters for the float model were set 

to a mean and standard deviation of 127.5. Once the model is populated with the necessary 

information, it can be exported for integration into an Android application. 

5.3.3. Android Application Implementation 

Following the conversion of the best-fit model to a TFLite model, an integrated de-

velopment environment is utilized to build the visible defect detection system for scaf-

folds on  embedded  edge  computers. The  application  is developed based on  an open-

source framework cloned from the GitHub repository [91], with a TensorFlow back-end. 

Essential modifications have been made  to both  the back-end and  front-end of  the ex-

tracted open-source framework. In the back-end, the system records real-time data on vis-

ible unsafe conditions in the scaffolding system, such as missing guardrails, wrong plank 

installation, and missing planks. This data is stored in a Firebase database. Additionally, 

a user interface for login has been implemented in the front-end to authenticate users. The 

downloaded  trained model with metadata  is  embedded within  the application  frame-

work. To ensure functionality and reliability, the developed application is tested using a 

virtual smartphone (a built-in function of Android Studio) before deploying it to embed-

ded devices. Once the virtual test is successfully conducted, the application is deployed 

Figure 5. Examples of the best model trained on YOLOv5.



Buildings 2023, 13, 2093 15 of 36

Rather than focusing on training models, the TFLite framework aims to facilitate
the deployment of models on embedded devices with limited computational power. To
successfully deploy the TFLite model on such devices, the metadata of the trained model is
crucial. The TensorFlow Lite metadata includes essential information about the model, such
as license terms, input details (pre-processing), such as normalization, and output details
(post-processing), such as label mapping. Normalization is a common data pre-processing
technique used to scale values to a common range without distorting the variations in
the original value ranges. In this case, the normalization parameters for the float model
were set to a mean and standard deviation of 127.5. Once the model is populated with the
necessary information, it can be exported for integration into an Android application.

5.3.3. Android Application Implementation

Following the conversion of the best-fit model to a TFLite model, an integrated devel-
opment environment is utilized to build the visible defect detection system for scaffolds
on embedded edge computers. The application is developed based on an open-source
framework cloned from the GitHub repository [91], with a TensorFlow back-end. Essential
modifications have been made to both the back-end and front-end of the extracted open-
source framework. In the back-end, the system records real-time data on visible unsafe
conditions in the scaffolding system, such as missing guardrails, wrong plank installation,
and missing planks. This data is stored in a Firebase database. Additionally, a user interface
for login has been implemented in the front-end to authenticate users. The downloaded
trained model with metadata is embedded within the application framework. To ensure
functionality and reliability, the developed application is tested using a virtual smartphone
(a built-in function of Android Studio) before deploying it to embedded devices. Once
the virtual test is successfully conducted, the application is deployed on a Xiaomi Redmi
Note 8. Figure 6 showcases examples of results obtained through edge computing and the
user interface.
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5.4. Firebase Database to Record Visible Defects

Following the detection of unsafe conditions such as missing planks, missing guardrails,
and wrong plank installations across the video frames of the smartphone, the next step is
to capture the image frame as evidence to assess safety performance. Each detected class
in the video stream has an ID that can be traced across the frames. To achieve this, if-else
conditions have been added to the back-end programming to record the frame once the
model detects the mentioned classes, excluding the person class. The identified results are
stored in a cloud-based real-time Firebase database. The Firebase real-time database is a
cloud-hosted NoSQL database that enables real-time data synchronization. The Firebase
SDKs for cloud storage integrate Google security to facilitate data uploading and retrieval
in the application. To establish a connection between the Android application and the
Firebase database, a project is created on the Firebase database. Users can sign up through
the application after completing the necessary registration and authentication procedures
provided by Firebase. In the Android Studio, a trial application is developed and executed
on a video containing visible defects such as missing guardrails and missing planks. The
Android application seamlessly communicates with Firebase and records the detected
defects of the corresponding frame as a snapshot. Subsequently, the system uploads the
snapshot to the specified folder in the Firebase cloud storage.

6. CV-Based Safety Rule Monitoring at Intervals
6.1. Motivation for Selecting Construction Waste Monitoring as an Example

Concurrent involvement of various resources is required in construction job sites,
which makes the workplace complex [92]. Debris and trash, such as bricks, wooden chunks,
and cement blocks, are generated as by-products during construction operations. These
materials can restrict movement and create hazardous obstacles, increasing the risk of
slip, trip, and fall incidents [93]. Slips and trips often result in falling accidents, and falls
are considered a common cause of severe injuries in construction sites [93,94]. Slip, trip,
and fall incidents contribute significantly to work-related accidents and injuries, including
falls from heights and musculoskeletal disorders. These incidents occur when individuals
lose balance while walking on workplace surfaces [94,95]. The lower extremities of the
body, such as the foot or ankle, are more susceptible to injuries in slip and trip events.
Construction workers are more likely to experience fractures after trips or slips, including
falls from heights, as well as contusions from falls on the same level and strains or sprains
resulting from trips or slips without falls from heights [94]. Instances where construction
workers quickly regain balance and prevent injuries after a trip or slip are referred to as
near-misses [96].

Slips and trips serve as precursors to collisions or falls, leading to severe injuries,
permanent disabilities, and even fatalities among construction workers in extreme cases [96].
The occurrence of slips and trips is closely related to the level of housekeeping in the workplace.
Proper housekeeping practices, including controlling, cleaning, and appropriately disposing of
waste materials, maintaining clear aisles, and keeping work areas and exits clean, are essential
safety measures that significantly improve construction site safety [73–77]. The construction
industry employs various safety management techniques, including job safety planning,
hazard control at the source and along worker paths, technical and engineering controls
at the worksite, managerial controls, and the use of safety protective equipment [96].
The identification and recognition of near-miss incidents are crucial for promoting safety
management and reducing potential risks.

To control housekeeping, OSHA construction safety regulations recommend the following:
1926.502(j)(6)(ii) ‘Excess mortar, broken or scattered masonry units, and all other

materials and debris shall be kept clear from the work area by removal at regular intervals.’
Safety rule 1926.502(j)(6)(ii) explains the housekeeping of job sites, including the re-

moval of debris, excess mortar, and scattered masonry units at regular intervals to prevent
tripping hazards. However, it is not practical for safety and health representatives to exam-
ine and control the housekeeping status of every work zone. The proposed system offers
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an engineering technology-based approach to control construction waste and minimize or
eliminate hazards by monitoring the workplace environment. This case study focuses on a
CV-based method that monitors the generation of construction waste at specific intervals.
A diverse dataset of construction waste, including masonry work, steelwork, and wooden
work, was collected from videos. The CV-based technique is used to train a waste detection
model, which is then evaluated with a test dataset to assess its ability to detect waste
and identify unsafe conditions at a construction site. The system can raise an alarm by
predicting potential near-misses based on the detection of unsafe conditions caused by
generated waste, allowing safety practitioners to take corrective actions and control the
identified hazards in the workplace.

6.2. System Development
6.2.1. Model Development

Detection using deep learning techniques has gained significant attention among
researchers worldwide due to its wide range of practical applications [37]. To achieve
these applications, GPUs, CPUs, IoT clusters, or embedded computers are required. Model
scaling techniques have been developed to efficiently detect objects with high accuracy and
real-time inference on various devices, aiming to minimize computational requirements.
Recently, a novel deep learning model called scaled YOLOv4 was introduced, which is
suitable for both small and large networks without compromising accuracy and speed [97].
When compared to other prominent object detection algorithms, the scaled YOLOv4 model
has demonstrated superior performance in terms of optimal speed and accuracy, making
it the preferred choice for object detection [98]. To achieve high object detection accuracy,
a YOLOv4-large model designed for cloud GPUs was developed. In the scaled YOLOv4
approach, the authors applied a ‘CSP-ised’ technique to a portion of the network and
‘CSP-ised’ a cross-stage partial network as defined in [97]. They emphasized the impor-
tance of increasing the number and depth of stages in the CNN backbone and neck for
detecting large objects in large images while noting that increasing the width has only a
marginal effect. Therefore, they scaled up the number of stages and input size, adjusting
the depth and width to maintain real-time inference speed. The experiments conducted
with YOLOv4-P6 and YOLOv4-P7 achieved real-time performance at 30 FPS (with a width
scaling factor of 1) and 16 FPS (with a width scaling factor of 1.25), respectively [97]. This
study focuses on using scaled YOLOv4 for detecting construction waste in a video stream
obtained from unmanned vehicles such as drones or robot dogs.

6.2.2. Model Training

Experiments were performed using an open-source framework for scaled YOLOv4,
available on GitHub and Roboflow [98]. The following steps were performed to train the
construction waste detection model based on scaled YOLOv4. The YOLOv4 repository was
cloned to the Colab environment, and all dependencies were loaded, including the Torch
Mish activation function for CUDA. The annotated dataset in the Roboflow platform was
exported in the YOLOv5 PyTorch format. To import the data into the Colab notebook, the
generated curl link was pasted to import the images and annotations in the .txt format.
After importing the data to the Colab notebook, the scaled YOLOv4 architecture was
executed. The basic scaled YOLOv4-CSP was used for training because the Colab notebook
offers a single GPU to train the dataset. The batch size and epochs were set to 16 and 500,
respectively. The model was trained for 200 epochs with a learning rate of 0.001. After
fine-tuning all layers for another 300 epochs, the learning rate dropped by 10. Additionally,
the learning momentum and weight decay were set at 0.0001 and 0.9, respectively.

An example of the image dataset used is shown in Figure 7a, and the corresponding
labels are shown in Figure 7b. In the training process, the algorithm passes the training
data into a data loader for each training batch, which augments the data using a mosaic
data loader. Mosaic data augmentation is a novel technique that combines four images
into four random-ratio tiles. The mosaic data augmentation is visualized with the labels
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in Figure 7c. Mosaic augmentation helps the model learn and address the small object
problem, where tiny objects are not as accurately detected as large objects. It also allows
the model to detect various types of images in different parts of the frame. This enables the
identification of objects that are not in their normal perspective.

Buildings 2023, 13, x FOR PEER REVIEW  19  of  38 
 

(a)  (b)  (c) 

Figure 7. Examples of images in the training dataset: (a) training images, (b) labeled images, and (c) 

augmentations using mosaic data. 

6.3. Model Evaluation and Results 

In this section, three performance indicators were used as evaluation metrics to quan-

titatively measure the performance of the proposed system. In object localization and clas-

sification, three commonly cited metrics, namely precision, recall, and mean average pre-

cision (mAP), were used to assess the performance of the trained model. Precision and 

recall are commonly used metrics  for evaluating classification models. Precision deter-

mines the percentage of relevant cases among those found, while recall calculates the total 

sum with the total of related instances retrieved [23]. The performance indicators consid-

ered for the trained model’s efficiency and reliability are calculated using Equations (1)–

(3) and are indicated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  ሺ𝑇𝑃ሻ

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ሺ𝑇𝑃ሻ   𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ሺ𝐹𝑃ሻ
  (1)

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ሺ𝑇𝑃ሻ

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ሺ𝑇𝑃ሻ   𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑒𝑡𝑖𝑣𝑒 ሺ𝐹𝑁ሻ
  (2)

𝐴𝑃 ൌ
1

11
𝛴ோ𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሺ𝑅𝑒𝑐𝑎𝑙𝑙ሻ  (3)

The general definition of average precision (AP) is the area under the precision–recall 

curve, and mAP is then calculated as the average of AP values across different classes or 

instances, providing an overall measure of performance for a detection model [99]. The 

mAP measures the ability of a model to accurately predict bounding boxes at specific con-

fidence  levels, such as mAP@0.5. The confidence values represent  the  intersection over 

union  (IoU);  the percentage of overlap between a predicted box and  the ground  truth 

bounding box is typically calculated at a threshold of 0.5–1. IoU. In this case, the IoU con-

fidence value is set to 0.5, and the average for 11 points interpolated AP is calculated. The 

performance of the trained scaled YOLOv4 model is measured using TensorBoard, which 

visualizes the TensorFlow graph and plots the quantitative metrics along with additional 

data such as images. Figure 8 displays the precision, recall, and mAP@0.5 of the scaled 

YOLOv4 model trained on the validation set of the construction waste dataset. The x-axis 

of Figure 8a,b represents the training iterations, while the y-axis of Figure 8a represents 

precision and  the y-axis of Figure 8b  represents  recall. During  the experiment,  the ob-

served precision was 73% at approximately 500 iterations, the recall was 86%, and mAP 

was noted as 83%. However, the performance of the model decreased by up to five percent 

Figure 7. Examples of images in the training dataset: (a) training images, (b) labeled images, and
(c) augmentations using mosaic data.

6.3. Model Evaluation and Results

In this section, three performance indicators were used as evaluation metrics to quan-
titatively measure the performance of the proposed system. In object localization and
classification, three commonly cited metrics, namely precision, recall, and mean average
precision (mAP), were used to assess the performance of the trained model. Precision and
recall are commonly used metrics for evaluating classification models. Precision determines
the percentage of relevant cases among those found, while recall calculates the total sum
with the total of related instances retrieved [23]. The performance indicators considered for
the trained model’s efficiency and reliability are calculated using Equations (1)–(3) and are
indicated as follows:

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)
(1)

Recall =
True Positive (TP)

True Positive (TP) + False Negetive (FN)
(2)

AP =
1
11

ΣRecall Precision(Recalli) (3)

The general definition of average precision (AP) is the area under the precision–recall
curve, and mAP is then calculated as the average of AP values across different classes or
instances, providing an overall measure of performance for a detection model [99]. The
mAP measures the ability of a model to accurately predict bounding boxes at specific
confidence levels, such as mAP@0.5. The confidence values represent the intersection over
union (IoU); the percentage of overlap between a predicted box and the ground truth
bounding box is typically calculated at a threshold of 0.5–1. IoU. In this case, the IoU
confidence value is set to 0.5, and the average for 11 points interpolated AP is calculated.
The performance of the trained scaled YOLOv4 model is measured using TensorBoard,
which visualizes the TensorFlow graph and plots the quantitative metrics along with
additional data such as images. Figure 8 displays the precision, recall, and mAP@0.5 of
the scaled YOLOv4 model trained on the validation set of the construction waste dataset.



Buildings 2023, 13, 2093 19 of 36

The x-axis of Figure 8a,b represents the training iterations, while the y-axis of Figure 8a
represents precision and the y-axis of Figure 8b represents recall. During the experiment,
the observed precision was 73% at approximately 500 iterations, the recall was 86%, and
mAP was noted as 83%. However, the performance of the model decreased by up to five
percent for the testing set, for example, the precision was observed at 69%, recall at 83%,
and mAP at 79%. The program automatically tests these indicators against the validation
dataset to select the best model based on performance.
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The developed model was evaluated on the test dataset to generate predictions using
scaled YOLOv4 for five classes: brick, concrete, mixed, steel, and timber wastes. The
best model was selected from the trained models based on its performance against the
validation dataset. The chosen model was then applied to the test dataset, and the results
are depicted in Figure 9. Accordingly, the false predictions and missed predictions made
by the proposed system are depicted in Figure 10. In Figure 10a, an excavator can be seen
demolishing a house, resulting in the generation of mixed waste. However, the system fails
to correctly identify this category. This could be due to the relatively higher amount of
concrete waste present in the image compared to other types of waste. Similarly, Figure 10b
shows waste that should be categorized as timber waste; however, the system does not
detect any results for this image. This could be attributed to the background wall having
the same color as the waste, making it appear like a painted sketch on the wall. To address
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these limitations, future improvements could involve expanding the image dataset with
more high-quality images and synthetic data.
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6.4. Deep Learning Model Deployment for Periodic Checking of Safety Rules

With the recent advancements in robots and drone technologies, CV could be a game-
changer for the construction industry. This paper aims to adopt these technologies to ensure
compliance with construction safety rules by monitoring and verifying adherence to these
rules periodically. To demonstrate the feasibility of this approach, a simple case study based
on OSHA rules for monitoring construction waste is selected. An object detection model
has been trained to recognize five classes of waste: brick, concrete, steel, timber, and mixed.
The development procedure is divided into three parts: (1) streaming the video to a local
server, (2) running an object detection model on the streaming video, and (3) displaying
and reporting unsafe conditions related to construction waste. Figure 11 illustrates the
complete procedure, from data collection to reporting the results.

Owing to the nonavailability of a drone or a robot dog, the proposed concept has
been validated using the IP camera application in smartphones. A smartphone (Samsung
S8+) was used, leveraging the ability to send live-stream videos. This video stream was
then accessed frame-by-frame programmatically, using OpenCV libraries in Python. The
process was initiated by executing a Python code on the server (local machine) to receive
the live stream from the IP camera. The smartphone needed a connection with the local
machine over a Wi-Fi network. Creating a Wi-Fi hotspot is an excellent option to connect
the IP camera and local machine, allowing minimum lagged stream. However, this option
was ignored because the smartphone was connected to the same Wi-Fi network. The
local machine IP was configured after establishing a connection between the IP camera
and the local machine. The IP camera then successfully forwarded the live stream to the
server. Once the live feed of the IP camera is programmatically accessed, any deep learning
framework can be applied to the live feed to display the inferences. The weight file of
the trained model was imported into the server, and a Python code designed to apply the
deep learning framework on the live feed was executed. The detection model trained on
the scaled YOLOv4 framework was executed frame-by-frame and was displayed on the
main window.
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7. CV-Based Safety Rule Compliance Monitoring during Work Execution
7.1. Motivation for Selecting Mobile Scaffolding as an Example

Falls from elevated working platforms, scaffolds, ladders, and roof edges account
for 60% of the total fatalities [100]. Various forms of scaffolds, such as mobile, manufac-
tured frame, pump jack, needle beam, and horse scaffolds, are used on construction sites.
Extensive research has been conducted to develop failure mode detection systems that
consider the structural strength of scaffolding. These approaches include the use of ma-
chine learning [82], cyber-physical system concepts [101], and strain sensing methods [102].
However, the safety of mobile scaffolds has not been fully explored, and accidents related
to mobile scaffolds remain a significant concern. In 2019, according to statistics released
by the Korean Occupational Safety and Health Agency, there were 488 deaths associated
with scaffolding work, with 45 of them specifically related to activities involving mobile
scaffolds [103].

Avoiding safety best practices and deviating from predetermined methods of exe-
cuting tasks may increase the risk of accidents. The utilization of modern techniques,
such as vision intelligence [5], smart sensors [104], and augmented reality [105], holds
great promise for proactively preventing accidents and automatically identifying risks.
Computer vision (CV) has recently demonstrated significant potential in enhancing the
efficiency of various tasks in construction safety monitoring [10,18,25,106], such as equip-
ment tracking and defect detection. However, few studies have focused specifically on
mobile scaffolds’ safety and health. For instance, one study examined the hourly risk
rate of working on mobile scaffolds [107]. Manual safety monitoring of mobile scaffolds,
particularly for checking outriggers in large projects, is impractical, resource-intensive,
error-prone, and time-consuming in practice. Despite significant advancements in construc-
tion safety monitoring, there are still many unexplored areas. Therefore, this study aims to
address the detection of unsafe behavior when workers are working with mobile scaffolds
without outriggers.
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7.2. System Development
7.2.1. Design Process

The system presented for the detection of unsafe behavior during work utilizes Mask
R-CNN. In this system, frames from a video of the construction site are passed through a
CNN to perform predictions and detect two classes: mobile scaffold and person. Following
the object detection of these classes, an object correlation detection module is provided
to reveal unsafe behavior. In this study, unsafe behavior is defined as when a person is
working on the top of a mobile scaffold without outriggers installed. Conversely, when
a person is working on scaffolding with outriggers, it is considered safe behavior. The
developed system predicts whether the observed behavior in the frame is safe or unsafe
by comparing specific criteria and ensuring overlap between the localized positions of a
person and scaffolding. If unsafe behavior is detected, the system can provide a warning to
the relevant authorities.

In recent years, several deep learning techniques related to region-based CNN have
been introduced. Mask R-CNN combines Faster R-CNN and the fully convolutional neural
network to detect objects in a scene and localize them with pixel-based masking, known as
segmentation. The region proposal network serves as the initial step, generating random
proposals by scanning the entire frame, producing class outputs, and predicting regression
bounding boxes. In the second layer, convolutional features from the region proposal
network and feature pyramid network layers are used to predict masks for each region of
interest, which are then combined to achieve segmentation. Masks are applied on top of
bounding boxes and class results to provide output predictions. Mask R-CNN has three
output layers: the SoftMax classifier, bounding box regressor, and mask branch. During
training, a multi-task loss is defined on each sampled region of interest (RoI), as shown in
Equation (3), where Lcls represents the classification loss and Lbox represents the bounding
box loss; both are detailed in [108].

L = Lcls + Lbox + Lmask (4)

The mask branch of Mask R-CNN generates a Km2-dimension for each region of
interest (RoI), encoding K binary masks of size m × m, representing each of the K classes.
The mask loss, denoted as Lmask, is calculated using a per-pixel sigmoid and the mean
binary cross-entropy loss, as described in [56]. Here, Lmask is the mask loss defined in
Equation (4) as a per-pixel sigmoid and the mean binary cross-entropy loss on the kth mask
presented by the following:

Lmask = − 1
m2 ∑

1≤i,j≤m

[
yijlog ŷk

ij +
(
1 − yij

)
log
(

1 − ŷk
ij

)]
(5)

where yij is the cell (i, j) label in the true mask for a region (m × m), and ŷk
ij is the predicted

value of the same cell (i, j) in the mask learned for the ground-truth class k.

7.2.2. Model Development

The proposed system and the process of extracting coordinates for mobile scaffolding
safety monitoring during the construction phase are illustrated in Figure 12. Figure 12a
demonstrates the corner coordinates Sl,t =

(
xs

l , ys
t ) and Sr,b = (xs

r , ys
b) and centroid

coordinate Sc = (x s
c, ys

c) of mobile scaffolds having no outriggers. Similarly, the coordinates
for individuals are also explained; for instance, Pl,t = (xp

l , yp
t ) and Pr,b = (xp

r , yp
b ) for the

corner coordinates and Pc = (xp
c , yp

c ) for the centroid coordinate. The flow of the developed
system is discussed in Figure 12b. In the image scene, the CNN module first identifies the
entities such as persons, mobile scaffolds with outriggers, and mobile scaffolds without
outriggers, as demonstrated in Figure 12a. The relationship between the detected person
and mobile scaffold is then computed in the second phase to determine if a worker’s
position defines the behavior as safe/unsafe. The system identifies the worker near or on
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the mobile scaffold; the system avoids the additional processing and states the frame as safe
in the worker’s absence. If the person class exists in the scene, the system searches for the
mobile scaffold class equipped with outriggers, and thus the system indicates the behavior
as safe; otherwise, the y-coordinates of the centroid are evaluated. For instance, if the
y-coordinate of the centroid in the person’s bounding box yp

c is less than the y-coordinate of
the centroid in the scaffolding bounding box ys

c, then the person is assumed to be safe. To
ensure the person is on top of the mobile scaffold, the system checks the corner coordinates,
such as if xp

r is less than xs
r and xp

l is greater than xs
l , as stated in Figure 12b. If the criteria

are met by the system, unsafe behavior will be identified; otherwise, the person would not
be supposed to be on the mobile scaffold.
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Figure 12. CV-based system for ‘during work’ based safety monitoring: (a) bounding box coordinates;
(b) system flow.

7.3. Experimental Validation and Results

Experiments were conducted with an Intel i7-9700k processor, an NVIDIA RTX 2080Ti
GPU, and 16 GB of RAM. The model was trained with a 0.001 learning rate for 100 epochs
and was decreased by a factor of 10 until all layers were fine-tuned for additional 200 epochs
with 300 steps per epoch. Also, weight decay and learning momentum were set as 0.0001
and 0.9, respectively.

The postprocessing module was used to determine the correlation between a person
and the type of scaffolding to detect safe/unsafe behaviors. Figure 13a shows the detection
of persons and scaffoldings equipped with outriggers. Conversely, Figure 13b reveals that
the person working on the mobile scaffolds has no outriggers, and the system predicts the
behavior as unsafe per the OSHA rule.
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Similarly, false predictions can be seen in Figure 13c,d. The outriggers in Figure 13c are
not the same as those used in training; therefore, this style of outriggers must be added to
the dataset to enhance detection results. Accordingly, the person in Figure 13d is standing
on a mobile scaffolding with no outriggers, which is unsafe behavior; however, the system
classifies the behavior as safe. This could be due to the building’s complex background,
which includes windows and cantilever constructions that resemble pipes and lines. These
weaknesses will be addressed in future research by expanding the dataset.

Evaluation of the Developed System

The developed system is assessed with four performance metrics on the validation
set as this evaluation was carried out for the OCD block. The validation set (235 images)
was grouped into two groups: (1) safe behaviors and (2) unsafe behaviors. The images
containing person/s working on the top of the mobile scaffoldings with no outriggers
were classified as unsafe behavior (Class-2), whereas the remaining images were kept as
safe behavior (Class-1). Table 4 shows the findings of the performance indicators; the
overall accuracy noted was 86%. The precision and recall calculated during the experiment
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for Class-1 were 85% and 97%, respectively. For Class-2, the precision and recall were
calculated to be 65% and 76%, respectively. Overall, the accuracy of the classification on
the testing set was 86%.

Table 4. Performance indicators of the developed system.

Classification Binary Classification Precision (%) Recall (%)

Safe (158) 0 85 97
Unsafe (77) 1 91 65

8. CV-Based System for Post-Work Construction Safety Compliance
8.1. Motivation for the Selection of Protruding Rebar Safety as a Case Study

Falls are a significant contributor to workers’ injuries and death in construction
sites [109]. Previous studies have shown that falls from heights account for 30% of fatalities
and 48% of fatal and nonfatal injuries [23]. Nonfatal injuries owing to falls from heights
are often debilitating and lead to permanent disability and long-term pain [12]. OSHA has
identified four common causes of falls from height in construction sites: (1) unprotected
edges, floor holes, and wall openings; (2) improper scaffold construction; (3) unguarded
protruding steel rebar; and (4) misuse of portable ladders [110]. Extensive research has been
conducted to explore the significance of safety and health, considering unprotected edges,
floor, and wall openings, scaffold safety, and the safe use of ladders [12,39,95,111]; however,
safety concerns associated with protruding steel rebar remain relatively under-researched.
This is despite the fact that protruding steel bars create a severe threat to workers’ safety
when unguarded [110].

Reinforcement bars are an essential component of concrete work used in building
construction and civil engineering projects. During the execution of concrete work in the
construction of a permanent structure, reinforcement bars are among the initial components
that need to be placed. Thus, they restrict movement and generate hazardous obstacles
for those who prefer using shortcuts when going about their daily work tasks, such as
traversing steel bars in the columns and beams that may contribute to trips and falls. Trips
lead to falling accidents, and falls are assumed to be the primary cause of severe injuries
on construction sites [93,94,112]. Thus, the safety of protruding rebar is a crucial issue on
construction sites and needs to be addressed by leveraging recent emerging technology-
based solutions. Safety practitioners have attempted to use advanced technologies, such
as IoTs, BIM, and CV [5]. These attempts are notable but still suffer limitations. Therefore,
the safety rule pertaining to protruding rebar safety in construction is extracted from the
OSHA regulations owing to its cited significance.

1926.701(b) Reinforcing steel. All protruding reinforcing steel, onto and into which
employees could fall, shall be guarded to eliminate the hazard of impalement.

This class is a set of safety rules that require strict compliance once a segment or
permanent work is completed. According to the ‘after work’ rule set, 1926.701(b) shows
that the reinforcing steel onto or into which persons can fall should be guarded. This set of
safety rules can be ensured through the digital image data collected using a mobile camera
or an action camera on the concerned persons once the task is completed.

8.2. Model Development

The training and algorithm optimization of the protruding rebar detection model after
dataset preparation is presented in this section. The development of a deep learning model
with a limited dataset is challenging; in this study, a popular deep learning technique is used,
such as Faster R-CNN with Inception V2 meta-architecture. This technique was chosen
because of easy implementation, less training time, and higher accuracy [113]. Moreover,
Dai studied the object detection problem of resource-constrained devices employing the
coco dataset. SSD, compared with different architectures such as deep lab-VGG, Inception
V2, and MobileNet, have been tested. Similarly, Faster R-CNN (300 and 600) is evaluated



Buildings 2023, 13, 2093 26 of 36

with these cited architectures. SSD is substantially faster but has lower accuracy; however,
the Faster R-CNN with Inception V2 is slower in terms of real-time detection but has
higher accuracy [114]. In addition, Galvez et al. compared MobileNet SSD-V1 with Faster
R-CNN Inception V2; the results revealed that the former model is the best fit for real-time
application, whereas the latter is appropriate for accurate detection [115]. Consequently,
in detecting the rebar cap, it is better to have higher accuracy than real-time speed; thus,
Faster R-CNN with Inception V2 is selected for the training process.

8.2.1. Faster R-CNN with Inception V2 Meta-Architecture

The Faster R-CNN consists of three key components: (1) convolutional layers for
feature extraction, (2) region proposal network (RPN) for object detection, and (3) two fully
connected layers to classify objects and generate their coordinates [116]. The distinction
between Faster R-CNN and Fast R-CNN is the region proposal; the RPN is combined with
the architecture in Faster R-CNN, unlike the external selective search in Fast R-CNN [115].
Faster R-CNN is derived from Fast R-CNN using a region proposer, which offers faster
computation than the predecessor and SSD [117].

The Faster R-CNN uses object proposals, convolution, and max-pooling layers to
produce a convolution feature map. An RoI extracts the feature vector for each object
proposal, which is then processed by a concatenation of fully connected layers resulting
in two output layers. The first layer uses SoftMax probability to rate N object categories,
while the second layer generates four real-valued numbers against each N object category,
including the ‘background’ category. The RoI pooling layer uses max-pooling to alter each
RoI feature in a slight feature map. An RoI is a rectangular window in the convolution
feature map determined by four variables (r, c, h, w). The RoI max-pooling operates by
dividing the RoI window into a grid (H × W) of subwindows with an estimated size
(h/H × w/W). The max-pooling values are located inside the related output grid cell
in the entire subwindows. The RoI pooling layer’s output is fed to two fully connected
layers, which determine the object’s class using the object’s coordinates with the linear and
SoftMax activation functions. Faster R-CNN [118] has two core processes when performing
object detection. A feature extractor model processes images, identifies RPN, and extracts
category bounding box proposals using medium-level layers in parallel. These proposals
are used to crop features from the medium feature map and predict category labels. Faster
R-CNN avoids cropping proposals directly from the image and instead reruns the crops
over the feature extractor, resulting in more replicated computations.

Inception V2 is a CNN with complex architecture. It uses convolution as input, with
three filter sizes (1 × 1, 3 × 3, and 5 × 5) and max-pooling. The resulting outputs are
concatenated and passed to the next inception module. The GoogleNet neural network
uses nine similar inception modules to increase efficiency and reduce the expensive com-
putations of deep learning networks, as explained in [119]. Additionally, the Inception V2
architecture improves computational speed by factorizing a 5 × 5 convolution into two
3 × 3 convolutions, as the latter is 2.78 times less expensive.

8.2.2. Training Implementation and Model Deployment

The model was trained on a server with an i7-9700k CPU, RTX 2080Ti GPU, and 16 GB
RAM using a virtual environment created on Anaconda for Python. The dataset was formu-
lated in Roboflow, and a pre-trained model was imported from GitHub. TensorFlow and its
object detection API were used to train the Faster R-CNN inception model with a learning
rate of 0.00002 for 300,000 epochs, and each trained result was recorded every 50 steps.
Image augmentation techniques, including flip augmentation, were applied during training.
The resulting model was exported as an inference graph (.pb) and a set of checkpoints,
which were then converted to TFLite for deployment on the mobile application.
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8.2.3. Model Evaluation and Results

In this section, to quantitatively measure the performance of the proposed system,
two performance indicators, for instance, precision and recall, are used as evaluation
metrics. The performance metrics for precision and recall are calculated using Equations
(1) and (2). In this study, the IoU confidence value used is 0.5. Performance measurement
of the trained Faster R-CNN model has been visualized using TensorBoard. The trained
model is evaluated on the validation dataset. Consequently, the TFRecord file of detections
on the validation dataset is exported and then compared with the ground truth to compute
a recall and precision score at IoU = 0.5. Table 5 shows the precession and recall at 0.5 IoU.
On the validation dataset, the results obtained were 48% and 81% for precision and recall,
respectively. Moreover, the observed precision and recall for the test set were 44% and 76%
for ‘steel without cap.’ However, the noted precision and recall during the experiment for
‘steel with cap’ were 50% and 60%, respectively. The precision and recall calculation are
listed in Table 5.

Table 5. Precision and recall calculation at 0.5 IoU on the validation set.

Classes Category Precision Recall

0 Steel without cap 0.44 0.77
1 Steel with cap 0.51 0.61

Overall, owing to the complex nature of the construction site, the initial results of the
developed model are quite satisfactory and achieved good precision and recall across all
classes. Figure 14 shows the loss against each epoch until 240 k epochs. Because the loss
is continuously dropping, the training was increased from 200 k to 300 k. The designed
Python code automatically tests the training and validation loss indicators to choose the
best model, and an optimum best model is extracted based on performance. Here, the
model weight generated at 232 k epoch with a total loss of 0.1334 is extracted.
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The developed model is assessed using a test set to substantiate the performance of
the optimized Faster R-CNN algorithm. This section presents the detection results for
two classes: ‘steel with cap’ and ‘steel without cap’. Figure 15b,d indicates the true-positive
predictions for the two classes. Figure 15a,c shows the actual image from the testing dataset.
Figure 16b,c shows the actual prediction using the trained model. Accordingly, the false
predictions and missed predictions using the proposed system are shown in Figure 16,
which shows a complex picture of the site. The system fails to recognize all the classes
in the image. This may be attributed to the smaller size of the classes. The weaknesses
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identified in this case study will be addressed in a future study by expanding the dataset
by adding higher-quality images and synthetic data.
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8.2.4. Android Implementations

To deploy the model on the embedded device, the developed Faster R-CNN model is
converted to TFLite format using a two-step procedure: (1) conversion of the .h5 file into
the frozen graph.pb file format and (2) the full-scale TensorFlow model.pb into the TFLite
model. TensorFlow Lite is the framework designed to visualize inference on small devices,
thus avoiding a round-trip data computation to and from the server. This allows real-time
detection and function without an Internet connection [120]. This framework is not used
to train the models; rather, it is used with the model during production. An Android-
supported smartphone was selected to execute the converted model. The snapshots of the
Android-based prototype for visible defect inspection are shown in Figure 17.
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8.3. Firebase Database to Record the Visible Defects

Following the detection of unsafe conditions such as missing planks and guardrails,
as well as the incorrect installation of planks across the video frames of the smartphone, the
next step involves recording the image frame as evidence to assess the safety performance.
Every detected class in a video stream has an ID that can be traced across the frames. If-else
conditions have been added in the back-end programming to record the frame once the
model detects cited classes, excluding the person class.

A cloud-based real-time Firebase database is used to record the detected results. The
real-time Firebase database is a cloud-hosted NoSQL database that supports users to sync
their data in real-time. Users can sign up/sign in using the authentication module in the
Firebase database. Cloud storage for Firebase is a powerful, simple, and cost-effective object
storage service built for Google scale. The Firebase SDKs for cloud storage add Google
security to upload and download data in the developed application. First, a project on the
Firebase database to enable connection with an Android application is established. Users
can sign up through an application after the registered authentication procedure by Firebase.
A trial application developed in the Android Studio is executed on a video with visible
defects, such as missing guard rails and planks. The Android application automatically
communicates with the Firebase and records the cited defects of the concerned frame as
a snapshot. Afterward, the system uploads it into the specified folder on the Firebase
cloud storage.

9. Discussion

The aim of this study was to address the challenges faced by traditional safety man-
agement approaches at construction sites and explore the potential of computer vision
(CV) technology to enhance safety monitoring practices. The findings of this research
make a significant contribution to the field of safety management, offering practical and
theoretical implications.
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This study explored the potential of CV technology in enhancing construction safety
monitoring. CV has shown promising advancements in project progress and productivity
analysis, but its application to life-threatening safety rule monitoring remained limited.
This study fills this gap by proposing a comprehensive framework for work-stage-based
rule compliance monitoring using CV technology. The prototype development section
demonstrated the feasibility of the proposed classification method. The creation of novel
datasets and the deployment of object detection and classification models on edge devices
showcased the potential practical applications of CV in safety monitoring. For instance, the
integration of IP cameras with deep learning techniques enables the remote detection of
unsafe conditions with specific intervals, thereby enhancing safety monitoring capabilities
at construction sites.

Conversely, this study presented positive results, but there are certain limitations
that need to be acknowledged. The research focused on specific safety aspects related to
scaffolding, construction waste, mobile scaffolding, and protruding steel rebar to validate
the framework. Future studies should explore additional critical safety aspects and expand
the dataset to cover a broader range of construction scenarios to enhance the feasibility
and practicality of the proposed approach. Additionally, the effectiveness of the proposed
CV-based safety monitoring system should be tested and validated on a larger scale in
real-world construction projects. Conventional monitoring systems utilized CCTV cameras,
which are installed at construction sites. Existing and proposed CV-based methods for
safety management access these CCTV cameras to apply algorithms for safety rule com-
pliance. Furthermore, it is crucial to consider the technical aspects and limitations of CV
technology, such as the use of stereo cameras, real sense cameras, and Lidar to provide
depth information and improve the detection of certain safety hazards. Although, these
devices are very expensive and cannot be used for ordinary monitoring. Nevertheless,
future research should explore the integration of such advanced devices into the safety
monitoring framework to enhance its accuracy and reliability.

One of the main challenges posed by a limited dataset is the potential for overfitting.
With a smaller number of samples, the risk of the model memorizing the data rather than
learning meaningful patterns increases. This can lead to reduced generalization perfor-
mance when the model encounters new, unseen data. Furthermore, the limited dataset
used in this study might not cover all possible variations and edge cases present in the
real-world environment. As a result, the model’s performance might be compromised in
situations not well-represented in the dataset. Collecting more diverse data or collabo-
rating with other research groups to merge datasets could address this limitation. Also,
careful model selection, regularization methods, and transfer learning can improve the
model’s performance.

This study has provided a foundational framework for CV-based safety monitoring.
However, it is essential to keep in mind that construction sites are dynamic environments
with unique challenges. As construction practices evolve, new safety rules and consider-
ations may arise. Therefore, ongoing research and development efforts are necessary to
ensure that the CV-based safety monitoring system remains adaptive and up to date with
the changing construction industry.

10. Conclusions and Future Work

This study has successfully demonstrated the potential of CV-based systems to com-
plement traditional safety monitoring approaches. Through the rigorous analysis and
validation of OSHA safety rules, a vision intelligence-powered work-stage-based system
was developed, providing a structured and adaptive framework for safety compliance
monitoring during different construction phases. The findings of this study contribute
to the body of knowledge on safety management and have important practical and the-
oretical implications. The OSHA safety rules are analyzed and validated for a vision
intelligence-powered work-stage-based system.
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• The rules are classified into two layers. In the first layer, five groups are revealed
in the analysis: (1) procurement phase (8.54%), (2) preconstruction phase (0.31%),
(3) construction phase (52.67%), (4) general rules (15.35%), and (5) terminologies and
definitions (23.15%).

• In the second layer, the construction phase-related rules are further classified into four
classes: before work, with intervals, during work, and after work. The percentages of
each class are 32.95, 8.05, 41.59, and 13.09, respectively. In addition to these four classes,
4.3% of the safety rule set is categorized into general management-related rules.

• The prototype development phase validated the proposed classification, exhibiting the
practical applicability of CV models for detecting various safety hazards. The prototypes
are developed on the construction phase-related rules that include the development:

◦ A novel dataset of scaffold systems with visible defects was developed, and
a lightweight object detection model was trained using YOLOv5. A Firebase
database was integrated with an Android application to record unsafe condi-
tions for safety practitioners and decision-makers automatically.

◦ An object classification model was deployed on remote devices to detect con-
struction waste. An IP camera was integrated with deep learning techniques to
automatically and remotely detect unsafe conditions.

◦ A dataset for three classes was created to detect unsafe behaviors related to mo-
bile scaffolding using CCTV for real-time monitoring of safety rule compliance.

◦ A dataset of protruding steel rebar with and without caps was created. The
collected dataset was processed using a double-shot detector, Faster R-CNN,
and the best-fit model was converted into a TFLite model for edge computing.

In the future, the author intends to extend this research in two directions: theoret-
ical analysis and technical prototype optimization. Work-stage-based safety rules will
be compared against devices suitable for capturing specific scenes, considering technical
details such as stereo cameras for detecting depth information. The established dataset
will be enriched with novel CNN-based methods to enhance safety monitoring at job sites,
producing an extensive dataset to improve the practical application of a CV-based con-
struction safety monitoring system. Another framework based on accident case databases
will be designed to develop a practical system capable of dealing with real construction
problems. The author also presents Faster R-CNN and Mask R-CNN as having good
detection performance and plans to use double-stage detectors in future research.
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